Lemma subst_typR : forall Δ A1 A2 n Γ Γ1 Γ2 H s,ins_in_env Δ A2 (S n) Γ Γ1->
sub_in_env (A2::Δ) (#0 ∽ H ↑h 1) (A1↑1) n Γ1 Γ2 -> Γ ⊣ -> Δ ⊢ A2:!s -> exists t, A2::Δ ⊢ A1↑1 : !t.1 subgoals, subgoal 1 (ID 13)
============================
forall (Δ : Env) (A1 A2 : Term) (n : nat) (Γ Γ1 Γ2 : Env)
(H : Prf) (s : Sorts),
ins_in_env Δ A2 (S n) Γ Γ1 ->
sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2 ->
Γ ⊣ -> Δ ⊢ A2 : !s -> exists t : Sorts, A2 :: Δ ⊢ A1 ↑ 1 : !t
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 26)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : ins_in_env Δ A2 (S n) Γ Γ1
H1 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H2 : Γ ⊣
H3 : Δ ⊢ A2 : !s
============================
exists t : Sorts, A2 :: Δ ⊢ A1 ↑ 1 : !t
(dependent evars:)
eapply wf_item;[eapply subst_item| |eapply subst_trunc];try eassumption.1 subgoals, subgoal 1 (ID 30)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : ins_in_env Δ A2 (S n) Γ Γ1
H1 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H2 : Γ ⊣
H3 : Δ ⊢ A2 : !s
============================
Γ1 ⊣
(dependent evars: ?27 using , ?28 using , ?32 using , ?33 using , ?34 using , ?36 using , ?37 using , ?38 using ,)
destruct weakening as (_&_&HH);eapply HH;[eassumption|eassumption..].No more subgoals.
(dependent evars: ?27 using , ?28 using , ?32 using , ?33 using , ?34 using , ?36 using , ?37 using , ?38 using , ?53 using , ?54 using , ?55 using , ?56 using , ?57 using ,)
Qed.
Lemma subst_typ : forall Δ A1 A2 n Γ Γ1 Γ2 M N H s, Γ ⊢ M:N->Δ ⊢ H : A2=A1->Δ ⊢ A2:!s
->ins_in_env Δ A2 (S n) Γ Γ1->sub_in_env (A2::Δ) (#0 ∽ H ↑h 1) (A1↑1) n Γ1 Γ2->
Γ2 ⊢ (M ↑ 1 # (S n)) [n ← #0 ∽ H ↑h 1] : (N ↑ 1 # (S n)) [n ← #0 ∽ H ↑h 1].1 subgoals, subgoal 1 (ID 87)
============================
forall (Δ : Env) (A1 A2 : Term) (n : nat) (Γ Γ1 Γ2 : Env)
(M N : Term) (H : Prf) (s : Sorts),
Γ ⊢ M : N ->
Δ ⊢ H : A2 = A1 ->
Δ ⊢ A2 : !s ->
ins_in_env Δ A2 (S n) Γ Γ1 ->
sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2 ->
Γ2 ⊢ M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] : N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 103)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
============================
Γ2 ⊢ M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] : N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars:)
assert (Γ1 ⊣) by (destruct weakening as (_&_&HH);eapply HH;[eapply wf_typ;eexact H0|eassumption..]).1 subgoals, subgoal 1 (ID 105)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
============================
Γ2 ⊢ M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] : N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using ,)
edestruct subst_typR as (?s&?);try eapply wf_typ;[eassumption..|].1 subgoals, subgoal 1 (ID 157)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
Γ2 ⊢ M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] : N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using ,)
eapply substitution;[eapply weakening;eassumption| |eassumption..].1 subgoals, subgoal 1 (ID 180)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 ∽ H ↑h 1 : A1 ↑ 1
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using , ?169 using ?176 , ?170 using ?178 , ?171 using ?179 , ?176 using , ?178 using , ?179 using , ?191 using ?198 , ?192 using ?200 , ?193 using ?201 , ?194 using ?203 , ?198 using , ?200 using , ?201 using , ?203 using ,)
eapply cConv with (s:=s0).3 subgoals, subgoal 1 (ID 206)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 : ?205
subgoal 2 (ID 207) is:
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 3 (ID 208) is:
A2 :: Δ ⊢ H ↑h 1 : ?205 = A1 ↑ 1
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using , ?169 using ?176 , ?170 using ?178 , ?171 using ?179 , ?176 using , ?178 using , ?179 using , ?191 using ?198 , ?192 using ?200 , ?193 using ?201 , ?194 using ?203 , ?198 using , ?200 using , ?201 using , ?203 using , ?205 open,)
repeat econstructor;eassumption.2 subgoals, subgoal 1 (ID 207)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 2 (ID 208) is:
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using , ?169 using ?176 , ?170 using ?178 , ?171 using ?179 , ?176 using , ?178 using , ?179 using , ?191 using ?198 , ?192 using ?200 , ?193 using ?201 , ?194 using ?203 , ?198 using , ?200 using , ?201 using , ?203 using , ?205 using ?224 , ?215 using , ?224 using ,)
eassumption.1 subgoals, subgoal 1 (ID 208)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ M : N
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using , ?169 using ?176 , ?170 using ?178 , ?171 using ?179 , ?176 using , ?178 using , ?179 using , ?191 using ?198 , ?192 using ?200 , ?193 using ?201 , ?194 using ?203 , ?198 using , ?200 using , ?201 using , ?203 using , ?205 using ?224 , ?215 using , ?224 using ,)
eapply thinning_h;eassumption.No more subgoals.
(dependent evars: ?119 using , ?120 using , ?121 using , ?122 using , ?123 using , ?127 using , ?128 using , ?132 using , ?133 using , ?134 using , ?135 using , ?136 using , ?137 using , ?138 using , ?139 using , ?140 using , ?158 using , ?159 using , ?169 using ?176 , ?170 using ?178 , ?171 using ?179 , ?176 using , ?178 using , ?179 using , ?191 using ?198 , ?192 using ?200 , ?193 using ?201 , ?194 using ?203 , ?198 using , ?200 using , ?201 using , ?203 using , ?205 using ?224 , ?215 using , ?224 using , ?231 using ,)
Qed.
Lemma subst_wf : forall Δ A1 A2 n Γ Γ1 Γ2 H s, Γ ⊣->Δ ⊢ H : A2=A1->Δ ⊢ A2:!s
->ins_in_env Δ A2 (S n) Γ Γ1->sub_in_env (A2::Δ) (#0 ∽ H ↑h 1) (A1↑1) n Γ1 Γ2->
Γ2 ⊣.1 subgoals, subgoal 1 (ID 261)
============================
forall (Δ : Env) (A1 A2 : Term) (n : nat) (Γ Γ1 Γ2 : Env)
(H : Prf) (s : Sorts),
Γ ⊣ ->
Δ ⊢ H : A2 = A1 ->
Δ ⊢ A2 : !s ->
ins_in_env Δ A2 (S n) Γ Γ1 ->
sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2 -> Γ2 ⊣
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 275)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
============================
Γ2 ⊣
(dependent evars:)
assert (Γ1 ⊣) by (destruct weakening as (_&_&HH);eapply HH;[eexact H0|eassumption..]).1 subgoals, subgoal 1 (ID 277)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
============================
Γ2 ⊣
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using ,)
edestruct subst_typR as (?s&?);[eassumption..|].1 subgoals, subgoal 1 (ID 326)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
Γ2 ⊣
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using ,)
eapply substitution;[eexact H5| |eassumption..].1 subgoals, subgoal 1 (ID 352)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 ∽ H ↑h 1 : A1 ↑ 1
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using , ?331 using ?339 , ?332 using ?341 , ?333 using ?342 , ?334 using ?343 , ?335 using ?345 , ?339 using ?347 , ?341 using ?349 , ?342 using ?350 , ?343 using ?351 , ?345 using ?353 , ?347 using , ?349 using , ?350 using , ?351 using , ?353 using ,)
eapply cConv with (s:=s0).3 subgoals, subgoal 1 (ID 356)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 : ?355
subgoal 2 (ID 357) is:
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 3 (ID 358) is:
A2 :: Δ ⊢ H ↑h 1 : ?355 = A1 ↑ 1
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using , ?331 using ?339 , ?332 using ?341 , ?333 using ?342 , ?334 using ?343 , ?335 using ?345 , ?339 using ?347 , ?341 using ?349 , ?342 using ?350 , ?343 using ?351 , ?345 using ?353 , ?347 using , ?349 using , ?350 using , ?351 using , ?353 using , ?355 open,)
repeat econstructor;eassumption.2 subgoals, subgoal 1 (ID 357)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 2 (ID 358) is:
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using , ?331 using ?339 , ?332 using ?341 , ?333 using ?342 , ?334 using ?343 , ?335 using ?345 , ?339 using ?347 , ?341 using ?349 , ?342 using ?350 , ?343 using ?351 , ?345 using ?353 , ?347 using , ?349 using , ?350 using , ?351 using , ?353 using , ?355 using ?374 , ?365 using , ?374 using ,)
eassumption.1 subgoals, subgoal 1 (ID 358)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H : Prf
s : Sorts
H0 : Γ ⊣
H1 : Δ ⊢ H : A2 = A1
H2 : Δ ⊢ A2 : !s
H3 : ins_in_env Δ A2 (S n) Γ Γ1
H4 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H5 : Γ1 ⊣
s0 : Sorts
H6 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using , ?331 using ?339 , ?332 using ?341 , ?333 using ?342 , ?334 using ?343 , ?335 using ?345 , ?339 using ?347 , ?341 using ?349 , ?342 using ?350 , ?343 using ?351 , ?345 using ?353 , ?347 using , ?349 using , ?350 using , ?351 using , ?353 using , ?355 using ?374 , ?365 using , ?374 using ,)
eapply thinning_h;eassumption.No more subgoals.
(dependent evars: ?291 using , ?292 using , ?293 using , ?294 using , ?295 using , ?301 using , ?302 using , ?303 using , ?304 using , ?305 using , ?306 using , ?307 using , ?308 using , ?309 using , ?331 using ?339 , ?332 using ?341 , ?333 using ?342 , ?334 using ?343 , ?335 using ?345 , ?339 using ?347 , ?341 using ?349 , ?342 using ?350 , ?343 using ?351 , ?345 using ?353 , ?347 using , ?349 using , ?350 using , ?351 using , ?353 using , ?355 using ?374 , ?365 using , ?374 using , ?381 using ,)
Qed.
Lemma subst_eq : forall Δ A1 A2 n Γ Γ1 Γ2 H2 M N H s, Γ ⊢ H2 : M=N->Δ ⊢ H : A2=A1->Δ ⊢ A2:!s
->ins_in_env Δ A2 (S n) Γ Γ1->sub_in_env (A2::Δ) (#0 ∽ H ↑h 1) (A1↑1) n Γ1 Γ2->
Γ2 ⊢ (H2 ↑h 1 # (S n)) [n ←h #0 ∽ H ↑h 1] : (M ↑ 1 # (S n)) [n ← #0 ∽ H ↑h 1] = (N ↑ 1 # (S n)) [n ← #0 ∽ H ↑h 1].1 subgoals, subgoal 1 (ID 412)
============================
forall (Δ : Env) (A1 A2 : Term) (n : nat) (Γ Γ1 Γ2 : Env)
(H2 : Prf) (M N : Term) (H : Prf) (s : Sorts),
Γ ⊢ H2 : M = N ->
Δ ⊢ H : A2 = A1 ->
Δ ⊢ A2 : !s ->
ins_in_env Δ A2 (S n) Γ Γ1 ->
sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2 ->
Γ2 ⊢ H2 ↑h 1 # (S n) [n ←h #0 ∽ H ↑h 1]
: M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] = N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 429)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
============================
Γ2 ⊢ H2 ↑h 1 # (S n) [n ←h #0 ∽ H ↑h 1]
: M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] = N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars:)
assert (Γ1 ⊣) by (edestruct equality_typing as ((?&?)&_);[eapply H0|];
destruct weakening as (_&_&HH);eapply HH;[eapply wf_typ;eassumption|try eassumption..]).1 subgoals, subgoal 1 (ID 431)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
============================
Γ2 ⊢ H2 ↑h 1 # (S n) [n ←h #0 ∽ H ↑h 1]
: M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] = N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using ,)
assert (exists s, A2::Δ ⊢ A1↑1 : !s) as (?s&?) by (eapply wf_item;[eapply subst_item| |eapply subst_trunc];eassumption).1 subgoals, subgoal 1 (ID 482)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
s0 : Sorts
H7 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
Γ2 ⊢ H2 ↑h 1 # (S n) [n ←h #0 ∽ H ↑h 1]
: M ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1] = N ↑ 1 # (S n) [n ← #0 ∽ H ↑h 1]
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using ,)
eapply substitution;[eapply weakening;eassumption| |eassumption..].1 subgoals, subgoal 1 (ID 520)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
s0 : Sorts
H7 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 ∽ H ↑h 1 : A1 ↑ 1
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using , ?502 using ?509 , ?503 using ?511 , ?504 using ?512 , ?509 using ?516 , ?511 using ?518 , ?512 using ?519 , ?516 using , ?518 using , ?519 using , ?529 using ?536 , ?530 using ?538 , ?531 using ?539 , ?532 using ?541 , ?536 using ?543 , ?538 using ?545 , ?539 using ?546 , ?541 using ?548 , ?543 using , ?545 using , ?546 using , ?548 using ,)
eapply cConv with (s:=s0).3 subgoals, subgoal 1 (ID 551)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
s0 : Sorts
H7 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ #0 : ?550
subgoal 2 (ID 552) is:
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 3 (ID 553) is:
A2 :: Δ ⊢ H ↑h 1 : ?550 = A1 ↑ 1
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using , ?502 using ?509 , ?503 using ?511 , ?504 using ?512 , ?509 using ?516 , ?511 using ?518 , ?512 using ?519 , ?516 using , ?518 using , ?519 using , ?529 using ?536 , ?530 using ?538 , ?531 using ?539 , ?532 using ?541 , ?536 using ?543 , ?538 using ?545 , ?539 using ?546 , ?541 using ?548 , ?543 using , ?545 using , ?546 using , ?548 using , ?550 open,)
repeat econstructor;eassumption.2 subgoals, subgoal 1 (ID 552)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
s0 : Sorts
H7 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ A1 ↑ 1 : !s0
subgoal 2 (ID 553) is:
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using , ?502 using ?509 , ?503 using ?511 , ?504 using ?512 , ?509 using ?516 , ?511 using ?518 , ?512 using ?519 , ?516 using , ?518 using , ?519 using , ?529 using ?536 , ?530 using ?538 , ?531 using ?539 , ?532 using ?541 , ?536 using ?543 , ?538 using ?545 , ?539 using ?546 , ?541 using ?548 , ?543 using , ?545 using , ?546 using , ?548 using , ?550 using ?569 , ?560 using , ?569 using ,)
eassumption.1 subgoals, subgoal 1 (ID 553)
Δ : Env
A1 : Term
A2 : Term
n : nat
Γ : Env
Γ1 : Env
Γ2 : Env
H2 : Prf
M : Term
N : Term
H : Prf
s : Sorts
H0 : Γ ⊢ H2 : M = N
H1 : Δ ⊢ H : A2 = A1
H3 : Δ ⊢ A2 : !s
H4 : ins_in_env Δ A2 (S n) Γ Γ1
H5 : sub_in_env (A2 :: Δ) (#0 ∽ H ↑h 1) A1 ↑ 1 n Γ1 Γ2
H6 : Γ1 ⊣
s0 : Sorts
H7 : A2 :: Δ ⊢ A1 ↑ 1 : !s0
============================
A2 :: Δ ⊢ H ↑h 1 : A2 ↑ 1 = A1 ↑ 1
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using , ?502 using ?509 , ?503 using ?511 , ?504 using ?512 , ?509 using ?516 , ?511 using ?518 , ?512 using ?519 , ?516 using , ?518 using , ?519 using , ?529 using ?536 , ?530 using ?538 , ?531 using ?539 , ?532 using ?541 , ?536 using ?543 , ?538 using ?545 , ?539 using ?546 , ?541 using ?548 , ?543 using , ?545 using , ?546 using , ?548 using , ?550 using ?569 , ?560 using , ?569 using ,)
eapply thinning_h;eassumption.No more subgoals.
(dependent evars: ?434 using , ?435 using , ?436 using , ?437 using , ?464 using , ?465 using , ?466 using , ?467 using , ?468 using , ?472 using , ?473 using , ?483 using , ?484 using , ?488 using , ?489 using , ?490 using , ?492 using , ?493 using , ?494 using , ?502 using ?509 , ?503 using ?511 , ?504 using ?512 , ?509 using ?516 , ?511 using ?518 , ?512 using ?519 , ?516 using , ?518 using , ?519 using , ?529 using ?536 , ?530 using ?538 , ?531 using ?539 , ?532 using ?541 , ?536 using ?543 , ?538 using ?545 , ?539 using ?546 , ?541 using ?548 , ?543 using , ?545 using , ?546 using , ?548 using , ?550 using ?569 , ?560 using , ?569 using , ?576 using ,)
Qed.
Fixpoint erasure (T:TM.Term) {struct T} : UTM.Term := match T with
| # x => (# x)%UT
| ! s => (! s)%UT
| M · N => ((ε M) · (ε N))%UT
| Π ( A ), B => (Π (ε A), (ε B))%UT
| λ [ A ], M => (λ [ε A], (ε M))%UT
| A ∽ H => ε A
end
where "'ε' t" := (erasure t) : F_scope.erasure is recursively defined (decreasing on 1st argument)
Fixpoint erasure_context (Γ:EM.Env) {struct Γ} : UEM.Env := match Γ with
| nil => nil
| A::Γ => ε A::εc Γ
end
where "'εc' t" := (erasure_context t) : F_scope.erasure_context is recursively defined (decreasing on 1st argument)
Lemma erasure_lift : forall a n m, ε(a ↑ n # m)=(ε a ↑ n # m)%UT.1 subgoals, subgoal 1 (ID 607)
============================
forall (a : Term) (n m : nat), ε (a ↑ n # m) = (ε a ↑ n # m)%UT
(dependent evars:)
induction a;simpl;intros;[destruct (le_gt_dec m v);simpl;reflexivity|try rewrite IHa1;try rewrite IHa2;trivial..].No more subgoals.
(dependent evars:)
Qed.
