Documentation

Carleson.ToMathlib.MeasureTheory.Integral.SetIntegral

theorem aux {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {f : α𝕜} (x : α) :
(starRingEnd 𝕜) (f x / f x) * f x = f x
theorem enorm_algebraMap' {𝕜 : Type u_1} (𝕜' : Type u_2) [NormedField 𝕜] [SeminormedRing 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormOneClass 𝕜'] (x : 𝕜) :
theorem enorm_integral_starRingEnd_mul_eq_lintegral_enorm {𝕜 : Type u_1} [RCLike 𝕜] {α : Type u_2} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : α𝕜} (hf : MeasureTheory.Integrable f μ) :
(x : α), (starRingEnd 𝕜) (f x / f x) * f x μ‖ₑ = ∫⁻ (x : α), f x‖ₑ μ