Lemma erasure_subst : forall a n N, ε(a [n ← N])=(ε a [n ← ε N])%UT.1 subgoals, subgoal 1 (ID 688)
============================
forall (a : Term) (n : nat) (N : Term), ε (a [n ← N]) = (ε a [n ← ε N])%UT
(dependent evars:)
induction a;simpl;intros; [destruct (lt_eq_lt_dec v n) as [[]|];
simpl;try rewrite erasure_lift;trivial|try rewrite IHa1;try rewrite IHa2;trivial..].No more subgoals.
(dependent evars:)
Qed.
Hint Rewrite erasure_lift erasure_subst.
Lemma erasure_lem2 : forall H a, ε a = ε((a ↑ 1 # 1) [ ← #0 ∽ H]).1 subgoals, subgoal 1 (ID 780)
============================
forall (H : Prf) (a : Term), ε a = ε ((a ↑ 1 # 1) [ ← #0 ∽ H])
(dependent evars:)
intros; rewrite erasure_subst. 1 subgoals, subgoal 1 (ID 783)
H : Prf
a : Term
============================
ε a = (ε (a ↑ 1 # 1)%F [ ← ε (#0%F ∽ H)])%UT
(dependent evars:)
change (ε(#0 ∽ H)) with (ε(#0)). 1 subgoals, subgoal 1 (ID 785)
H : Prf
a : Term
============================
ε a = (ε (a ↑ 1 # 1)%F [ ← ε #0%F])%UT
(dependent evars:)
rewrite <- erasure_subst.1 subgoals, subgoal 1 (ID 786)
H : Prf
a : Term
============================
ε a = ε ((a ↑ 1 # 1) [ ← #0])
(dependent evars:)
rewrite_l_rev erasure_lem1;reflexivity.No more subgoals.
(dependent evars:)
Qed.
Lemma erasure_item : forall Γ A v, A ↓ v ∈ Γ -> (ε A ↓ v ∈ εc Γ)%UT.1 subgoals, subgoal 1 (ID 801)
============================
forall (Γ : list Term) (A : Term) (v : nat),
A ↓ v ∈ Γ -> (ε A ↓ v ∈ εc Γ)%UT
(dependent evars:)
induction 1;simpl;auto.No more subgoals.
(dependent evars:)
Qed.
Lemma erasure_item_lift : forall Γ A v, A ↓ v ⊂ Γ -> (ε A ↓ v ⊂ εc Γ)%UT.1 subgoals, subgoal 1 (ID 831)
============================
forall (Γ : Env) (A : Term) (v : nat), A ↓ v ⊂ Γ -> (ε A ↓ v ⊂ εc Γ)%UT
(dependent evars:)
destruct 1 as (?&?&?). 1 subgoals, subgoal 1 (ID 843)
Γ : Env
A : Term
v : nat
x : Term
H : A = x ↑ (S v)
H0 : x ↓ v ∈ Γ
============================
(ε A ↓ v ⊂ εc Γ)%UT
(dependent evars:)
exists ε x;intuition. 2 subgoals, subgoal 1 (ID 847)
Γ : Env
A : Term
v : nat
x : Term
H : A = x ↑ (S v)
H0 : x ↓ v ∈ Γ
============================
ε A = (ε x ↑ (S v))%UT
subgoal 2 (ID 848) is:
(ε x ↓ v ∈ εc Γ)%UT
(dependent evars:)
rewrite <- erasure_lift; rewrite <- H; reflexivity.1 subgoals, subgoal 1 (ID 848)
Γ : Env
A : Term
v : nat
x : Term
H : A = x ↑ (S v)
H0 : x ↓ v ∈ Γ
============================
(ε x ↓ v ∈ εc Γ)%UT
(dependent evars:)
apply erasure_item;assumption.No more subgoals.
(dependent evars:)
Qed.erasure_item_lift is defined
Lemma erasure_item_lift_rev : forall Δ Γ v A, εc Γ = Δ->(A ↓ v ⊂ Δ)%UT->exists A',ε A'=A/\ A' ↓ v ⊂ Γ.1 subgoals, subgoal 1 (ID 882)
============================
forall (Δ : UEM.Env) (Γ : Env) (v : nat) (A : UTM.Term),
εc Γ = Δ -> (A ↓ v ⊂ Δ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ
(dependent evars:)
induction Δ;destruct 2 as (?&?&?);subst.2 subgoals, subgoal 1 (ID 919)
Γ : Env
v : nat
H : εc Γ = nil
x : UTM.Term
H1 : (x ↓ v ∈ nil)%UT
============================
exists A' : Term, ε A' = (x ↑ (S v))%UT /\ A' ↓ v ⊂ Γ
subgoal 2 (ID 922) is:
exists A' : Term, ε A' = (x ↑ (S v))%UT /\ A' ↓ v ⊂ Γ
(dependent evars:)
inversion H1.1 subgoals, subgoal 1 (ID 922)
a : UTM.Term
Δ : list UTM.Term
IHΔ : forall (Γ : Env) (v : nat) (A : UTM.Term),
εc Γ = Δ ->
(A ↓ v ⊂ Δ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ
Γ : Env
v : nat
H : εc Γ = a :: Δ
x : UTM.Term
H1 : (x ↓ v ∈ a :: Δ)%UT
============================
exists A' : Term, ε A' = (x ↑ (S v))%UT /\ A' ↓ v ⊂ Γ
(dependent evars:)
destruct Γ;try discriminate;simpl in H;injection H;intros;subst.1 subgoals, subgoal 1 (ID 1000)
t : Term
Γ : list Term
v : nat
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
H1 : (x ↓ v ∈ ε t :: εc Γ)%UT
============================
exists A' : Term, ε A' = (x ↑ (S v))%UT /\ A' ↓ v ⊂ t :: Γ
(dependent evars:)
inversion H1;subst.2 subgoals, subgoal 1 (ID 1076)
t : Term
Γ : list Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
H1 : (ε t ↓ 0 ∈ ε t :: εc Γ)%UT
============================
exists A' : Term, ε A' = (ε t ↑ 1)%UT /\ A' ↓ 0 ⊂ t :: Γ
subgoal 2 (ID 1083) is:
exists A' : Term, ε A' = (x ↑ (S (S n)))%UT /\ A' ↓ S n ⊂ t :: Γ
(dependent evars:)
exists t↑1;split. 3 subgoals, subgoal 1 (ID 1087)
t : Term
Γ : list Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
H1 : (ε t ↓ 0 ∈ ε t :: εc Γ)%UT
============================
ε (t ↑ 1) = (ε t ↑ 1)%UT
subgoal 2 (ID 1088) is:
t ↑ 1 ↓ 0 ⊂ t :: Γ
subgoal 3 (ID 1083) is:
exists A' : Term, ε A' = (x ↑ (S (S n)))%UT /\ A' ↓ S n ⊂ t :: Γ
(dependent evars:)
rewrite erasure_lift;reflexivity. 2 subgoals, subgoal 1 (ID 1088)
t : Term
Γ : list Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
H1 : (ε t ↓ 0 ∈ ε t :: εc Γ)%UT
============================
t ↑ 1 ↓ 0 ⊂ t :: Γ
subgoal 2 (ID 1083) is:
exists A' : Term, ε A' = (x ↑ (S (S n)))%UT /\ A' ↓ S n ⊂ t :: Γ
(dependent evars:)
exists t;intuition.1 subgoals, subgoal 1 (ID 1083)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
============================
exists A' : Term, ε A' = (x ↑ (S (S n)))%UT /\ A' ↓ S n ⊂ t :: Γ
(dependent evars:)
edestruct IHΔ as (?&?&?&?&?);[reflexivity|exists x;eauto|subst].1 subgoals, subgoal 1 (ID 1144)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
x1 : Term
H3 : x1 ↓ n ∈ Γ
H0 : ε (x1 ↑ (S n)) = (x ↑ (S n))%UT
============================
exists A' : Term, ε A' = (x ↑ (S (S n)))%UT /\ A' ↓ S n ⊂ t :: Γ
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
exists x1↑(S (S n)). 1 subgoals, subgoal 1 (ID 1146)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
x1 : Term
H3 : x1 ↓ n ∈ Γ
H0 : ε (x1 ↑ (S n)) = (x ↑ (S n))%UT
============================
ε (x1 ↑ (S (S n))) = (x ↑ (S (S n)))%UT /\ x1 ↑ (S (S n)) ↓ S n ⊂ t :: Γ
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
rewrite erasure_lift in *. 1 subgoals, subgoal 1 (ID 1149)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
x1 : Term
H3 : x1 ↓ n ∈ Γ
H0 : (ε x1 ↑ (S n))%UT = (x ↑ (S n))%UT
============================
(ε x1 ↑ (S (S n)))%UT = (x ↑ (S (S n)))%UT /\
x1 ↑ (S (S n)) ↓ S n ⊂ t :: Γ
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
apply UTM.inv_lift in H0.1 subgoals, subgoal 1 (ID 1151)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
x1 : Term
H3 : x1 ↓ n ∈ Γ
H0 : ε x1 = x
============================
(ε x1 ↑ (S (S n)))%UT = (x ↑ (S (S n)))%UT /\
x1 ↑ (S (S n)) ↓ S n ⊂ t :: Γ
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
rewrite H0;intuition. 1 subgoals, subgoal 1 (ID 1155)
t : Term
Γ : list Term
x : UTM.Term
IHΔ : forall (Γ0 : Env) (v : nat) (A : UTM.Term),
εc Γ0 = εc Γ ->
(A ↓ v ⊂ εc Γ)%UT -> exists A' : Term, ε A' = A /\ A' ↓ v ⊂ Γ0
H : ε t :: εc Γ = ε t :: εc Γ
n : nat
H4 : (x ↓ n ∈ εc Γ)%UT
H1 : (x ↓ S n ∈ ε t :: εc Γ)%UT
x1 : Term
H3 : x1 ↓ n ∈ Γ
H0 : ε x1 = x
============================
x1 ↑ (S (S n)) ↓ S n ⊂ t :: Γ
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
exists x1;intuition.No more subgoals.
(dependent evars: ?1105 using , ?1106 using , ?1107 using ?1106 ,)
Qed.erasure_item_lift_rev is defined
Theorem PTSF2PTS : (forall Γ A B,Γ ⊢ A : B -> (εc Γ ⊢ ε A : ε B)%UT )/\
(forall Γ H A B, Γ ⊢ H : A = B -> ε A ≡ ε B)/\
(forall Γ, Γ ⊣-> εc Γ ⊣ %UT).1 subgoals, subgoal 1 (ID 1205)
============================
(forall (Γ : Env) (A B : Term), Γ ⊢ A : B -> (εc Γ ⊢ ε A : ε B)%UT) /\
(forall (Γ : Env) (H : Prf) (A B : Term), Γ ⊢ H : A = B -> ε A ≡ ε B) /\
(forall Γ : Env, Γ ⊣ -> (εc Γ ⊣)%UT)
(dependent evars:)
apply typ_induc;simpl;intros;trivial;try (econstructor;eassumption).8 subgoals, subgoal 1 (ID 1249)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : (εc Γ ⊣)%UT
i : A ↓ v ⊂ Γ
============================
(εc Γ ⊢ #v : ε A)%UT
subgoal 2 (ID 1283) is:
(εc Γ ⊢ ε F · ε a : ε (B [ ← a])%F)%UT
subgoal 3 (ID 1311) is:
ε B ≡ ε A
subgoal 4 (ID 1321) is:
ε A ≡ ε C
subgoal 5 (ID 1338) is:
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 6 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 7 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 8 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using ,)
constructor;try apply erasure_item_lift;trivial.7 subgoals, subgoal 1 (ID 1283)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : (εc Γ ⊢ ε F : Π (ε A), ε B)%UT
t0 : Γ ⊢ a : A
H0 : (εc Γ ⊢ ε a : ε A)%UT
============================
(εc Γ ⊢ ε F · ε a : ε (B [ ← a])%F)%UT
subgoal 2 (ID 1311) is:
ε B ≡ ε A
subgoal 3 (ID 1321) is:
ε A ≡ ε C
subgoal 4 (ID 1338) is:
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 5 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 6 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 7 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using ,)
rewrite erasure_subst. 7 subgoals, subgoal 1 (ID 1505)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : (εc Γ ⊢ ε F : Π (ε A), ε B)%UT
t0 : Γ ⊢ a : A
H0 : (εc Γ ⊢ ε a : ε A)%UT
============================
(εc Γ ⊢ ε F · ε a : ε B [ ← ε a])%UT
subgoal 2 (ID 1311) is:
ε B ≡ ε A
subgoal 3 (ID 1321) is:
ε A ≡ ε C
subgoal 4 (ID 1338) is:
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 5 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 6 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 7 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using ,)
econstructor;eassumption.6 subgoals, subgoal 1 (ID 1311)
Γ : Env
H : Prf
A : Term
B : Term
t : Γ ⊢ H : A = B
H0 : ε A ≡ ε B
============================
ε B ≡ ε A
subgoal 2 (ID 1321) is:
ε A ≡ ε C
subgoal 3 (ID 1338) is:
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 4 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 5 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 6 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
apply Betac_sym;trivial.5 subgoals, subgoal 1 (ID 1321)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : ε A ≡ ε B
t0 : Γ ⊢ K : B = C
H1 : ε B ≡ ε C
============================
ε A ≡ ε C
subgoal 2 (ID 1338) is:
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 3 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 4 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 5 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
apply Betac_trans with ε B;trivial.4 subgoals, subgoal 1 (ID 1338)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : (εc Γ ⊢ ε a : ε A)%UT
t0 : Γ ⊢ A : !s1
H0 : (εc Γ ⊢ ε A : !s1)%UT
t1 : A :: Γ ⊢ b : B
H1 : (ε A :: εc Γ ⊢ ε b : ε B)%UT
t2 : A :: Γ ⊢ B : !s2
H2 : (ε A :: εc Γ ⊢ ε B : !s2)%UT
============================
((λ [ε A], ε b) · ε a)%UT ≡ ε (b [ ← a])
subgoal 2 (ID 1365) is:
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 3 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 4 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
apply Betac_Betas;apply Betas_Beta;rewrite erasure_subst;simpl;constructor.3 subgoals, subgoal 1 (ID 1365)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : (εc Γ ⊢ ε A : !s1)%UT
t0 : Γ ⊢ A' : !s1'
H1 : (εc Γ ⊢ ε A' : !s1')%UT
t1 : A :: Γ ⊢ B : !s2
H2 : (ε A :: εc Γ ⊢ ε B : !s2)%UT
t2 : A' :: Γ ⊢ B' : !s2'
H3 : (ε A' :: εc Γ ⊢ ε B' : !s2')%UT
t3 : Γ ⊢ H : A = A'
H4 : ε A ≡ ε A'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : ε B ≡ ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
(Π (ε A), ε B)%UT ≡ (Π (ε A'), ε B')%UT
subgoal 2 (ID 1398) is:
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 3 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
simpl;apply Betac_Pi;rewrite <- erasure_lem2 in H5;assumption.2 subgoals, subgoal 1 (ID 1398)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : (εc Γ ⊢ ε A : !s1)%UT
t0 : Γ ⊢ A' : !s1'
H1 : (εc Γ ⊢ ε A' : !s1')%UT
t1 : A :: Γ ⊢ b : B
H2 : (ε A :: εc Γ ⊢ ε b : ε B)%UT
t2 : A' :: Γ ⊢ b' : B'
H3 : (ε A' :: εc Γ ⊢ ε b' : ε B')%UT
t3 : A :: Γ ⊢ B : !s2
H4 : (ε A :: εc Γ ⊢ ε B : !s2)%UT
t4 : A' :: Γ ⊢ B' : !s2'
H5 : (ε A' :: εc Γ ⊢ ε B' : !s2')%UT
t5 : Γ ⊢ H : A = A'
H6 : ε A ≡ ε A'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : ε b ≡ ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
(λ [ε A], ε b)%UT ≡ (λ [ε A'], ε b')%UT
subgoal 2 (ID 1421) is:
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
simpl;apply Betac_La;rewrite <- erasure_lem2 in H7;assumption.1 subgoals, subgoal 1 (ID 1421)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : (εc Γ ⊢ ε F : Π (ε A), ε B)%UT
t0 : Γ ⊢ F' : Π (A'), B'
H1 : (εc Γ ⊢ ε F' : Π (ε A'), ε B')%UT
t1 : Γ ⊢ a : A
H2 : (εc Γ ⊢ ε a : ε A)%UT
t2 : Γ ⊢ a' : A'
H3 : (εc Γ ⊢ ε a' : ε A')%UT
t3 : Γ ⊢ H : F = F'
H4 : ε F ≡ ε F'
t4 : Γ ⊢ K : a = a'
H5 : ε a ≡ ε a'
============================
(ε F · ε a)%UT ≡ (ε F' · ε a')%UT
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
simpl;apply Betac_App;assumption.No more subgoals.
(dependent evars: ?1444 using , ?1445 using , ?1453 using , ?1454 using , ?1455 using , ?1477 using , ?1478 using , ?1484 using , ?1511 using ,)
Qed.
Proposition erasure_injectivity_term : forall a b Γ A B,Γ ⊢ a : A->Γ ⊢ b : B->ε a=ε b->exists H, Γ ⊢ H : a = b.1 subgoals, subgoal 1 (ID 1547)
============================
forall (a b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a : A -> Γ ⊢ b : B -> ε a = ε b -> exists H : Prf, Γ ⊢ H : a = b
(dependent evars:)
induction a;
[(induction b;simpl;intros;try discriminate;try (inversion H0;subst;edestruct IHb;eauto))..
|intros; apply gen_conv in H; destruct H as (A0&s&?&?&?);
destruct (IHa b Γ A0 B);trivial;exists (ι(a∽p)†•x);eauto].5 subgoals, subgoal 1 (ID 1627)
v : Vars
v0 : Vars
Γ : Env
A : Term
B : Term
H : Γ ⊢ #v : A
H0 : Γ ⊢ #v0 : B
H1 : #v%UT = #v0%UT
============================
exists H2 : Prf, Γ ⊢ H2 : #v = #v0
subgoal 2 (ID 2546) is:
exists H2 : Prf, Γ ⊢ H2 : !s = !s0
subgoal 3 (ID 3466) is:
exists H2 : Prf, Γ ⊢ H2 : Π (a1), a2 = Π (b1), b2
subgoal 4 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 5 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using ,)
injection H1;intros;subst; exists (ρ #v0);eauto.4 subgoals, subgoal 1 (ID 2546)
s : Sorts
s0 : Sorts
Γ : Env
A : Term
B : Term
H : Γ ⊢ !s : A
H0 : Γ ⊢ !s0 : B
H1 : !s%UT = !s0%UT
============================
exists H2 : Prf, Γ ⊢ H2 : !s = !s0
subgoal 2 (ID 3466) is:
exists H2 : Prf, Γ ⊢ H2 : Π (a1), a2 = Π (b1), b2
subgoal 3 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 4 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using ,)
injection H1;intros;subst; exists (ρ !s0);eauto.3 subgoals, subgoal 1 (ID 3466)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ Π (a1), a2 : A
H0 : Γ ⊢ Π (b1), b2 : B
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
============================
exists H2 : Prf, Γ ⊢ H2 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
injection H1;intros.3 subgoals, subgoal 1 (ID 6471)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ Π (a1), a2 : A
H0 : Γ ⊢ Π (b1), b2 : B
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
apply gen_pi in H; apply gen_pi in H0.3 subgoals, subgoal 1 (ID 6475)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
H : exists s1 s2 s3 : Sorts,
A = !s3 /\ Rel s1 s2 s3 /\ (Γ ⊢ a1 : !s1) /\ a1 :: Γ ⊢ a2 : !s2
H0 : exists s1 s2 s3 : Sorts,
B = !s3 /\ Rel s1 s2 s3 /\ (Γ ⊢ b1 : !s1) /\ b1 :: Γ ⊢ b2 : !s2
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
destruct H as (s&t&u&?&?&?&?);destruct H0 as (s'&t'&u'&?&?&?&?).3 subgoals, subgoal 1 (ID 6537)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H10 : Prf, Γ ⊢ H10 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
destruct (IHa1 b1 Γ !s !s');try eassumption.3 subgoals, subgoal 1 (ID 6553)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
============================
exists H11 : Prf, Γ ⊢ H11 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
destruct (IHa2 ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]) (a1 :: Γ) !t !t'). 6 subgoals, subgoal 1 (ID 6562)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
============================
a1 :: Γ ⊢ a2 : !t
subgoal 2 (ID 6564) is:
a1 :: Γ ⊢ (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1] : !t'
subgoal 3 (ID 6566) is:
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 4 (ID 6570) is:
exists H12 : Prf, Γ ⊢ H12 : Π (a1), a2 = Π (b1), b2
subgoal 5 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 6 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
eassumption.5 subgoals, subgoal 1 (ID 6564)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
============================
a1 :: Γ ⊢ (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1] : !t'
subgoal 2 (ID 6566) is:
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 3 (ID 6570) is:
exists H12 : Prf, Γ ⊢ H12 : Π (a1), a2 = Π (b1), b2
subgoal 4 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 5 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
change !t' with (!t' ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]. 5 subgoals, subgoal 1 (ID 6572)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
============================
a1 :: Γ ⊢ (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1] : (!t' ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]
subgoal 2 (ID 6566) is:
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 3 (ID 6570) is:
exists H12 : Prf, Γ ⊢ H12 : Π (a1), a2 = Π (b1), b2
subgoal 4 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 5 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using ,)
eapply subst_typ;try eassumption;repeat econstructor;eassumption.4 subgoals, subgoal 1 (ID 6566)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
============================
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 2 (ID 6570) is:
exists H12 : Prf, Γ ⊢ H12 : Π (a1), a2 = Π (b1), b2
subgoal 3 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 4 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using ,)
rewrite <- erasure_lem2;assumption.3 subgoals, subgoal 1 (ID 6570)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b1 : B ->
ε (Π (a1), a2) = ε b1 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ Π (a1), a2 : A ->
Γ ⊢ b2 : B ->
ε (Π (a1), a2) = ε b2 -> exists H : Prf, Γ ⊢ H : Π (a1), a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : A = !u
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : !t
s' : Sorts
t' : Sorts
u' : Sorts
H0 : B = !u'
H7 : Rel s' t' u'
H8 : Γ ⊢ b1 : !s'
H9 : b1 :: Γ ⊢ b2 : !t'
H1 : (Π (ε a1), ε a2)%UT = (Π (ε b1), ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H10 : Γ ⊢ x : a1 = b1
x0 : Prf
H11 : a1 :: Γ ⊢ x0 : a2 = (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]
============================
exists H12 : Prf, Γ ⊢ H12 : Π (a1), a2 = Π (b1), b2
subgoal 2 (ID 4450) is:
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using ,)
econstructor; eapply cProdEq; [eexact H4|eexact H7|eassumption..].2 subgoals, subgoal 1 (ID 4450)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ λ [a1], a2 : A
H0 : Γ ⊢ λ [b1], b2 : B
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
============================
exists H2 : Prf, Γ ⊢ H2 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
injection H1;intros.2 subgoals, subgoal 1 (ID 6622)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ λ [a1], a2 : A
H0 : Γ ⊢ λ [b1], b2 : B
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
apply gen_la in H; apply gen_la in H0.2 subgoals, subgoal 1 (ID 6626)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
H : exists (s1 s2 s3 : Sorts) (B : Term),
A = Π (a1), B /\
Rel s1 s2 s3 /\ (Γ ⊢ a1 : !s1) /\ a1 :: Γ ⊢ a2 : B : !s2
H0 : exists (s1 s2 s3 : Sorts) (B0 : Term),
B = Π (b1), B0 /\
Rel s1 s2 s3 /\ (Γ ⊢ b1 : !s1) /\ b1 :: Γ ⊢ b2 : B0 : !s2
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
destruct H as (s&t&u&B0&?&?&?&?&?);destruct H0 as (s'&t'&u'&B1&?&?&?&?&?).2 subgoals, subgoal 1 (ID 6708)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H12 : Prf, Γ ⊢ H12 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
destruct (IHa1 b1 Γ !s !s');try eassumption.2 subgoals, subgoal 1 (ID 6724)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H12 : Γ ⊢ x : a1 = b1
============================
exists H13 : Prf, Γ ⊢ H13 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
destruct (IHa2 ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]) (a1 :: Γ) B0 (B1 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]). 5 subgoals, subgoal 1 (ID 6733)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H12 : Γ ⊢ x : a1 = b1
============================
a1 :: Γ ⊢ a2 : B0
subgoal 2 (ID 6735) is:
a1 :: Γ ⊢ (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1] : (B1 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]
subgoal 3 (ID 6737) is:
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 4 (ID 6741) is:
exists H14 : Prf, Γ ⊢ H14 : λ [a1], a2 = λ [b1], b2
subgoal 5 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
eassumption.4 subgoals, subgoal 1 (ID 6735)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H12 : Γ ⊢ x : a1 = b1
============================
a1 :: Γ ⊢ (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1] : (B1 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]
subgoal 2 (ID 6737) is:
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 3 (ID 6741) is:
exists H14 : Prf, Γ ⊢ H14 : λ [a1], a2 = λ [b1], b2
subgoal 4 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using ,)
eapply subst_typ;try eassumption;repeat econstructor;eassumption.3 subgoals, subgoal 1 (ID 6737)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H12 : Γ ⊢ x : a1 = b1
============================
ε a2 = ε ((b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1])
subgoal 2 (ID 6741) is:
exists H14 : Prf, Γ ⊢ H14 : λ [a1], a2 = λ [b1], b2
subgoal 3 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using ,)
rewrite <- erasure_lem2;assumption.2 subgoals, subgoal 1 (ID 6741)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b1 : B ->
ε (λ [a1], a2) = ε b1 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ λ [a1], a2 : A ->
Γ ⊢ b2 : B ->
ε (λ [a1], a2) = ε b2 -> exists H : Prf, Γ ⊢ H : λ [a1], a2 = b2
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
B0 : Term
H : A = Π (a1), B0
H4 : Rel s t u
H5 : Γ ⊢ a1 : !s
H6 : a1 :: Γ ⊢ a2 : B0
H7 : a1 :: Γ ⊢ B0 : !t
s' : Sorts
t' : Sorts
u' : Sorts
B1 : Term
H0 : B = Π (b1), B1
H8 : Rel s' t' u'
H9 : Γ ⊢ b1 : !s'
H10 : b1 :: Γ ⊢ b2 : B1
H11 : b1 :: Γ ⊢ B1 : !t'
H1 : (λ [ε a1], ε a2)%UT = (λ [ε b1], ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H12 : Γ ⊢ x : a1 = b1
x0 : Prf
H13 : a1 :: Γ ⊢ x0 : a2 = (b2 ↑ 1 # 1) [ ← #0 ∽ x ↑h 1]
============================
exists H14 : Prf, Γ ⊢ H14 : λ [a1], a2 = λ [b1], b2
subgoal 2 (ID 5448) is:
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using ,)
econstructor; eapply cAbsEq; [eexact H4|eexact H8|eassumption..].1 subgoals, subgoal 1 (ID 5448)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ a1 · a2 : A
H0 : Γ ⊢ b1 · b2 : B
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
============================
exists H2 : Prf, Γ ⊢ H2 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
injection H1;intros.1 subgoals, subgoal 1 (ID 6795)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
H : Γ ⊢ a1 · a2 : A
H0 : Γ ⊢ b1 · b2 : B
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
apply gen_app in H; apply gen_app in H0.1 subgoals, subgoal 1 (ID 6799)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
H : exists A0 B : Term,
A = B [ ← a2] /\ (Γ ⊢ a1 : Π (A0), B) /\ Γ ⊢ a2 : A0
H0 : exists A B0 : Term,
B = B0 [ ← b2] /\ (Γ ⊢ b1 : Π (A), B0) /\ Γ ⊢ b2 : A
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H4 : Prf, Γ ⊢ H4 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
destruct H as (A0&B0&?&?&?);destruct H0 as (A1&B1&?&?&?).1 subgoals, subgoal 1 (ID 6841)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
A0 : Term
B0 : Term
H : A = B0 [ ← a2]
H4 : Γ ⊢ a1 : Π (A0), B0
H5 : Γ ⊢ a2 : A0
A1 : Term
B1 : Term
H0 : B = B1 [ ← b2]
H6 : Γ ⊢ b1 : Π (A1), B1
H7 : Γ ⊢ b2 : A1
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
============================
exists H8 : Prf, Γ ⊢ H8 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
destruct (IHa1 b1 Γ (Π (A0), B0) (Π (A1), B1));try eassumption.1 subgoals, subgoal 1 (ID 6857)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
A0 : Term
B0 : Term
H : A = B0 [ ← a2]
H4 : Γ ⊢ a1 : Π (A0), B0
H5 : Γ ⊢ a2 : A0
A1 : Term
B1 : Term
H0 : B = B1 [ ← b2]
H6 : Γ ⊢ b1 : Π (A1), B1
H7 : Γ ⊢ b2 : A1
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H8 : Γ ⊢ x : a1 = b1
============================
exists H9 : Prf, Γ ⊢ H9 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
destruct (IHa2 b2 Γ A0 A1);trivial.1 subgoals, subgoal 1 (ID 6873)
a1 : Term
a2 : Term
IHa1 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a1 : A ->
Γ ⊢ b : B -> ε a1 = ε b -> exists H : Prf, Γ ⊢ H : a1 = b
IHa2 : forall (b : Term) (Γ : Env) (A B : Term),
Γ ⊢ a2 : A ->
Γ ⊢ b : B -> ε a2 = ε b -> exists H : Prf, Γ ⊢ H : a2 = b
b1 : Term
b2 : Term
IHb1 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b1 : B ->
ε (a1 · a2) = ε b1 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b1
IHb2 : forall (Γ : Env) (A B : Term),
Γ ⊢ a1 · a2 : A ->
Γ ⊢ b2 : B ->
ε (a1 · a2) = ε b2 -> exists H : Prf, Γ ⊢ H : a1 · a2 = b2
Γ : Env
A : Term
B : Term
A0 : Term
B0 : Term
H : A = B0 [ ← a2]
H4 : Γ ⊢ a1 : Π (A0), B0
H5 : Γ ⊢ a2 : A0
A1 : Term
B1 : Term
H0 : B = B1 [ ← b2]
H6 : Γ ⊢ b1 : Π (A1), B1
H7 : Γ ⊢ b2 : A1
H1 : (ε a1 · ε a2)%UT = (ε b1 · ε b2)%UT
H2 : ε a2 = ε b2
H3 : ε a1 = ε b1
x : Prf
H8 : Γ ⊢ x : a1 = b1
x0 : Prf
H9 : Γ ⊢ x0 : a2 = b2
============================
exists H10 : Prf, Γ ⊢ H10 : a1 · a2 = b1 · b2
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using ,)
econstructor; eapply cAppEq;eassumption.No more subgoals.
(dependent evars: ?2062 using , ?2063 using , ?2064 using , ?2082 using ?2089 ?2088 , ?2088 using , ?2089 using , ?2090 using , ?2299 using , ?2300 using , ?2301 using , ?2975 using , ?2976 using , ?2977 using , ?2996 using ?3003 ?3002 , ?3002 using , ?3003 using , ?3004 using , ?3213 using , ?3214 using , ?3215 using , ?3901 using , ?3902 using , ?3903 using , ?3926 using ?3933 ?3932 , ?3932 using , ?3933 using , ?3934 using , ?4191 using , ?4192 using , ?4193 using , ?4881 using , ?4882 using , ?4883 using , ?4910 using ?4917 ?4916 , ?4916 using , ?4917 using , ?4918 using , ?5183 using , ?5184 using , ?5185 using , ?5869 using , ?5870 using , ?5871 using , ?5896 using ?5903 ?5902 , ?5902 using , ?5903 using , ?5904 using , ?6149 using , ?6150 using , ?6151 using , ?6393 using , ?6397 using , ?6398 using , ?6399 using , ?6440 using , ?6457 using , ?6573 using , ?6574 using , ?6575 using , ?6576 using , ?6577 using ?6588 ?6587 , ?6578 using , ?6586 using , ?6587 using , ?6588 using , ?6594 using ?6598 ?6597 ?6596 , ?6596 using , ?6597 using , ?6598 using , ?6599 using , ?6600 using , ?6601 using , ?6602 using , ?6603 using , ?6604 using , ?6742 using , ?6743 using , ?6744 using , ?6745 using , ?6746 using ?6757 ?6756 , ?6747 using , ?6755 using , ?6756 using , ?6757 using , ?6763 using ?6767 ?6766 ?6765 , ?6765 using , ?6766 using , ?6767 using , ?6768 using , ?6769 using , ?6770 using , ?6771 using , ?6772 using , ?6773 using , ?6774 using , ?6775 using , ?6875 using ?6878 ?6877 , ?6877 using , ?6878 using , ?6879 using , ?6880 using , ?6881 using , ?6882 using ,)
Qed.erasure_injectivity_term is defined
Lemma erasure_injectivity_term_sort : forall A Γ B s,Γ ⊢ A : B->ε A=!s%UT->Γ ⊢ A = !s.1 subgoals, subgoal 1 (ID 6903)
============================
forall (A : Term) (Γ : Env) (B : Term) (s : Sorts),
Γ ⊢ A : B -> ε A = !s%UT -> Γ ⊢ A = !s
(dependent evars:)
induction A;simpl;intros;try discriminate.2 subgoals, subgoal 1 (ID 6953)
s : Sorts
Γ : Env
B : Term
s0 : Sorts
H : Γ ⊢ !s : B
H0 : !s%UT = !s0%UT
============================
Γ ⊢ !s = !s0
subgoal 2 (ID 6973) is:
Γ ⊢ A ∽ p = !s
(dependent evars:)
injection H0;intros;subst;econstructor;eapply cRefl;eassumption.1 subgoals, subgoal 1 (ID 6973)
A : Term
p : Prf
IHA : forall (Γ : Env) (B : Term) (s : Sorts),
Γ ⊢ A : B -> ε A = !s%UT -> Γ ⊢ A = !s
Γ : Env
B : Term
s : Sorts
H : Γ ⊢ A ∽ p : B
H0 : ε A = !s%UT
============================
Γ ⊢ A ∽ p = !s
(dependent evars: ?7012 using , ?7014 using ,)
inversion H;intros;subst.1 subgoals, subgoal 1 (ID 7212)
A : Term
p : Prf
IHA : forall (Γ : Env) (B : Term) (s : Sorts),
Γ ⊢ A : B -> ε A = !s%UT -> Γ ⊢ A = !s
Γ : Env
B : Term
s : Sorts
H : Γ ⊢ A ∽ p : B
H0 : ε A = !s%UT
A0 : Term
s0 : Sorts
H4 : Γ ⊢ A : A0
H6 : Γ ⊢ B : !s0
H8 : Γ ⊢ p : A0 = B
============================
Γ ⊢ A ∽ p = !s
(dependent evars: ?7012 using , ?7014 using ,)
edestruct IHA;try eassumption;econstructor;eapply cTrans with (B:=A);apply cSym.2 subgoals, subgoal 1 (ID 7237)
A : Term
p : Prf
IHA : forall (Γ : Env) (B : Term) (s : Sorts),
Γ ⊢ A : B -> ε A = !s%UT -> Γ ⊢ A = !s
Γ : Env
B : Term
s : Sorts
H : Γ ⊢ A ∽ p : B
H0 : ε A = !s%UT
A0 : Term
s0 : Sorts
H4 : Γ ⊢ A : A0
H6 : Γ ⊢ B : !s0
H8 : Γ ⊢ p : A0 = B
x : Prf
H1 : Γ ⊢ x : A = !s
============================
Γ ⊢ ?7236 : A = A ∽ p
subgoal 2 (ID 7239) is:
Γ ⊢ ?7238 : !s = A
(dependent evars: ?7012 using , ?7014 using , ?7215 using , ?7216 using , ?7217 using , ?7230 using ?7233 ?7232 , ?7232 using ?7236 , ?7233 using ?7238 , ?7236 open, ?7238 open,)
eapply cIota;eassumption. 1 subgoals, subgoal 1 (ID 7239)
A : Term
p : Prf
IHA : forall (Γ : Env) (B : Term) (s : Sorts),
Γ ⊢ A : B -> ε A = !s%UT -> Γ ⊢ A = !s
Γ : Env
B : Term
s : Sorts
H : Γ ⊢ A ∽ p : B
H0 : ε A = !s%UT
A0 : Term
s0 : Sorts
H4 : Γ ⊢ A : A0
H6 : Γ ⊢ B : !s0
H8 : Γ ⊢ p : A0 = B
x : Prf
H1 : Γ ⊢ x : A = !s
============================
Γ ⊢ ?7238 : !s = A
(dependent evars: ?7012 using , ?7014 using , ?7215 using , ?7216 using , ?7217 using , ?7230 using ?7233 ?7232 , ?7232 using ?7236 , ?7233 using ?7238 , ?7236 using , ?7238 open, ?7240 using , ?7241 using , ?7242 using ,)
apply cSym;eassumption.No more subgoals.
(dependent evars: ?7012 using , ?7014 using , ?7215 using , ?7216 using , ?7217 using , ?7230 using ?7233 ?7232 , ?7232 using ?7236 , ?7233 using ?7238 , ?7236 using , ?7238 using ?7246 , ?7240 using , ?7241 using , ?7242 using , ?7246 using ,)
Qed.erasure_injectivity_term_sort is defined
Lemma erasure_injectivity_term_type : forall A' A Γ a,Γ ⊢ a : A'->forall B,Γ ⊢ A : B->ε A=ε A'->Γ ⊢ A = A'.1 subgoals, subgoal 1 (ID 7261)
============================
forall (A' A : Term) (Γ : Env) (a : Term),
Γ ⊢ a : A' -> forall B : Term, Γ ⊢ A : B -> ε A = ε A' -> Γ ⊢ A = A'
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 7269)
A' : Term
A : Term
Γ : Env
a : Term
H : Γ ⊢ a : A'
B : Term
H0 : Γ ⊢ A : B
H1 : ε A = ε A'
============================
Γ ⊢ A = A'
(dependent evars:)
apply TypeCorrect in H; destruct H as [(?&?)|(?&?)].2 subgoals, subgoal 1 (ID 7282)
A' : Term
A : Term
Γ : Env
a : Term
x : Sorts
H : A' = !x
B : Term
H0 : Γ ⊢ A : B
H1 : ε A = ε A'
============================
Γ ⊢ A = A'
subgoal 2 (ID 7289) is:
Γ ⊢ A = A'
(dependent evars:)
subst; eapply erasure_injectivity_term_sort;eassumption.1 subgoals, subgoal 1 (ID 7289)
A' : Term
A : Term
Γ : Env
a : Term
x : Sorts
H : Γ ⊢ A' : !x
B : Term
H0 : Γ ⊢ A : B
H1 : ε A = ε A'
============================
Γ ⊢ A = A'
(dependent evars: ?7295 using ,)
intros;eapply erasure_injectivity_term;eassumption.No more subgoals.
(dependent evars: ?7295 using , ?7298 using , ?7299 using ,)
Qed.erasure_injectivity_term_type is defined
Lemma erasure_injectivity_type : forall A1 A2 Γ B1 B2,Γ ⊢ B1 : A1->Γ ⊢ B2 : A2->ε A1=ε A2
->((A1=A2/\exists s,A1=!s)\/Γ ⊢ A1 = A2).1 subgoals, subgoal 1 (ID 7321)
============================
forall (A1 A2 : Term) (Γ : Env) (B1 B2 : Term),
Γ ⊢ B1 : A1 ->
Γ ⊢ B2 : A2 ->
ε A1 = ε A2 -> A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars:)
intros;destruct (TypeCorrect Γ B1 A1 H) as [(?&?)|(?&?)].2 subgoals, subgoal 1 (ID 7342)
A1 : Term
A2 : Term
Γ : Env
B1 : Term
B2 : Term
H : Γ ⊢ B1 : A1
H0 : Γ ⊢ B2 : A2
H1 : ε A1 = ε A2
x : Sorts
H2 : A1 = !x
============================
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 2 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars:)
apply TypeCorrect in H0 as [(?&?)|(?&?)].3 subgoals, subgoal 1 (ID 7358)
A1 : Term
A2 : Term
Γ : Env
B1 : Term
B2 : Term
H : Γ ⊢ B1 : A1
H1 : ε A1 = ε A2
x : Sorts
H2 : A1 = !x
x0 : Sorts
H0 : A2 = !x0
============================
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 2 (ID 7363) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 3 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars:)
left;subst;simpl in H1;subst. 3 subgoals, subgoal 1 (ID 7377)
Γ : Env
B1 : Term
B2 : Term
x : Sorts
x0 : Sorts
H : Γ ⊢ B1 : !x
H1 : !x%UT = !x0%UT
============================
!x = !x0 /\ (exists s : Sorts, !x = !s)
subgoal 2 (ID 7363) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 3 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars:)
injection H1;intros;subst. 3 subgoals, subgoal 1 (ID 7388)
Γ : Env
B1 : Term
B2 : Term
x0 : Sorts
H : Γ ⊢ B1 : !x0
H1 : !x0%UT = !x0%UT
============================
!x0 = !x0 /\ (exists s : Sorts, !x0 = !s)
subgoal 2 (ID 7363) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 3 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars:)
eauto.2 subgoals, subgoal 1 (ID 7363)
A1 : Term
A2 : Term
Γ : Env
B1 : Term
B2 : Term
H : Γ ⊢ B1 : A1
H1 : ε A1 = ε A2
x : Sorts
H2 : A1 = !x
x0 : Sorts
H0 : Γ ⊢ A2 : !x0
============================
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 2 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars: ?7392 using ,)
edestruct erasure_injectivity_term_type;[exact H|exact H0|symmetry;assumption|].2 subgoals, subgoal 1 (ID 7415)
A1 : Term
A2 : Term
Γ : Env
B1 : Term
B2 : Term
H : Γ ⊢ B1 : A1
H1 : ε A1 = ε A2
x : Sorts
H2 : A1 = !x
x0 : Sorts
H0 : Γ ⊢ A2 : !x0
x1 : Prf
H3 : Γ ⊢ x1 : A2 = A1
============================
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
subgoal 2 (ID 7347) is:
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars: ?7392 using , ?7397 using , ?7398 using , ?7399 using , ?7400 using , ?7401 using ,)
right;econstructor;apply cSym;eassumption.1 subgoals, subgoal 1 (ID 7347)
A1 : Term
A2 : Term
Γ : Env
B1 : Term
B2 : Term
H : Γ ⊢ B1 : A1
H0 : Γ ⊢ B2 : A2
H1 : ε A1 = ε A2
x : Sorts
H2 : Γ ⊢ A1 : !x
============================
A1 = A2 /\ (exists s : Sorts, A1 = !s) \/ Γ ⊢ A1 = A2
(dependent evars: ?7392 using , ?7397 using , ?7398 using , ?7399 using , ?7400 using , ?7401 using , ?7421 using ?7423 , ?7423 using ,)
right;eapply erasure_injectivity_term_type;eassumption.No more subgoals.
(dependent evars: ?7392 using , ?7397 using , ?7398 using , ?7399 using , ?7400 using , ?7401 using , ?7421 using ?7423 , ?7423 using , ?7427 using , ?7428 using ,)
Qed.erasure_injectivity_type is defined
Lemma erasure_term : forall A1 A2 Γ a1,Γ ⊢ a1 : A1->ε A1=ε A2->semitype A2 Γ->exists a2,ε a2=ε a1/\Γ ⊢ a2 : A2.1 subgoals, subgoal 1 (ID 7448)
============================
forall (A1 A2 : Term) (Γ : Env) (a1 : Term),
Γ ⊢ a1 : A1 ->
ε A1 = ε A2 ->
semitype A2 Γ -> exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
destruct 3 as [(?&?)|(?&?)].2 subgoals, subgoal 1 (ID 7464)
A1 : Term
A2 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
H0 : ε A1 = ε A2
x : Sorts
H1 : A2 = !x
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
destruct (TypeCorrect _ _ _ H) as [(?&?)|(?&?)].3 subgoals, subgoal 1 (ID 7485)
A1 : Term
A2 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
H0 : ε A1 = ε A2
x : Sorts
H1 : A2 = !x
x0 : Sorts
H2 : A1 = !x0
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
subgoal 2 (ID 7490) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
subgoal 3 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
subst;simpl in H0;injection H0;intros;subst. 3 subgoals, subgoal 1 (ID 7513)
Γ : Env
a1 : Term
x : Sorts
H : Γ ⊢ a1 : !x
H0 : !x%UT = !x%UT
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : !x
subgoal 2 (ID 7490) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
subgoal 3 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
exists a1;eauto.2 subgoals, subgoal 1 (ID 7490)
A1 : Term
A2 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
H0 : ε A1 = ε A2
x : Sorts
H1 : A2 = !x
x0 : Sorts
H2 : Γ ⊢ A1 : !x0
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
subst;simpl in H0.2 subgoals, subgoal 1 (ID 7524)
A1 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
x : Sorts
x0 : Sorts
H2 : Γ ⊢ A1 : !x0
H0 : ε A1 = !x%UT
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : !x
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
destruct (erasure_injectivity_term_sort _ _ _ x H2); try assumption.2 subgoals, subgoal 1 (ID 7537)
A1 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
x : Sorts
x0 : Sorts
H2 : Γ ⊢ A1 : !x0
H0 : ε A1 = !x%UT
x1 : Prf
H1 : Γ ⊢ x1 : A1 = !x
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : !x
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars:)
edestruct equality_typing as (?&?&?); try exact H1.2 subgoals, subgoal 1 (ID 7555)
A1 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
x : Sorts
x0 : Sorts
H2 : Γ ⊢ A1 : !x0
H0 : ε A1 = !x%UT
x1 : Prf
H1 : Γ ⊢ x1 : A1 = !x
H3 : has_type A1 Γ
x2 : Term
H4 : Γ ⊢ !x : x2
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : !x
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars: ?7540 using , ?7541 using , ?7542 using , ?7543 using ,)
destruct (gen_sort _ _ _ H4) as (?&?&?);subst.2 subgoals, subgoal 1 (ID 7574)
A1 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
x : Sorts
x0 : Sorts
H2 : Γ ⊢ A1 : !x0
H0 : ε A1 = !x%UT
x1 : Prf
H1 : Γ ⊢ x1 : A1 = !x
H3 : has_type A1 Γ
x3 : Sorts
H6 : Ax x x3
H4 : Γ ⊢ !x : !x3
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : !x
subgoal 2 (ID 7469) is:
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars: ?7540 using , ?7541 using , ?7542 using , ?7543 using ,)
exists (a1 ∽ x1);eauto.1 subgoals, subgoal 1 (ID 7469)
A1 : Term
A2 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
H0 : ε A1 = ε A2
x : Sorts
H1 : Γ ⊢ A2 : !x
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars: ?7540 using , ?7541 using , ?7542 using , ?7543 using , ?7580 using , ?7581 using ,)
destruct (erasure_injectivity_term_type _ _ _ _ H _ H1);try (symmetry;assumption).1 subgoals, subgoal 1 (ID 7601)
A1 : Term
A2 : Term
Γ : Env
a1 : Term
H : Γ ⊢ a1 : A1
H0 : ε A1 = ε A2
x : Sorts
H1 : Γ ⊢ A2 : !x
x0 : Prf
H2 : Γ ⊢ x0 : A2 = A1
============================
exists a2 : Term, ε a2 = ε a1 /\ Γ ⊢ a2 : A2
(dependent evars: ?7540 using , ?7541 using , ?7542 using , ?7543 using , ?7580 using , ?7581 using ,)
exists (a1 ∽ x0†);eauto.No more subgoals.
(dependent evars: ?7540 using , ?7541 using , ?7542 using , ?7543 using , ?7580 using , ?7581 using , ?7610 using , ?7611 using ,)
Qed.
Lemma erasure_term_type : forall Γ a1 A1 A2 B s,Γ ⊢ a1 : A1->Γ ⊢ A2 : B->ε A1=ε A2->ε B=!s%UT
->exists A a,ε A=ε A1/\ε a=ε a1/\Γ ⊢ a : A : !s.1 subgoals, subgoal 1 (ID 7636)
============================
forall (Γ : Env) (a1 A1 A2 B : Term) (s : Sorts),
Γ ⊢ a1 : A1 ->
Γ ⊢ A2 : B ->
ε A1 = ε A2 ->
ε B = !s%UT ->
exists A a : Term, ε A = ε A1 /\ ε a = ε a1 /\ Γ ⊢ a : A : !s
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 7646)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = !s%UT
============================
exists A a : Term, ε A = ε A1 /\ ε a = ε a1 /\ Γ ⊢ a : A : !s
(dependent evars:)
change !s%UT with (ε!s) in H2. 1 subgoals, subgoal 1 (ID 7648)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
============================
exists A a : Term, ε A = ε A1 /\ ε a = ε a1 /\ Γ ⊢ a : A : !s
(dependent evars:)
edestruct erasure_term as (A&?&?);[exact H0|exact H2|left;exists s;trivial|].1 subgoals, subgoal 1 (ID 7672)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
exists A0 a : Term, ε A0 = ε A1 /\ ε a = ε a1 /\ Γ ⊢ a : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using ,)
edestruct erasure_term as (a&?&?). 4 subgoals, subgoal 1 (ID 7688)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
?7681 ⊢ ?7682 : ?7679
subgoal 2 (ID 7690) is:
ε ?7679 = ε ?7680
subgoal 3 (ID 7692) is:
semitype ?7680 ?7681
subgoal 4 (ID 7700) is:
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 open, ?7680 open, ?7681 open, ?7682 open,)
exact H. 3 subgoals, subgoal 1 (ID 7690)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
ε A1 = ε ?7680
subgoal 2 (ID 7692) is:
semitype ?7680 Γ
subgoal 3 (ID 7700) is:
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 open, ?7681 using , ?7682 using ,)
transitivity (ε A2). 4 subgoals, subgoal 1 (ID 7702)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
ε A1 = ε A2
subgoal 2 (ID 7703) is:
ε A2 = ε ?7680
subgoal 3 (ID 7692) is:
semitype ?7680 Γ
subgoal 4 (ID 7700) is:
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 open, ?7681 using , ?7682 using ,)
exact H1. 3 subgoals, subgoal 1 (ID 7703)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
ε A2 = ε ?7680
subgoal 2 (ID 7692) is:
semitype ?7680 Γ
subgoal 3 (ID 7700) is:
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 open, ?7681 using , ?7682 using ,)
symmetry;exact H3.2 subgoals, subgoal 1 (ID 7692)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
============================
semitype A Γ
subgoal 2 (ID 7700) is:
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 using , ?7681 using , ?7682 using ,)
right;exists s;trivial.1 subgoals, subgoal 1 (ID 7700)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
a : Term
H5 : ε a = ε a1
H6 : Γ ⊢ a : A
============================
exists A0 a0 : Term, ε A0 = ε A1 /\ ε a0 = ε a1 /\ Γ ⊢ a0 : A0 : !s
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 using , ?7681 using , ?7682 using ,)
exists A;exists a;intuition. 1 subgoals, subgoal 1 (ID 7715)
Γ : Env
a1 : Term
A1 : Term
A2 : Term
B : Term
s : Sorts
H : Γ ⊢ a1 : A1
H0 : Γ ⊢ A2 : B
H1 : ε A1 = ε A2
H2 : ε B = ε !s
A : Term
H3 : ε A = ε A2
H4 : Γ ⊢ A : !s
a : Term
H5 : ε a = ε a1
H6 : Γ ⊢ a : A
============================
ε A = ε A1
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 using , ?7681 using , ?7682 using ,)
transitivity (ε A2);intuition.No more subgoals.
(dependent evars: ?7651 using , ?7652 using , ?7653 using , ?7654 using , ?7679 using , ?7680 using , ?7681 using , ?7682 using ,)
Qed.erasure_term_type is defined
Lemma erasure_equality : forall Γ a1 a2 A B H,Γ ⊢ H : a1 = a2->Γ ⊢ a1 : A->Γ ⊢ a2 : A->ε A=ε B->semitype B Γ
->exists b1 b2,ε b1=ε a1/\ε b2=ε a2/\Γ ⊢ b1 : B/\Γ ⊢ b2 : B/\Γ ⊢ b1 = b2.1 subgoals, subgoal 1 (ID 7789)
============================
forall (Γ : Env) (a1 a2 A B : Term) (H : Prf),
Γ ⊢ H : a1 = a2 ->
Γ ⊢ a1 : A ->
Γ ⊢ a2 : A ->
ε A = ε B ->
semitype B Γ ->
exists b1 b2 : Term,
ε b1 = ε a1 /\
ε b2 = ε a2 /\ (Γ ⊢ b1 : B) /\ (Γ ⊢ b2 : B) /\ Γ ⊢ b1 = b2
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 7800)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
============================
exists b1 b2 : Term,
ε b1 = ε a1 /\
ε b2 = ε a2 /\ (Γ ⊢ b1 : B) /\ (Γ ⊢ b2 : B) /\ Γ ⊢ b1 = b2
(dependent evars:)
edestruct erasure_term as (b1&?&?);[exact H1|exact H3|assumption| ].1 subgoals, subgoal 1 (ID 7824)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H5 : ε b1 = ε a1
H6 : Γ ⊢ b1 : B
============================
exists b0 b2 : Term,
ε b0 = ε a1 /\
ε b2 = ε a2 /\ (Γ ⊢ b0 : B) /\ (Γ ⊢ b2 : B) /\ Γ ⊢ b0 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using ,)
edestruct erasure_term as (b2&?&?);[exact H2|exact H3|assumption| ].1 subgoals, subgoal 1 (ID 7848)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H5 : ε b1 = ε a1
H6 : Γ ⊢ b1 : B
b2 : Term
H7 : ε b2 = ε a2
H8 : Γ ⊢ b2 : B
============================
exists b0 b3 : Term,
ε b0 = ε a1 /\
ε b3 = ε a2 /\ (Γ ⊢ b0 : B) /\ (Γ ⊢ b3 : B) /\ Γ ⊢ b0 = b3
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using ,)
exists b1;exists b2;intuition.1 subgoals, subgoal 1 (ID 7864)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H5 : ε b1 = ε a1
H6 : Γ ⊢ b1 : B
b2 : Term
H7 : ε b2 = ε a2
H8 : Γ ⊢ b2 : B
============================
Γ ⊢ b1 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using ,)
eapply erasure_injectivity_term in H5;eauto. 1 subgoals, subgoal 1 (ID 7889)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H7 : ε b2 = ε a2
H8 : Γ ⊢ b2 : B
H5 : exists H : Prf, Γ ⊢ H : b1 = a1
============================
Γ ⊢ b1 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using ,)
eapply erasure_injectivity_term in H7;eauto.1 subgoals, subgoal 1 (ID 7896)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
H5 : exists H : Prf, Γ ⊢ H : b1 = a1
H7 : exists H : Prf, Γ ⊢ H : b2 = a2
============================
Γ ⊢ b1 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using ,)
destruct H5;destruct H7.1 subgoals, subgoal 1 (ID 7908)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
x : Prf
H5 : Γ ⊢ x : b1 = a1
x0 : Prf
H7 : Γ ⊢ x0 : b2 = a2
============================
Γ ⊢ b1 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using ,)
econstructor;eapply cTrans. 2 subgoals, subgoal 1 (ID 7915)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
x : Prf
H5 : Γ ⊢ x : b1 = a1
x0 : Prf
H7 : Γ ⊢ x0 : b2 = a2
============================
Γ ⊢ ?7912 : b1 = ?7914
subgoal 2 (ID 7916) is:
Γ ⊢ ?7913 : ?7914 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using , ?7910 using ?7913 ?7912 , ?7912 open, ?7913 open, ?7914 open,)
exact H5.1 subgoals, subgoal 1 (ID 7916)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
x : Prf
H5 : Γ ⊢ x : b1 = a1
x0 : Prf
H7 : Γ ⊢ x0 : b2 = a2
============================
Γ ⊢ ?7913 : a1 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using , ?7910 using ?7913 ?7912 , ?7912 using , ?7913 open, ?7914 using ,)
eapply cTrans. 2 subgoals, subgoal 1 (ID 7920)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
x : Prf
H5 : Γ ⊢ x : b1 = a1
x0 : Prf
H7 : Γ ⊢ x0 : b2 = a2
============================
Γ ⊢ ?7917 : a1 = ?7919
subgoal 2 (ID 7921) is:
Γ ⊢ ?7918 : ?7919 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using , ?7910 using ?7913 ?7912 , ?7912 using , ?7913 using ?7918 ?7917 , ?7914 using , ?7917 open, ?7918 open, ?7919 open,)
exact H0. 1 subgoals, subgoal 1 (ID 7921)
Γ : Env
a1 : Term
a2 : Term
A : Term
B : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ a1 : A
H2 : Γ ⊢ a2 : A
H3 : ε A = ε B
H4 : semitype B Γ
b1 : Term
H6 : Γ ⊢ b1 : B
b2 : Term
H8 : Γ ⊢ b2 : B
x : Prf
H5 : Γ ⊢ x : b1 = a1
x0 : Prf
H7 : Γ ⊢ x0 : b2 = a2
============================
Γ ⊢ ?7918 : a2 = b2
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using , ?7910 using ?7913 ?7912 , ?7912 using , ?7913 using ?7918 ?7917 , ?7914 using , ?7917 using , ?7918 open, ?7919 using ,)
eapply cSym;exact H7.No more subgoals.
(dependent evars: ?7803 using , ?7804 using , ?7805 using , ?7806 using , ?7827 using , ?7828 using , ?7829 using , ?7830 using , ?7885 using , ?7886 using , ?7887 using , ?7892 using , ?7893 using , ?7894 using , ?7910 using ?7913 ?7912 , ?7912 using , ?7913 using ?7918 ?7917 , ?7914 using , ?7917 using , ?7918 using ?7922 , ?7919 using , ?7922 using ,)
Qed.erasure_equality is defined
Lemma erasure_equality2 : forall Γ a1 a2 b1 b2 B1 B2 H,Γ ⊢ H : a1 = a2->Γ ⊢ b1 : B1->Γ ⊢ b2 : B2->ε a1=ε b1->ε a2=ε b2
->Γ ⊢ b1 = b2.1 subgoals, subgoal 1 (ID 7946)
============================
forall (Γ : Env) (a1 a2 b1 b2 B1 B2 : Term) (H : Prf),
Γ ⊢ H : a1 = a2 ->
Γ ⊢ b1 : B1 -> Γ ⊢ b2 : B2 -> ε a1 = ε b1 -> ε a2 = ε b2 -> Γ ⊢ b1 = b2
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 7959)
Γ : Env
a1 : Term
a2 : Term
b1 : Term
b2 : Term
B1 : Term
B2 : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ b1 : B1
H2 : Γ ⊢ b2 : B2
H3 : ε a1 = ε b1
H4 : ε a2 = ε b2
============================
Γ ⊢ b1 = b2
(dependent evars:)
edestruct equality_typing as ((?&?)&(?&?));[exact H0|].1 subgoals, subgoal 1 (ID 7981)
Γ : Env
a1 : Term
a2 : Term
b1 : Term
b2 : Term
B1 : Term
B2 : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ b1 : B1
H2 : Γ ⊢ b2 : B2
H3 : ε a1 = ε b1
H4 : ε a2 = ε b2
x : Term
H5 : Γ ⊢ a1 : x
x0 : Term
H6 : Γ ⊢ a2 : x0
============================
Γ ⊢ b1 = b2
(dependent evars: ?7962 using , ?7963 using , ?7964 using , ?7965 using ,)
destruct (erasure_injectivity_term _ _ _ _ _ H5 H1 H3) as (?&?).1 subgoals, subgoal 1 (ID 7993)
Γ : Env
a1 : Term
a2 : Term
b1 : Term
b2 : Term
B1 : Term
B2 : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ b1 : B1
H2 : Γ ⊢ b2 : B2
H3 : ε a1 = ε b1
H4 : ε a2 = ε b2
x : Term
H5 : Γ ⊢ a1 : x
x0 : Term
H6 : Γ ⊢ a2 : x0
x1 : Prf
H7 : Γ ⊢ x1 : a1 = b1
============================
Γ ⊢ b1 = b2
(dependent evars: ?7962 using , ?7963 using , ?7964 using , ?7965 using ,)
destruct (erasure_injectivity_term _ _ _ _ _ H6 H2 H4) as (?&?).1 subgoals, subgoal 1 (ID 8005)
Γ : Env
a1 : Term
a2 : Term
b1 : Term
b2 : Term
B1 : Term
B2 : Term
H : Prf
H0 : Γ ⊢ H : a1 = a2
H1 : Γ ⊢ b1 : B1
H2 : Γ ⊢ b2 : B2
H3 : ε a1 = ε b1
H4 : ε a2 = ε b2
x : Term
H5 : Γ ⊢ a1 : x
x0 : Term
H6 : Γ ⊢ a2 : x0
x1 : Prf
H7 : Γ ⊢ x1 : a1 = b1
x2 : Prf
H8 : Γ ⊢ x2 : a2 = b2
============================
Γ ⊢ b1 = b2
(dependent evars: ?7962 using , ?7963 using , ?7964 using , ?7965 using ,)
econstructor;eapply cTrans;[eapply cSym;eexact H7|eapply cTrans;[eexact H0|eexact H8]].No more subgoals.
(dependent evars: ?7962 using , ?7963 using , ?7964 using , ?7965 using , ?8007 using ?8010 ?8009 , ?8009 using ?8014 , ?8010 using ?8017 ?8016 , ?8011 using , ?8014 using , ?8016 using , ?8017 using , ?8018 using ,)
Qed.erasure_equality2 is defined
This is a map which erases only the outer conversion in a term. It will be used in the following situation:
Suppose ε T=Π(A'),B', then we can write T as (Π(A),B)∽H1∽H2∽...∽Hn. Using the outer erasure, we can retrieve A and B from T.
Here we prove context conversion. This is a Theorem we do not use in the paper or thesis, but it allows some simpler formulation of the implication PTSeq -> PTSf.
Lemma context_conversion :
(forall Γ A B,Γ ⊢ A : B->forall Δ,Δ ⊣->εc Γ = εc Δ->exists A' B',ε A'=ε A/\ε B'=ε B/\Δ ⊢ A' : B')/\
(forall Γ H A B,Γ ⊢ H : A = B->forall Δ,Δ ⊣->εc Γ = εc Δ->exists H' A' B',ε A'=ε A/\ε B'=ε B/\Δ ⊢ H' : A' = B')/\
(forall Γ, Γ ⊣ ->True).1 subgoals, subgoal 1 (ID 8714)
============================
(forall (Γ : Env) (A B : Term),
Γ ⊢ A : B ->
forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ A' : B') /\
(forall (Γ : Env) (H : Prf) (A B : Term),
Γ ⊢ H : A = B ->
forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B') /\
(forall Γ : Env, Γ ⊣ -> True)
(dependent evars:)
apply typ_induc;intros;trivial.14 subgoals, subgoal 1 (ID 8739)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣
H : True
Δ : Env
H0 : Δ ⊣
H1 : εc Γ = εc Δ
============================
exists A' B' : Term, ε A' = ε !s /\ ε B' = ε !t /\ Δ ⊢ A' : B'
subgoal 2 (ID 8748) is:
exists A' B' : Term, ε A' = ε #v /\ ε B' = ε A /\ Δ ⊢ A' : B'
subgoal 3 (ID 8762) is:
exists A' B' : Term, ε A' = ε (Π (A), B) /\ ε B' = ε !s3 /\ Δ ⊢ A' : B'
subgoal 4 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 5 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 6 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 7 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 10 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 11 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 13 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 14 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars:)
exists !s;exists !t;intuition.13 subgoals, subgoal 1 (ID 8748)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : True
i : A ↓ v ⊂ Γ
Δ : Env
H0 : Δ ⊣
H1 : εc Γ = εc Δ
============================
exists A' B' : Term, ε A' = ε #v /\ ε B' = ε A /\ Δ ⊢ A' : B'
subgoal 2 (ID 8762) is:
exists A' B' : Term, ε A' = ε (Π (A), B) /\ ε B' = ε !s3 /\ Δ ⊢ A' : B'
subgoal 3 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 5 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 6 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 10 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 13 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars:)
edestruct context_conversion_context as (A0&?&?);[eassumption|exact i|exists #v;exists A0;intuition].12 subgoals, subgoal 1 (ID 8762)
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ B : !s2
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
============================
exists A' B' : Term, ε A' = ε (Π (A), B) /\ ε B' = ε !s3 /\ Δ ⊢ A' : B'
subgoal 2 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using ,)
destruct_ext H Δ !s1.12 subgoals, subgoal 1 (ID 9101)
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ B : !s2
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
============================
exists A' B' : Term, ε A' = ε (Π (A), B) /\ ε B' = ε !s3 /\ Δ ⊢ A' : B'
subgoal 2 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using ,)
destruct_ext H0 (T::Δ) !s2.12 subgoals, subgoal 1 (ID 9193)
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ B : !s2
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
============================
exists A' B' : Term, ε A' = ε (Π (A), B) /\ ε B' = ε !s3 /\ Δ ⊢ A' : B'
subgoal 2 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using ,)
exists (Π (T), T0);exists !s3;simpl;intuition.13 subgoals, subgoal 1 (ID 9200)
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ B : !s2
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
============================
(Π (ε T), ε T0)%UT = (Π (ε A), ε B)%UT
subgoal 2 (ID 9204) is:
Δ ⊢ Π (T), T0 : !s3
subgoal 3 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 5 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 6 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 10 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 13 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using ,)
f_equal;assumption. 12 subgoals, subgoal 1 (ID 9204)
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ B : !s2
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
============================
Δ ⊢ Π (T), T0 : !s3
subgoal 2 (ID 8779) is:
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using ,)
econstructor;eassumption.11 subgoals, subgoal 1 (ID 8779)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
============================
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using ,)
destruct_ext H Δ !s1.11 subgoals, subgoal 1 (ID 9337)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
============================
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using ,)
destruct_ext H1 (T::Δ) !s2.11 subgoals, subgoal 1 (ID 9429)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
============================
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using ,)
destruct_ext H0 (T::Δ) T0.11 subgoals, subgoal 1 (ID 9540)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
T1 : Term
HT1 : T :: Δ ⊢ T1 : T0
eqt1 : ε T1 = ε b
============================
exists A' B' : Term,
ε A' = ε (λ [A], b) /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using ,)
exists (λ [T], T1);exists (Π (T), T0);simpl;intuition.13 subgoals, subgoal 1 (ID 9547)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
T1 : Term
HT1 : T :: Δ ⊢ T1 : T0
eqt1 : ε T1 = ε b
============================
(λ [ε T], ε T1)%UT = (λ [ε A], ε b)%UT
subgoal 2 (ID 9550) is:
(Π (ε T), ε T0)%UT = (Π (ε A), ε B)%UT
subgoal 3 (ID 9551) is:
Δ ⊢ λ [T], T1 : Π (T), T0
subgoal 4 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 5 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 6 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 10 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 13 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using ,)
f_equal;assumption. 12 subgoals, subgoal 1 (ID 9550)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
T1 : Term
HT1 : T :: Δ ⊢ T1 : T0
eqt1 : ε T1 = ε b
============================
(Π (ε T), ε T0)%UT = (Π (ε A), ε B)%UT
subgoal 2 (ID 9551) is:
Δ ⊢ λ [T], T1 : Π (T), T0
subgoal 3 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using ,)
f_equal;assumption. 11 subgoals, subgoal 1 (ID 9551)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : A :: Γ ⊢ b : B
H0 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ B : !s2
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : T :: Δ ⊢ T0 : !s2
eqt0 : ε T0 = ε B
T1 : Term
HT1 : T :: Δ ⊢ T1 : T0
eqt1 : ε T1 = ε b
============================
Δ ⊢ λ [T], T1 : Π (T), T0
subgoal 2 (ID 8791) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using ,)
econstructor;eassumption.10 subgoals, subgoal 1 (ID 8791)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
============================
exists A' B' : Term,
ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using ,)
destruct_ext2 H Δ. 10 subgoals, subgoal 1 (ID 9710)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
eq : ε x = ε (Π (A), B)
HT : Δ ⊢ T : x
============================
exists A' B' : Term,
ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using ,)
search_prod.10 subgoals, subgoal 1 (ID 9942)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
============================
exists A' B' : Term,
ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using ,)
destruct_ext H Δ (Π (X1), X2). 11 subgoals, subgoal 1 (ID 9980)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
t1 : Term
x0 : Term
eqt0 : ε t1 = ε F
eq0 : ε x0 = ε (Π (A), B)
Ht : Δ ⊢ t1 : x0
============================
ε x0 = ε (Π (X1), X2)
subgoal 2 (ID 10016) is:
exists A' B' : Term, ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using ,)
simpl;rewrite eq;assumption.10 subgoals, subgoal 1 (ID 10016)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
============================
exists A' B' : Term,
ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using ,)
destruct_ext H0 Δ X1.10 subgoals, subgoal 1 (ID 10098)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
============================
exists A' B' : Term,
ε A' = ε (F · a) /\ ε B' = ε (B [ ← a]) /\ Δ ⊢ A' : B'
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using ,)
exists (T0 · T1);exists (X2 [ ← T1]);simpl;intuition.12 subgoals, subgoal 1 (ID 10105)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
============================
(ε T0 · ε T1)%UT = (ε F · ε a)%UT
subgoal 2 (ID 10108) is:
ε (X2 [ ← T1]) = ε (B [ ← a])
subgoal 3 (ID 10109) is:
Δ ⊢ T0 · T1 : X2 [ ← T1]
subgoal 4 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 5 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 9 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 12 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using ,)
f_equal;assumption. 11 subgoals, subgoal 1 (ID 10108)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
============================
ε (X2 [ ← T1]) = ε (B [ ← a])
subgoal 2 (ID 10109) is:
Δ ⊢ T0 · T1 : X2 [ ← T1]
subgoal 3 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 4 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 8 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 11 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using ,)
rewrite 2! erasure_subst;f_equal;assumption. 10 subgoals, subgoal 1 (ID 10109)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H4 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H3 : ε X2 = ε B
H5 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
============================
Δ ⊢ T0 · T1 : X2 [ ← T1]
subgoal 2 (ID 8806) is:
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 3 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 7 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 10 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using ,)
econstructor;eassumption.9 subgoals, subgoal 1 (ID 8806)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
============================
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 2 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using ,)
destruct_ext2 H0 Δ.9 subgoals, subgoal 1 (ID 10288)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
============================
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 2 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using ,)
destruct_ext H1 Δ !s.9 subgoals, subgoal 1 (ID 10349)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
============================
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 2 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using ,)
destruct_eq H2 Δ.9 subgoals, subgoal 1 (ID 10490)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
H5 : Prf
HT1 : Δ ⊢ H5 : x = T0
============================
exists A' B' : Term, ε A' = ε (a ∽ H) /\ ε B' = ε B /\ Δ ⊢ A' : B'
subgoal 2 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using ,)
eexists (T ∽ _);exists T0;simpl;intuition.9 subgoals, subgoal 1 (ID 10502)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
H5 : Prf
HT1 : Δ ⊢ H5 : x = T0
============================
Δ ⊢ T ∽ ?10491 : T0
subgoal 2 (ID 8819) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 6 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 9 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 open,)
econstructor; try eassumption.8 subgoals, subgoal 1 (ID 8819)
Γ : Env
a : Term
A : Term
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H0 : Δ ⊣
H1 : εc Γ = εc Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using ,)
destruct_ext2 H Δ.8 subgoals, subgoal 1 (ID 10566)
Γ : Env
a : Term
A : Term
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
Δ : Env
H0 : Δ ⊣
H1 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8828) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 5 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 8 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using ,)
do 3 econstructor;eauto.7 subgoals, subgoal 1 (ID 8828)
Γ : Env
H : Prf
A : Term
B : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using ,)
destruct_eq H0 Δ.7 subgoals, subgoal 1 (ID 10649)
Γ : Env
H : Prf
A : Term
B : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H1 : Δ ⊣
H2 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H3 : Prf
HT : Δ ⊢ H3 : A0 = B0
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε A /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8841) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using ,)
do 3 econstructor;eauto.6 subgoals, subgoal 1 (ID 8841)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using ,)
destruct_eq H0 Δ.6 subgoals, subgoal 1 (ID 10717)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using ,)
destruct_eq H1 Δ.6 subgoals, subgoal 1 (ID 10776)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using ,)
edestruct equality_typing as (?&?&?). 7 subgoals, subgoal 1 (ID 10786)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
============================
?10779 ⊢ ?10780 : ?10781 = ?10782
subgoal 2 (ID 10794) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 open, ?10780 open, ?10781 open, ?10782 open,)
exact HT.6 subgoals, subgoal 1 (ID 10794)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using ,)
edestruct equality_typing as ((?&?)&?). 7 subgoals, subgoal 1 (ID 10804)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
============================
?10797 ⊢ ?10798 : ?10799 = ?10800
subgoal 2 (ID 10812) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 open, ?10798 open, ?10799 open, ?10800 open,)
exact HT0.6 subgoals, subgoal 1 (ID 10812)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using ,)
edestruct erasure_injectivity_term;[exact H7|exact H8|transitivity ε B;trivial;symmetry;trivial|].6 subgoals, subgoal 1 (ID 10833)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using ,)
econstructor;exists A0;exists B1;intuition.6 subgoals, subgoal 1 (ID 10851)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
Δ ⊢ ?10840 : A0 = B1
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 open,)
eapply cTrans. 7 subgoals, subgoal 1 (ID 10911)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
Δ ⊢ ?10908 : A0 = ?10910
subgoal 2 (ID 10912) is:
Δ ⊢ ?10909 : ?10910 = B1
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 open, ?10909 open, ?10910 open,)
exact HT. 6 subgoals, subgoal 1 (ID 10912)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
Δ ⊢ ?10909 : B0 = B1
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 open, ?10910 using ,)
eapply cTrans.7 subgoals, subgoal 1 (ID 10916)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
Δ ⊢ ?10913 : B0 = ?10915
subgoal 2 (ID 10917) is:
Δ ⊢ ?10914 : ?10915 = B1
subgoal 3 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 4 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 7 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 open, ?10914 open, ?10915 open,)
exact H10. 6 subgoals, subgoal 1 (ID 10917)
Γ : Env
H : Prf
K : Prf
A : Term
B : Term
C : Term
t : Γ ⊢ H : A = B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
t0 : Γ ⊢ K : B = C
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε B /\ ε B' = ε C /\ Δ ⊢ H' : A' = B'
Δ : Env
H2 : Δ ⊣
H3 : εc Γ = εc Δ
A0 : Term
B0 : Term
eqA : ε A0 = ε A
eqB : ε B0 = ε B
H4 : Prf
HT : Δ ⊢ H4 : A0 = B0
A1 : Term
B1 : Term
eqA0 : ε A1 = ε B
eqB0 : ε B1 = ε C
H5 : Prf
HT0 : Δ ⊢ H5 : A1 = B1
H6 : has_type A0 Δ
x : Term
H7 : Δ ⊢ B0 : x
x0 : Term
H8 : Δ ⊢ A1 : x0
H9 : has_type B1 Δ
x1 : Prf
H10 : Δ ⊢ x1 : B0 = A1
============================
Δ ⊢ ?10914 : A1 = B1
subgoal 2 (ID 8861) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 open, ?10915 using ,)
exact HT0.5 subgoals, subgoal 1 (ID 8861)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using ,)
destruct_ext H0 Δ !s1.5 subgoals, subgoal 1 (ID 10978)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using ,)
destruct_ext H Δ T.5 subgoals, subgoal 1 (ID 11058)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using ,)
destruct_ext H2 (T::Δ) !s2.5 subgoals, subgoal 1 (ID 11150)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using ,)
destruct_ext H1 (T::Δ) T1.5 subgoals, subgoal 1 (ID 11261)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε ((λ [A], b) · a) /\ ε B' = ε (b [ ← a]) /\ Δ ⊢ H' : A' = B'
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using ,)
econstructor;exists ((λ [T], T2) · T0);exists (T2 [ ← T0]).5 subgoals, subgoal 1 (ID 11268)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
ε ((λ [T], T2) · T0) = ε ((λ [A], b) · a) /\
ε (T2 [ ← T0]) = ε (b [ ← a]) /\
Δ ⊢ ?11263 : (λ [T], T2) · T0 = T2 [ ← T0]
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 open,)
split. 6 subgoals, subgoal 1 (ID 11270)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
ε ((λ [T], T2) · T0) = ε ((λ [A], b) · a)
subgoal 2 (ID 11271) is:
ε (T2 [ ← T0]) = ε (b [ ← a]) /\ Δ ⊢ ?11263 : (λ [T], T2) · T0 = T2 [ ← T0]
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 open,)
simpl;f_equal;[f_equal|];assumption.5 subgoals, subgoal 1 (ID 11271)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
ε (T2 [ ← T0]) = ε (b [ ← a]) /\
Δ ⊢ ?11263 : (λ [T], T2) · T0 = T2 [ ← T0]
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 open,)
split. 6 subgoals, subgoal 1 (ID 11310)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
ε (T2 [ ← T0]) = ε (b [ ← a])
subgoal 2 (ID 11311) is:
Δ ⊢ ?11263 : (λ [T], T2) · T0 = T2 [ ← T0]
subgoal 3 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 6 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 open,)
rewrite 2 erasure_subst;f_equal;assumption.5 subgoals, subgoal 1 (ID 11311)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t1 : A :: Γ ⊢ b : B
H1 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : T
eqt0 : ε T0 = ε a
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T :: Δ ⊢ T2 : T1
eqt2 : ε T2 = ε b
============================
Δ ⊢ ?11263 : (λ [T], T2) · T0 = T2 [ ← T0]
subgoal 2 (ID 8891) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 open,)
eapply cBeta;eassumption.4 subgoals, subgoal 1 (ID 8891)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using ,)
destruct_ext H0 Δ !s1.4 subgoals, subgoal 1 (ID 11410)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using ,)
destruct_ext H1 Δ !s1'.4 subgoals, subgoal 1 (ID 11471)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using ,)
destruct_ext H2 (T::Δ) !s2.4 subgoals, subgoal 1 (ID 11563)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using ,)
destruct_ext H3 (T0::Δ) !s2'.4 subgoals, subgoal 1 (ID 11655)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using ,)
destruct_eq H4 Δ.4 subgoals, subgoal 1 (ID 11796)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using ,)
assert (ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1])=ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])).5 subgoals, subgoal 1 (ID 11798)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
============================
ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
subgoal 2 (ID 11799) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using ,)
rewrite 2 erasure_subst;rewrite 2 erasure_lift;f_equal;trivial;f_equal;trivial.4 subgoals, subgoal 1 (ID 11799)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using ,)
assert (T::Δ ⊢ ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) : ((!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1])).5 subgoals, subgoal 1 (ID 11851)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1] : (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
subgoal 2 (ID 11852) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 5 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using ,)
eapply subst_typ;try eassumption;repeat econstructor.4 subgoals, subgoal 1 (ID 11852)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H10 : T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
: (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using ,)
destruct_eq H5 (T::Δ).4 subgoals, subgoal 1 (ID 12043)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H10 : T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
: (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
H11 : Prf
HT4 : T :: Δ ⊢ H11 : T1 = (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (Π (A), B) /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using ,)
econstructor;exists (Π (T), T1);exists (Π (T0), T2).4 subgoals, subgoal 1 (ID 12050)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H10 : T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
: (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
H11 : Prf
HT4 : T :: Δ ⊢ H11 : T1 = (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
============================
ε (Π (T), T1) = ε (Π (A), B) /\
ε (Π (T0), T2) = ε (Π (A'), B') /\ Δ ⊢ ?12045 : Π (T), T1 = Π (T0), T2
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 open,)
split;[simpl;f_equal;assumption|].4 subgoals, subgoal 1 (ID 12053)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H10 : T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
: (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
H11 : Prf
HT4 : T :: Δ ⊢ H11 : T1 = (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
============================
ε (Π (T0), T2) = ε (Π (A'), B') /\ Δ ⊢ ?12045 : Π (T), T1 = Π (T0), T2
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 open,)
split;[simpl;f_equal;assumption|].4 subgoals, subgoal 1 (ID 12075)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ B : !s2
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t3 : Γ ⊢ H : A = A'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B'0 : Term),
ε A' = ε B /\
ε B'0 = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'0
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
H8 : Prf
HT3 : Δ ⊢ H8 : T = T0
H9 : ε ((T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]) = ε ((B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H10 : T :: Δ ⊢ (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
: (!s2' ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
H11 : Prf
HT4 : T :: Δ ⊢ H11 : T1 = (T2 ↑ 1 # 1) [ ← #0 ∽ H8 ↑h 1]
============================
Δ ⊢ ?12045 : Π (T), T1 = Π (T0), T2
subgoal 2 (ID 8927) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 open,)
eapply cProdEq;[exact r|exact r0|eassumption..].3 subgoals, subgoal 1 (ID 8927)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using ,)
destruct_ext H0 Δ !s1.3 subgoals, subgoal 1 (ID 12172)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using ,)
destruct_ext H1 Δ !s1'.3 subgoals, subgoal 1 (ID 12233)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using ,)
destruct_ext H4 (T::Δ) !s2.3 subgoals, subgoal 1 (ID 12325)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using ,)
destruct_ext H5 (T0::Δ) !s2'.3 subgoals, subgoal 1 (ID 12417)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using ,)
destruct_ext H2 (T::Δ) T1.3 subgoals, subgoal 1 (ID 12528)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using ,)
destruct_ext H3 (T0::Δ) T2.3 subgoals, subgoal 1 (ID 12639)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using ,)
destruct_eq H6 Δ.3 subgoals, subgoal 1 (ID 12780)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using ,)
assert (ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1])=ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])).4 subgoals, subgoal 1 (ID 12782)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
============================
ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
subgoal 2 (ID 12783) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using ,)
rewrite 2 erasure_subst;rewrite 2 erasure_lift;f_equal;trivial;f_equal;trivial.3 subgoals, subgoal 1 (ID 12783)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using ,)
assert (T::Δ ⊢ ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) : ((T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1])).4 subgoals, subgoal 1 (ID 12835)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
============================
T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1] : (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
subgoal 2 (ID 12836) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 4 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using ,)
eapply subst_typ;try eassumption;repeat econstructor.3 subgoals, subgoal 1 (ID 12836)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H12 : T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
: (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using ,)
destruct_eq H7 (T::Δ).3 subgoals, subgoal 1 (ID 13027)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H12 : T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
: (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
H13 : Prf
HT6 : T :: Δ ⊢ H13 : T3 = (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (λ [A], b) /\ ε B'0 = ε (λ [A'], b') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using ,)
econstructor;exists (λ [T], T3);exists (λ [T0], T4).3 subgoals, subgoal 1 (ID 13034)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H12 : T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
: (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
H13 : Prf
HT6 : T :: Δ ⊢ H13 : T3 = (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
============================
ε (λ [T], T3) = ε (λ [A], b) /\
ε (λ [T0], T4) = ε (λ [A'], b') /\ Δ ⊢ ?13029 : λ [T], T3 = λ [T0], T4
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 open,)
split;[simpl;f_equal;assumption|].3 subgoals, subgoal 1 (ID 13037)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H12 : T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
: (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
H13 : Prf
HT6 : T :: Δ ⊢ H13 : T3 = (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
============================
ε (λ [T0], T4) = ε (λ [A'], b') /\ Δ ⊢ ?13029 : λ [T], T3 = λ [T0], T4
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 open,)
split;[simpl;f_equal;assumption|].3 subgoals, subgoal 1 (ID 13059)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε A /\ ε B' = ε !s1 /\ Δ ⊢ A' : B'
t0 : Γ ⊢ A' : !s1'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε A' /\ ε B' = ε !s1' /\ Δ ⊢ A'0 : B'
t1 : A :: Γ ⊢ b : B
H2 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε b /\ ε B' = ε B /\ Δ ⊢ A' : B'
t2 : A' :: Γ ⊢ b' : B'
H3 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε b' /\ ε B'0 = ε B' /\ Δ ⊢ A' : B'0
t3 : A :: Γ ⊢ B : !s2
H4 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s2 /\ Δ ⊢ A' : B'
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall Δ : Env,
Δ ⊣ ->
εc (A' :: Γ) = εc Δ ->
exists A' B'0 : Term, ε A' = ε B' /\ ε B'0 = ε !s2' /\ Δ ⊢ A' : B'0
t5 : Γ ⊢ H : A = A'
H6 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A'0 B' : Term),
ε A'0 = ε A /\ ε B' = ε A' /\ Δ ⊢ H' : A'0 = B'
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall Δ : Env,
Δ ⊣ ->
εc (A :: Γ) = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε b /\
ε B' = ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]) /\ Δ ⊢ H' : A' = B'
Δ : Env
H8 : Δ ⊣
H9 : εc Γ = εc Δ
T : Term
HT : Δ ⊢ T : !s1
eqt : ε T = ε A
T0 : Term
HT0 : Δ ⊢ T0 : !s1'
eqt0 : ε T0 = ε A'
T1 : Term
HT1 : T :: Δ ⊢ T1 : !s2
eqt1 : ε T1 = ε B
T2 : Term
HT2 : T0 :: Δ ⊢ T2 : !s2'
eqt2 : ε T2 = ε B'
T3 : Term
HT3 : T :: Δ ⊢ T3 : T1
eqt3 : ε T3 = ε b
T4 : Term
HT4 : T0 :: Δ ⊢ T4 : T2
eqt4 : ε T4 = ε b'
H10 : Prf
HT5 : Δ ⊢ H10 : T = T0
H11 : ε ((T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]) =
ε ((b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1])
H12 : T :: Δ ⊢ (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
: (T2 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
H13 : Prf
HT6 : T :: Δ ⊢ H13 : T3 = (T4 ↑ 1 # 1) [ ← #0 ∽ H10 ↑h 1]
============================
Δ ⊢ ?13029 : λ [T], T3 = λ [T0], T4
subgoal 2 (ID 8953) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 open,)
eapply cAbsEq;[exact r|exact r0|eassumption..].2 subgoals, subgoal 1 (ID 8953)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using ,)
destruct_ext2 H0 Δ. 2 subgoals, subgoal 1 (ID 13124)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
eq : ε x = ε (Π (A), B)
HT : Δ ⊢ T : x
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using ,)
search_prod.2 subgoals, subgoal 1 (ID 13360)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using ,)
destruct_ext H0 Δ (Π (X1), X2). 3 subgoals, subgoal 1 (ID 13398)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
t5 : Term
x0 : Term
eqt0 : ε t5 = ε F
eq0 : ε x0 = ε (Π (A), B)
Ht : Δ ⊢ t5 : x0
============================
ε x0 = ε (Π (X1), X2)
subgoal 2 (ID 13434) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using ,)
simpl;rewrite eq;assumption.2 subgoals, subgoal 1 (ID 13434)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
eq : (Π (ε X1), ε X2)%UT = (Π (ε A), ε B)%UT
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using ,)
clear eq;destruct_ext H2 Δ X1.2 subgoals, subgoal 1 (ID 13517)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using ,)
destruct_ext2 H1 Δ. 2 subgoals, subgoal 1 (ID 13542)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
eq : ε x0 = ε (Π (A'), B')
HT1 : Δ ⊢ T2 : x0
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using ,)
search_prod.2 subgoals, subgoal 1 (ID 13783)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
eq : (Π (ε X3), ε X4)%UT = (Π (ε A'), ε B')%UT
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using ,)
destruct_ext H1 Δ (Π (X3), X4). 3 subgoals, subgoal 1 (ID 13821)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
eq : (Π (ε X3), ε X4)%UT = (Π (ε A'), ε B')%UT
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
t5 : Term
x1 : Term
eqt3 : ε t5 = ε F'
eq0 : ε x1 = ε (Π (A'), B')
Ht : Δ ⊢ t5 : x1
============================
ε x1 = ε (Π (X3), X4)
subgoal 2 (ID 13857) is:
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 3 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using ,)
simpl;rewrite eq;assumption.2 subgoals, subgoal 1 (ID 13857)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
eq : (Π (ε X3), ε X4)%UT = (Π (ε A'), ε B')%UT
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using ,)
clear eq;destruct_ext H3 Δ X3.2 subgoals, subgoal 1 (ID 13940)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using ,)
destruct_eq H4 Δ. 2 subgoals, subgoal 1 (ID 14081)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
H14 : Prf
HT3 : Δ ⊢ H14 : T0 = T3
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using ,)
destruct_eq H5 Δ.2 subgoals, subgoal 1 (ID 14222)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
H14 : Prf
HT3 : Δ ⊢ H14 : T0 = T3
H15 : Prf
HT4 : Δ ⊢ H15 : T1 = T4
============================
exists (H' : Prf) (A'0 B'0 : Term),
ε A'0 = ε (F · a) /\ ε B'0 = ε (F' · a') /\ Δ ⊢ H' : A'0 = B'0
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using ,)
econstructor;exists (T0 · T1);exists (T3 · T4).2 subgoals, subgoal 1 (ID 14229)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
H14 : Prf
HT3 : Δ ⊢ H14 : T0 = T3
H15 : Prf
HT4 : Δ ⊢ H15 : T1 = T4
============================
ε (T0 · T1) = ε (F · a) /\
ε (T3 · T4) = ε (F' · a') /\ Δ ⊢ ?14224 : T0 · T1 = T3 · T4
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 open,)
split;[simpl;f_equal;assumption|].2 subgoals, subgoal 1 (ID 14232)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
H14 : Prf
HT3 : Δ ⊢ H14 : T0 = T3
H15 : Prf
HT4 : Δ ⊢ H15 : T1 = T4
============================
ε (T3 · T4) = ε (F' · a') /\ Δ ⊢ ?14224 : T0 · T1 = T3 · T4
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 open,)
split;[simpl;f_equal;assumption|].2 subgoals, subgoal 1 (ID 14254)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε F /\ ε B' = ε (Π (A), B) /\ Δ ⊢ A' : B'
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B'0 : Term,
ε A'0 = ε F' /\ ε B'0 = ε (Π (A'), B') /\ Δ ⊢ A'0 : B'0
t1 : Γ ⊢ a : A
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t2 : Γ ⊢ a' : A'
H3 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A'0 B' : Term, ε A'0 = ε a' /\ ε B' = ε A' /\ Δ ⊢ A'0 : B'
t3 : Γ ⊢ H : F = F'
H4 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε F /\ ε B' = ε F' /\ Δ ⊢ H' : A' = B'
t4 : Γ ⊢ K : a = a'
H5 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε a' /\ Δ ⊢ H' : A' = B'
Δ : Env
H6 : Δ ⊣
H7 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε F
X1 : Term
X2 : Term
s0 : Sorts
s1 : Sorts
H9 : Δ ⊢ X1 : !s0
Hetp : Δ ⊢ Π (X1), X2 : !s1
H8 : ε X2 = ε B
H10 : ε X1 = ε A
T0 : Term
HT : Δ ⊢ T0 : Π (X1), X2
eqt0 : ε T0 = ε F
T1 : Term
HT0 : Δ ⊢ T1 : X1
eqt1 : ε T1 = ε a
T2 : Term
x0 : Term
eqt2 : ε T2 = ε F'
X3 : Term
X4 : Term
s2 : Sorts
s3 : Sorts
H12 : Δ ⊢ X3 : !s2
Hetp0 : Δ ⊢ Π (X3), X4 : !s3
H11 : ε X4 = ε B'
H13 : ε X3 = ε A'
T3 : Term
HT1 : Δ ⊢ T3 : Π (X3), X4
eqt3 : ε T3 = ε F'
T4 : Term
HT2 : Δ ⊢ T4 : X3
eqt4 : ε T4 = ε a'
H14 : Prf
HT3 : Δ ⊢ H14 : T0 = T3
H15 : Prf
HT4 : Δ ⊢ H15 : T1 = T4
============================
Δ ⊢ ?14224 : T0 · T1 = T3 · T4
subgoal 2 (ID 8968) is:
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 open,)
eapply cAppEq;eassumption.1 subgoals, subgoal 1 (ID 8968)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using ,)
destruct_ext2 H0 Δ.1 subgoals, subgoal 1 (ID 14310)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using ,)
destruct_ext H1 Δ !s.1 subgoals, subgoal 1 (ID 14371)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using , ?14338 using , ?14339 using , ?14340 using , ?14362 using , ?14365 using , ?14368 using ,)
destruct_eq H2 Δ.1 subgoals, subgoal 1 (ID 14512)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
H5 : Prf
HT1 : Δ ⊢ H5 : x = T0
============================
exists (H' : Prf) (A' B' : Term),
ε A' = ε a /\ ε B' = ε (a ∽ H) /\ Δ ⊢ H' : A' = B'
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using , ?14338 using , ?14339 using , ?14340 using , ?14362 using , ?14365 using , ?14368 using , ?14421 using , ?14422 using , ?14423 using , ?14424 using , ?14425 using , ?14444 using , ?14447 using , ?14471 using , ?14472 using , ?14473 using , ?14474 using , ?14475 using , ?14496 using , ?14499 using ,)
econstructor;exists T;eexists (T ∽ _);intuition.1 subgoals, subgoal 1 (ID 14526)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Prf
t : Γ ⊢ a : A
H0 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε a /\ ε B' = ε A /\ Δ ⊢ A' : B'
t0 : Γ ⊢ B : !s
H1 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists A' B' : Term, ε A' = ε B /\ ε B' = ε !s /\ Δ ⊢ A' : B'
t1 : Γ ⊢ H : A = B
H2 : forall Δ : Env,
Δ ⊣ ->
εc Γ = εc Δ ->
exists (H' : Prf) (A' B' : Term),
ε A' = ε A /\ ε B' = ε B /\ Δ ⊢ H' : A' = B'
Δ : Env
H3 : Δ ⊣
H4 : εc Γ = εc Δ
T : Term
x : Term
eqt : ε T = ε a
eq : ε x = ε A
HT : Δ ⊢ T : x
T0 : Term
HT0 : Δ ⊢ T0 : !s
eqt0 : ε T0 = ε B
H5 : Prf
HT1 : Δ ⊢ H5 : x = T0
============================
Δ ⊢ ?14514 : T = T ∽ ?14518
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using , ?14338 using , ?14339 using , ?14340 using , ?14362 using , ?14365 using , ?14368 using , ?14421 using , ?14422 using , ?14423 using , ?14424 using , ?14425 using , ?14444 using , ?14447 using , ?14471 using , ?14472 using , ?14473 using , ?14474 using , ?14475 using , ?14496 using , ?14499 using , ?14514 open, ?14518 open,)
eapply cIota;eassumption.No more subgoals.
(dependent evars: ?8995 using , ?8996 using , ?8997 using , ?8998 using , ?9068 using , ?9069 using , ?9070 using , ?9092 using , ?9095 using , ?9098 using , ?9130 using , ?9160 using , ?9161 using , ?9162 using , ?9184 using , ?9187 using , ?9190 using , ?9272 using , ?9273 using , ?9304 using , ?9305 using , ?9306 using , ?9328 using , ?9331 using , ?9334 using , ?9366 using , ?9396 using , ?9397 using , ?9398 using , ?9420 using , ?9423 using , ?9426 using , ?9458 using , ?9495 using , ?9498 using , ?9503 using , ?9504 using , ?9505 using , ?9532 using , ?9534 using , ?9537 using , ?9679 using , ?9680 using , ?9681 using , ?9970 using , ?9971 using , ?9972 using , ?9999 using , ?10010 using , ?10013 using , ?10053 using , ?10056 using , ?10061 using , ?10062 using , ?10063 using , ?10090 using , ?10092 using , ?10095 using , ?10261 using , ?10316 using , ?10317 using , ?10318 using , ?10340 using , ?10343 using , ?10346 using , ?10399 using , ?10400 using , ?10401 using , ?10402 using , ?10403 using , ?10422 using , ?10425 using , ?10449 using , ?10450 using , ?10451 using , ?10452 using , ?10453 using , ?10474 using , ?10477 using , ?10491 using , ?10537 using , ?10538 using , ?10568 using ?10582 , ?10571 using , ?10574 using , ?10582 using , ?10595 using , ?10651 using ?10665 , ?10654 using , ?10657 using , ?10665 using , ?10779 using , ?10780 using , ?10781 using , ?10782 using , ?10797 using , ?10798 using , ?10799 using , ?10800 using , ?10815 using , ?10816 using , ?10817 using , ?10818 using , ?10819 using , ?10840 using ?10909 ?10908 , ?10908 using , ?10909 using ?10914 ?10913 , ?10910 using , ?10913 using , ?10914 using , ?10915 using , ?10945 using , ?10946 using , ?10947 using , ?10969 using , ?10972 using , ?10975 using , ?11013 using , ?11016 using , ?11021 using , ?11022 using , ?11023 using , ?11050 using , ?11052 using , ?11055 using , ?11087 using , ?11117 using , ?11118 using , ?11119 using , ?11141 using , ?11144 using , ?11147 using , ?11179 using , ?11216 using , ?11219 using , ?11224 using , ?11225 using , ?11226 using , ?11253 using , ?11255 using , ?11258 using , ?11263 using , ?11341 using , ?11342 using , ?11343 using , ?11344 using , ?11377 using , ?11378 using , ?11379 using , ?11401 using , ?11404 using , ?11407 using , ?11438 using , ?11439 using , ?11440 using , ?11462 using , ?11465 using , ?11468 using , ?11500 using , ?11530 using , ?11531 using , ?11532 using , ?11554 using , ?11557 using , ?11560 using , ?11592 using , ?11622 using , ?11623 using , ?11624 using , ?11646 using , ?11649 using , ?11652 using , ?11705 using , ?11706 using , ?11707 using , ?11708 using , ?11709 using , ?11728 using , ?11731 using , ?11755 using , ?11756 using , ?11757 using , ?11758 using , ?11759 using , ?11780 using , ?11783 using , ?11853 using , ?11854 using , ?11855 using , ?11856 using , ?11857 using ?11868 ?11867 , ?11858 using , ?11866 using , ?11867 using , ?11868 using , ?11904 using , ?11952 using , ?11953 using , ?11954 using , ?11955 using , ?11956 using , ?11975 using , ?11978 using , ?12002 using , ?12003 using , ?12004 using , ?12005 using , ?12006 using , ?12027 using , ?12030 using , ?12045 using ?12097 ?12096 ?12095 , ?12095 using , ?12096 using , ?12097 using , ?12098 using , ?12099 using , ?12100 using , ?12101 using , ?12102 using , ?12103 using , ?12139 using , ?12140 using , ?12141 using , ?12163 using , ?12166 using , ?12169 using , ?12200 using , ?12201 using , ?12202 using , ?12224 using , ?12227 using , ?12230 using , ?12262 using , ?12292 using , ?12293 using , ?12294 using , ?12316 using , ?12319 using , ?12322 using , ?12354 using , ?12384 using , ?12385 using , ?12386 using , ?12408 using , ?12411 using , ?12414 using , ?12446 using , ?12483 using , ?12486 using , ?12491 using , ?12492 using , ?12493 using , ?12520 using , ?12522 using , ?12525 using , ?12557 using , ?12594 using , ?12597 using , ?12602 using , ?12603 using , ?12604 using , ?12631 using , ?12633 using , ?12636 using , ?12689 using , ?12690 using , ?12691 using , ?12692 using , ?12693 using , ?12712 using , ?12715 using , ?12739 using , ?12740 using , ?12741 using , ?12742 using , ?12743 using , ?12764 using , ?12767 using , ?12837 using , ?12838 using , ?12839 using , ?12840 using , ?12841 using ?12852 ?12851 , ?12842 using , ?12850 using , ?12851 using , ?12852 using , ?12888 using , ?12936 using , ?12937 using , ?12938 using , ?12939 using , ?12940 using , ?12959 using , ?12962 using , ?12986 using , ?12987 using , ?12988 using , ?12989 using , ?12990 using , ?13011 using , ?13014 using , ?13029 using ?13081 ?13080 ?13079 , ?13079 using , ?13080 using , ?13081 using , ?13082 using , ?13083 using , ?13084 using , ?13085 using , ?13086 using , ?13087 using , ?13088 using , ?13089 using , ?13388 using , ?13389 using , ?13390 using , ?13417 using , ?13428 using , ?13431 using , ?13472 using , ?13475 using , ?13480 using , ?13481 using , ?13482 using , ?13509 using , ?13511 using , ?13514 using , ?13811 using , ?13812 using , ?13813 using , ?13840 using , ?13851 using , ?13854 using , ?13895 using , ?13898 using , ?13903 using , ?13904 using , ?13905 using , ?13932 using , ?13934 using , ?13937 using , ?13990 using , ?13991 using , ?13992 using , ?13993 using , ?13994 using , ?14013 using , ?14016 using , ?14040 using , ?14041 using , ?14042 using , ?14043 using , ?14044 using , ?14065 using , ?14068 using , ?14131 using , ?14132 using , ?14133 using , ?14134 using , ?14135 using , ?14154 using , ?14157 using , ?14181 using , ?14182 using , ?14183 using , ?14184 using , ?14185 using , ?14206 using , ?14209 using , ?14224 using ?14275 ?14274 , ?14274 using , ?14275 using , ?14276 using , ?14277 using , ?14278 using , ?14279 using , ?14338 using , ?14339 using , ?14340 using , ?14362 using , ?14365 using , ?14368 using , ?14421 using , ?14422 using , ?14423 using , ?14424 using , ?14425 using , ?14444 using , ?14447 using , ?14471 using , ?14472 using , ?14473 using , ?14474 using , ?14475 using , ?14496 using , ?14499 using , ?14514 using ?14518 , ?14518 using , ?14575 using , ?14576 using , ?14577 using ,)
Qed.context_conversion is defined
Local Ltac solve :=
try match goal with
| |- _ ⊢ subst_mult_term ?n _ ?HH : !?s => replace !s with (subst_mult_term n !s HH) by (apply subst_mult_sort)
| |- _ ⊢ _ : Π(subst_mult_term _ _ _),_ => try rewrite <- subst_mult_prod
| |- _ ⊢ _ : Π(_),(subst_mult_term _ _ _) => try rewrite <- subst_mult_prod
end;
try match goal with
| |- _ ⊢ subst_mult_term _ _ _ : _ => eapply subst_mult_typ;[|try apply subst_mult_cons;try eassumption]
end;
try match goal with
| |- _ ⊢ _ [?n←?a] : !?s => change !s with !s[n←a]
| |- _ ⊢ _ : (Π(?A[?n←?a]),?B[S ?n←?a]) => change (Π(A[n←a]),B[S n←a]) with (Π(A),B)[n←a]
end;
try match goal with
| |- _ ⊢ _ [_←_] : _ => eapply substitution;(eassumption||(econstructor;eassumption)||(eapply wf_typ;eassumption))
end.
Lemma equality_subst_ext : forall Δ Γ' M N a1 a2 T K,Δ ⊢ a1 : T -> Δ ⊢ a2 : T -> Δ ⊢ K : a1 = a2 -> Γ' ⊢ M : N ->
forall Γ1 Γ2 HH, sub_in_env Δ a1 T (length HH) Γ' Γ1->sub_in_env Δ a2 T (length HH) Γ' Γ2
->subst_mult_env 0 Γ2 HH Γ1-> Γ1 ⊢ (M [length HH ← a1]) = subst_mult_term 0 M[length HH ← a2] HH.1 subgoals, subgoal 1 (ID 17033)
============================
forall (Δ Γ' : Env) (M N a1 a2 T : Term) (K : Prf),
Δ ⊢ a1 : T ->
Δ ⊢ a2 : T ->
Δ ⊢ K : a1 = a2 ->
Γ' ⊢ M : N ->
forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ' Γ1 ->
sub_in_env Δ a2 T (length HH) Γ' Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ M [(length HH) ← a1] = subst_mult_term 0 M [(length HH) ← a2] HH
(dependent evars:)
induction 4;intros;subst;set (n:=length HH) in *.6 subgoals, subgoal 1 (ID 17178)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
s : Sorts
t : Sorts
H2 : Ax s t
H3 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ !s [n ← a1] = subst_mult_term 0 !s [n ← a2] HH
subgoal 2 (ID 17184) is:
Γ1 ⊢ #v [n ← a1] = subst_mult_term 0 #v [n ← a2] HH
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars:)
simpl;rewrite subst_mult_sort.6 subgoals, subgoal 1 (ID 17210)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
s : Sorts
t : Sorts
H2 : Ax s t
H3 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ !s = !s
subgoal 2 (ID 17184) is:
Γ1 ⊢ #v [n ← a1] = subst_mult_term 0 #v [n ← a2] HH
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars:)
econstructor;eapply cRefl;econstructor;[eassumption|eapply substitution;[eassumption|eexact H|eassumption]].5 subgoals, subgoal 1 (ID 17184)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ #v [n ← a1] = subst_mult_term 0 #v [n ← a2] HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using ,)
assert (Γ1 ⊣) by (eapply substitution;[eassumption|eexact H|eassumption]).5 subgoals, subgoal 1 (ID 17249)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
============================
Γ1 ⊢ #v [n ← a1] = subst_mult_term 0 #v [n ← a2] HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using ,)
unfold subst_rec;destruct lt_eq_lt_dec as [[]|].7 subgoals, subgoal 1 (ID 17292)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : v < n
============================
Γ1 ⊢ #v = subst_mult_term 0 #v HH
subgoal 2 (ID 17293) is:
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 3 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 4 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 5 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 6 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 7 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using ,)
eapply subst_mult_var_eq. 10 subgoals, subgoal 1 (ID 17296)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : v < n
============================
?17295 ⊣
subgoal 2 (ID 17297) is:
0 <= v
subgoal 3 (ID 17298) is:
v < 0 + length HH
subgoal 4 (ID 17299) is:
subst_mult_env 0 ?17295 HH Γ1
subgoal 5 (ID 17293) is:
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 6 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 7 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 8 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 9 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 10 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 open,)
eapply substitution;[eexact H2|eexact H0|eassumption]. 9 subgoals, subgoal 1 (ID 17297)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : v < n
============================
0 <= v
subgoal 2 (ID 17298) is:
v < 0 + length HH
subgoal 3 (ID 17299) is:
subst_mult_env 0 Γ2 HH Γ1
subgoal 4 (ID 17293) is:
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 5 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 6 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 7 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 8 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 9 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
apply le_0_n. 8 subgoals, subgoal 1 (ID 17298)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : v < n
============================
v < 0 + length HH
subgoal 2 (ID 17299) is:
subst_mult_env 0 Γ2 HH Γ1
subgoal 3 (ID 17293) is:
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 4 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 5 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 6 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 7 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 8 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
simpl;assumption. 7 subgoals, subgoal 1 (ID 17299)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : v < n
============================
subst_mult_env 0 Γ2 HH Γ1
subgoal 2 (ID 17293) is:
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 3 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 4 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 5 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 6 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 7 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
assumption.6 subgoals, subgoal 1 (ID 17293)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
e : v = n
============================
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 2 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
subst. 6 subgoals, subgoal 1 (ID 17333)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
Γ1 ⊢ a1 ↑ n = subst_mult_term 0 a2 ↑ n HH
subgoal 2 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
rewrite subst_mult_lift_sup.7 subgoals, subgoal 1 (ID 17334)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
Γ1 ⊢ a1 ↑ n = a2 ↑ n
subgoal 2 (ID 17335) is:
length HH + 0 <= n
subgoal 3 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 4 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 5 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 6 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 7 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using ,)
econstructor;eapply thinning_n_h. 9 subgoals, subgoal 1 (ID 17341)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
trunc n Γ1 ?17340
subgoal 2 (ID 17342) is:
?17340 ⊢ ?17339 : a1 = a2
subgoal 3 (ID 17343) is:
Γ1 ⊣
subgoal 4 (ID 17335) is:
length HH + 0 <= n
subgoal 5 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 6 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 7 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 8 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 9 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 open, ?17340 open,)
eapply subst_trunc2;eassumption. 8 subgoals, subgoal 1 (ID 17342)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
Δ ⊢ ?17339 : a1 = a2
subgoal 2 (ID 17343) is:
Γ1 ⊣
subgoal 3 (ID 17335) is:
length HH + 0 <= n
subgoal 4 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 5 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 6 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 7 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 8 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 open, ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
eassumption. 7 subgoals, subgoal 1 (ID 17343)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
Γ1 ⊣
subgoal 2 (ID 17335) is:
length HH + 0 <= n
subgoal 3 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 4 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 5 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 6 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 7 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
eassumption.6 subgoals, subgoal 1 (ID 17335)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
H2 : Γ ⊣
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
H3 : A ↓ n ⊂ Γ
============================
length HH + 0 <= n
subgoal 2 (ID 17294) is:
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
rewrite plus_comm;constructor.5 subgoals, subgoal 1 (ID 17294)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
v : nat
H2 : Γ ⊣
H3 : A ↓ v ⊂ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
============================
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
destruct H3 as (?&?&?);subst.5 subgoals, subgoal 1 (ID 17361)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
============================
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
assert (n<=v-1) by (destruct v;[inversion l|change 1 with (1+0);change (S v) with (1+v);
rewrite <- minus_plus_simpl_l_reverse;rewrite <- minus_n_O;apply le_S_n;assumption]).5 subgoals, subgoal 1 (ID 17363)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
============================
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
assert (#(v-1)=#(v-1-n)↑n) as eq by (simpl;rewrite <- le_plus_minus;[reflexivity|assumption]).5 subgoals, subgoal 1 (ID 17415)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
Γ1 ⊢ #(v - 1) = subst_mult_term 0 #(v - 1) HH
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
rewrite eq;rewrite subst_mult_lift_sup. 6 subgoals, subgoal 1 (ID 17421)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
Γ1 ⊢ #(v - 1 - n) ↑ n = #(v - 1 - n) ↑ n
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using ,)
do 2 econstructor;rewrite <- eq.6 subgoals, subgoal 1 (ID 17429)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
Γ1 ⊢ #(v - 1) : ?17427
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 open,)
econstructor;[assumption|]. 6 subgoals, subgoal 1 (ID 17433)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
?17427 ↓ v - 1 ⊂ Γ1
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 open,)
econstructor;repeat split. 6 subgoals, subgoal 1 (ID 17439)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
?17435 ↓ v - 1 ∈ Γ1
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 open,)
eapply nth_sub_sup;try eassumption.6 subgoals, subgoal 1 (ID 17448)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
?17435 ↓ S (v - 1) ∈ Γ
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 open, ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
rewrite minus_Sn_m;simpl. 7 subgoals, subgoal 1 (ID 17451)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
?17435 ↓ v - 0 ∈ Γ
subgoal 2 (ID 17452) is:
1 <= v
subgoal 3 (ID 17422) is:
length HH + 0 <= n
subgoal 4 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 5 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 6 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 7 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 open, ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
rewrite <- minus_n_O;eassumption.6 subgoals, subgoal 1 (ID 17452)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
1 <= v
subgoal 2 (ID 17422) is:
length HH + 0 <= n
subgoal 3 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 4 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 5 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 6 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
apply le_lt_trans with n;[apply le_0_n|assumption].5 subgoals, subgoal 1 (ID 17422)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
v : nat
H2 : Γ ⊣
x : Term
H8 : x ↓ v ∈ Γ
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
H7 : Γ1 ⊣
l : n < v
H3 : n <= v - 1
eq : #(v - 1) = #(v - 1 - n) ↑ n
============================
length HH + 0 <= n
subgoal 2 (ID 17190) is:
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
unfold n;rewrite plus_comm;simpl;constructor.4 subgoals, subgoal 1 (ID 17190)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ (Π (A), B) [n ← a1] = subst_mult_term 0 (Π (A), B) [n ← a2] HH
subgoal 2 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 3 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 4 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
simpl;rewrite subst_mult_prod.4 subgoals, subgoal 1 (ID 17461)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ Π (A [n ← a1]), B [(S n) ← a1] =
Π (subst_mult_term 0 A [n ← a2] HH), subst_mult_term 1 B [(S n) ← a2] HH
subgoal 2 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 3 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 4 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using ,)
edestruct IHtyp1;[eassumption..|].4 subgoals, subgoal 1 (ID 17480)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
============================
Γ1 ⊢ Π (A [n ← a1]), B [(S n) ← a1] =
Π (subst_mult_term 0 A [n ← a2] HH), subst_mult_term 1 B [(S n) ← a2] HH
subgoal 2 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 3 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 4 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using ,)
edestruct IHtyp2 with (HH:=x::HH);simpl;[econstructor;eassumption..| |].5 subgoals, subgoal 1 (ID 17502)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
============================
subst_mult_env 0 (A [(length HH) ← a2] :: Γ2) (x :: HH)
(A [(length HH) ← a1] :: Γ1)
subgoal 2 (ID 17503) is:
Γ1 ⊢ Π (A [n ← a1]), B [(S n) ← a1] =
Π (subst_mult_term 0 A [n ← a2] HH), subst_mult_term 1 B [(S n) ← a2] HH
subgoal 3 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 4 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 5 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using ,)
eapply msub_S with (s:=s1);[eapply subst_mult_cons;eassumption|do 2 econstructor|
change !s1 with !s1[n ← a1];eapply substitution;try eassumption;eapply wf_typ;eassumption|
eassumption|do 2 econstructor|econstructor].4 subgoals, subgoal 1 (ID 17503)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
x0 : Prf
H7 : A [(length HH) ← a1] :: Γ1 ⊢ x0 : B [(length (x :: HH)) ← a1] =
subst_mult_term 0 B [(length (x :: HH)) ← a2] (x :: HH)
============================
Γ1 ⊢ Π (A [n ← a1]), B [(S n) ← a1] =
Π (subst_mult_term 0 A [n ← a2] HH), subst_mult_term 1 B [(S n) ← a2] HH
subgoal 2 (ID 17196) is:
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 3 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 4 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using ,)
econstructor;eapply cProdEq;simpl;try eassumption;solve.3 subgoals, subgoal 1 (ID 17196)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ b : B
H2_1 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ b [(length HH) ← a1] =
subst_mult_term 0 b [(length HH) ← a2] HH
IHtyp3 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ (λ [A], b) [n ← a1] = subst_mult_term 0 (λ [A], b) [n ← a2] HH
subgoal 2 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 3 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using ,)
simpl;rewrite subst_mult_abs.3 subgoals, subgoal 1 (ID 17741)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ b : B
H2_1 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ b [(length HH) ← a1] =
subst_mult_term 0 b [(length HH) ← a2] HH
IHtyp3 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ λ [A [n ← a1]], b [(S n) ← a1] =
λ [subst_mult_term 0 A [n ← a2] HH], subst_mult_term 1 b [(S n) ← a2] HH
subgoal 2 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 3 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using ,)
edestruct IHtyp1;[eassumption..|].3 subgoals, subgoal 1 (ID 17760)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ b : B
H2_1 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ b [(length HH) ← a1] =
subst_mult_term 0 b [(length HH) ← a2] HH
IHtyp3 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
============================
Γ1 ⊢ λ [A [n ← a1]], b [(S n) ← a1] =
λ [subst_mult_term 0 A [n ← a2] HH], subst_mult_term 1 b [(S n) ← a2] HH
subgoal 2 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 3 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using ,)
edestruct IHtyp2 with (HH:=x::HH);simpl;[econstructor;eassumption..| |].4 subgoals, subgoal 1 (ID 17782)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ b : B
H2_1 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ b [(length HH) ← a1] =
subst_mult_term 0 b [(length HH) ← a2] HH
IHtyp3 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
============================
subst_mult_env 0 (A [(length HH) ← a2] :: Γ2) (x :: HH)
(A [(length HH) ← a1] :: Γ1)
subgoal 2 (ID 17783) is:
Γ1 ⊢ λ [A [n ← a1]], b [(S n) ← a1] =
λ [subst_mult_term 0 A [n ← a2] HH], subst_mult_term 1 b [(S n) ← a2] HH
subgoal 3 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 4 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using ,)
eapply msub_S with (s:=s1);[eapply subst_mult_cons;eassumption|do 2 econstructor|
change !s1 with !s1[n ← a1];eapply substitution;try eassumption;eapply wf_typ;eassumption|
eassumption|do 2 econstructor|econstructor].3 subgoals, subgoal 1 (ID 17783)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H2 : Rel s1 s2 s3
H2_ : Γ ⊢ A : !s1
H2_0 : A :: Γ ⊢ b : B
H2_1 : A :: Γ ⊢ B : !s2
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ b [(length HH) ← a1] =
subst_mult_term 0 b [(length HH) ← a2] HH
IHtyp3 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) (A :: Γ) Γ1 ->
sub_in_env Δ a2 T (length HH) (A :: Γ) Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H3 : sub_in_env Δ a1 T n Γ Γ1
H4 : sub_in_env Δ a2 T n Γ Γ2
H5 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H6 : Γ1 ⊢ x : A [(length HH) ← a1] =
subst_mult_term 0 A [(length HH) ← a2] HH
x0 : Prf
H7 : A [(length HH) ← a1] :: Γ1 ⊢ x0 : b [(length (x :: HH)) ← a1] =
subst_mult_term 0 b [(length (x :: HH)) ← a2] (x :: HH)
============================
Γ1 ⊢ λ [A [n ← a1]], b [(S n) ← a1] =
λ [subst_mult_term 0 A [n ← a2] HH], subst_mult_term 1 b [(S n) ← a2] HH
subgoal 2 (ID 17202) is:
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 3 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using ,)
econstructor;eapply cAbsEq;simpl;try eassumption;solve.2 subgoals, subgoal 1 (ID 17202)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
F : Term
a : Term
A : Term
B : Term
H2_ : Γ ⊢ F : Π (A), B
H2_0 : Γ ⊢ a : A
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H2 : sub_in_env Δ a1 T n Γ Γ1
H3 : sub_in_env Δ a2 T n Γ Γ2
H4 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ (F · a) [n ← a1] = subst_mult_term 0 (F · a) [n ← a2] HH
subgoal 2 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using ,)
simpl;rewrite subst_mult_app.2 subgoals, subgoal 1 (ID 18097)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
F : Term
a : Term
A : Term
B : Term
H2_ : Γ ⊢ F : Π (A), B
H2_0 : Γ ⊢ a : A
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H2 : sub_in_env Δ a1 T n Γ Γ1
H3 : sub_in_env Δ a2 T n Γ Γ2
H4 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ F [n ← a1] · a [n ← a1] =
subst_mult_term 0 F [n ← a2] HH · subst_mult_term 0 a [n ← a2] HH
subgoal 2 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using ,)
edestruct IHtyp1;[eassumption..|].2 subgoals, subgoal 1 (ID 18116)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
F : Term
a : Term
A : Term
B : Term
H2_ : Γ ⊢ F : Π (A), B
H2_0 : Γ ⊢ a : A
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H2 : sub_in_env Δ a1 T n Γ Γ1
H3 : sub_in_env Δ a2 T n Γ Γ2
H4 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H5 : Γ1 ⊢ x : F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
============================
Γ1 ⊢ F [n ← a1] · a [n ← a1] =
subst_mult_term 0 F [n ← a2] HH · subst_mult_term 0 a [n ← a2] HH
subgoal 2 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using ,)
edestruct IHtyp2;[eassumption..|].2 subgoals, subgoal 1 (ID 18135)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
F : Term
a : Term
A : Term
B : Term
H2_ : Γ ⊢ F : Π (A), B
H2_0 : Γ ⊢ a : A
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H2 : sub_in_env Δ a1 T n Γ Γ1
H3 : sub_in_env Δ a2 T n Γ Γ2
H4 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H5 : Γ1 ⊢ x : F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
x0 : Prf
H6 : Γ1 ⊢ x0 : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
============================
Γ1 ⊢ F [n ← a1] · a [n ← a1] =
subst_mult_term 0 F [n ← a2] HH · subst_mult_term 0 a [n ← a2] HH
subgoal 2 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using ,)
econstructor;eapply cAppEq with (A:=A[n ← a1]) (B:=B[S n ← a1]) (B':=subst_mult_term 1 B [S n ← a2] HH);
simpl;try eassumption;solve. 2 subgoals, subgoal 1 (ID 18188)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
F : Term
a : Term
A : Term
B : Term
H2_ : Γ ⊢ F : Π (A), B
H2_0 : Γ ⊢ a : A
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H2 : sub_in_env Δ a1 T n Γ Γ1
H3 : sub_in_env Δ a2 T n Γ Γ2
H4 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H5 : Γ1 ⊢ x : F [(length HH) ← a1] =
subst_mult_term 0 F [(length HH) ← a2] HH
x0 : Prf
H6 : Γ1 ⊢ x0 : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
============================
Γ2 ⊢ F [n ← a2] : Π (A [n ← a2]), B [(S n) ← a2]
subgoal 2 (ID 17208) is:
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using ,)
solve.1 subgoals, subgoal 1 (ID 17208)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ (a ∽ H2) [n ← a1] = subst_mult_term 0 (a ∽ H2) [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using ,)
simpl;rewrite subst_mult_conv.1 subgoals, subgoal 1 (ID 18287)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
============================
Γ1 ⊢ a [n ← a1] ∽ H2 [n ←h a1] =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using ,)
edestruct IHtyp1;[eassumption..|].1 subgoals, subgoal 1 (ID 18306)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
============================
Γ1 ⊢ a [n ← a1] ∽ H2 [n ←h a1] =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using ,)
edestruct IHtyp2;[eassumption..|].1 subgoals, subgoal 1 (ID 18325)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ a [n ← a1] ∽ H2 [n ←h a1] =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using ,)
econstructor;eapply cTrans.2 subgoals, subgoal 1 (ID 18332)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18329 : a [n ← a1] ∽ H2 [n ←h a1] = ?18331
subgoal 2 (ID 18333) is:
Γ1 ⊢ ?18330 : ?18331 =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 open, ?18330 open, ?18331 open,)
apply cSym;eapply cIota with (s:=s);try change !s with !s[n ← a1];
eapply substitution;try eassumption;eapply wf_typ;eassumption.1 subgoals, subgoal 1 (ID 18333)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18330 : a [n ← a1] =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 open, ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using ,)
eapply cTrans. 2 subgoals, subgoal 1 (ID 18434)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18431 : a [n ← a1] = ?18433
subgoal 2 (ID 18435) is:
Γ1 ⊢ ?18432 : ?18433 =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 open, ?18432 open, ?18433 open,)
eassumption.1 subgoals, subgoal 1 (ID 18435)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18432 : subst_mult_term 0 a [(length HH) ← a2] HH =
subst_mult_term 0 a [n ← a2] HH ∽ subst_mult_prf 0 H2 [n ←h a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 open, ?18433 using ,)
eapply cIota with (s:=s).3 subgoals, subgoal 1 (ID 18438)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ subst_mult_term 0 a [n ← a2] HH : ?18436
subgoal 2 (ID 18439) is:
Γ1 ⊢ ?18437 : !s
subgoal 3 (ID 18440) is:
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : ?18436 = ?18437
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 open, ?18437 open,)
eapply subst_mult_typ;[|eassumption];eapply substitution;try eassumption;eapply wf_typ;eassumption.2 subgoals, subgoal 1 (ID 18439)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18437 : !s
subgoal 2 (ID 18440) is:
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : subst_mult_term 0 A [n ← a2] HH =
?18437
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 open, ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using ,)
replace !s with (subst_mult_term 0 !s HH) by (apply subst_mult_sort).2 subgoals, subgoal 1 (ID 18475)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ ?18437 : subst_mult_term 0 !s HH
subgoal 2 (ID 18440) is:
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : subst_mult_term 0 A [n ← a2] HH =
?18437
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 open, ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using ,)
eapply subst_mult_typ;[|eassumption]. 2 subgoals, subgoal 1 (ID 18479)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ2 ⊢ ?18477 : !s
subgoal 2 (ID 18440) is:
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : subst_mult_term 0 A [n ← a2] HH =
subst_mult_term 0 ?18477 HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 using ?18477 , ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using , ?18477 open, ?18478 using ,)
change !s with (!s[n ← a2]). 2 subgoals, subgoal 1 (ID 18482)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ2 ⊢ ?18477 : !s [n ← a2]
subgoal 2 (ID 18440) is:
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : subst_mult_term 0 A [n ← a2] HH =
subst_mult_term 0 ?18477 HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 using ?18477 , ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using , ?18477 open, ?18478 using ,)
eapply substitution;try eassumption;eapply wf_typ;eassumption.1 subgoals, subgoal 1 (ID 18440)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ1 ⊢ subst_mult_prf 0 H2 [n ←h a2] HH : subst_mult_term 0 A [n ← a2] HH =
subst_mult_term 0 B [n ← a2] HH
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 using ?18477 , ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using , ?18477 using ?18492 , ?18478 using , ?18492 using , ?18493 using ?18500 , ?18494 using ?18502 , ?18495 using ?18503 , ?18500 using , ?18502 using , ?18503 using , ?18507 using , ?18508 using ,)
eapply subst_mult_eq;[|eassumption]. 1 subgoals, subgoal 1 (ID 18511)
Δ : Env
a1 : Term
a2 : Term
T : Term
K : Prf
H : Δ ⊢ a1 : T
H0 : Δ ⊢ a2 : T
H1 : Δ ⊢ K : a1 = a2
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H2 : Prf
H2_ : Γ ⊢ a : A
H2_0 : Γ ⊢ B : !s
H3 : Γ ⊢ H2 : A = B
IHtyp1 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
IHtyp2 : forall (Γ1 Γ2 : Env) (HH : list Prf),
sub_in_env Δ a1 T (length HH) Γ Γ1 ->
sub_in_env Δ a2 T (length HH) Γ Γ2 ->
subst_mult_env 0 Γ2 HH Γ1 ->
Γ1 ⊢ B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
Γ1 : Env
Γ2 : Env
HH : list Prf
n := length HH : nat
H4 : sub_in_env Δ a1 T n Γ Γ1
H5 : sub_in_env Δ a2 T n Γ Γ2
H6 : subst_mult_env 0 Γ2 HH Γ1
x : Prf
H7 : Γ1 ⊢ x : a [(length HH) ← a1] =
subst_mult_term 0 a [(length HH) ← a2] HH
x0 : Prf
H8 : Γ1 ⊢ x0 : B [(length HH) ← a1] =
subst_mult_term 0 B [(length HH) ← a2] HH
============================
Γ2 ⊢ H2 [n ←h a2] : A [n ← a2] = B [n ← a2]
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 using ?18477 , ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using , ?18477 using ?18492 , ?18478 using , ?18492 using , ?18493 using ?18500 , ?18494 using ?18502 , ?18495 using ?18503 , ?18500 using , ?18502 using , ?18503 using , ?18507 using , ?18508 using , ?18510 using ,)
eapply substitution;try eassumption;eapply wf_typ;eassumption.No more subgoals.
(dependent evars: ?17212 using , ?17214 using ?17217 , ?17217 using , ?17224 using ?17232 , ?17225 using ?17234 , ?17226 using ?17235 , ?17227 using ?17236 , ?17228 using ?17238 , ?17232 using ?17240 , ?17234 using ?17242 , ?17235 using ?17243 , ?17236 using ?17244 , ?17238 using ?17246 , ?17240 using , ?17242 using , ?17243 using , ?17244 using , ?17246 using , ?17254 using ?17262 , ?17255 using ?17264 , ?17256 using ?17265 , ?17257 using ?17266 , ?17258 using ?17268 , ?17262 using ?17270 , ?17264 using ?17272 , ?17265 using ?17273 , ?17266 using ?17274 , ?17268 using ?17276 , ?17270 using , ?17272 using , ?17273 using , ?17274 using , ?17276 using , ?17295 using , ?17304 using ?17312 , ?17305 using ?17314 , ?17306 using ?17315 , ?17307 using ?17316 , ?17308 using ?17318 , ?17312 using ?17320 , ?17314 using ?17322 , ?17315 using ?17323 , ?17316 using ?17324 , ?17318 using ?17326 , ?17320 using , ?17322 using , ?17323 using , ?17324 using , ?17326 using , ?17337 using ?17339 , ?17339 using , ?17340 using , ?17344 using , ?17345 using , ?17346 using , ?17424 using , ?17427 using ?17435 , ?17435 using , ?17441 using , ?17442 using , ?17443 using , ?17444 using , ?17445 using , ?17464 using , ?17465 using , ?17466 using , ?17484 using ?17508 ?17507 , ?17485 using ?17514 ?17513 , ?17506 using , ?17507 using , ?17508 using , ?17512 using , ?17513 using , ?17514 using , ?17516 using ?17529 ?17528 , ?17517 using , ?17518 using ?17568 ?17567 , ?17519 using , ?17520 using ?17546 , ?17527 using , ?17528 using , ?17529 using , ?17546 using , ?17547 using ?17554 , ?17548 using ?17556 , ?17549 using ?17557 , ?17554 using , ?17556 using , ?17557 using , ?17561 using , ?17562 using , ?17566 using , ?17567 using , ?17568 using , ?17573 using ?17577 ?17576 ?17575 , ?17575 using , ?17576 using , ?17577 using , ?17578 using , ?17579 using , ?17580 using , ?17581 using , ?17582 using , ?17583 using , ?17610 using ?17617 , ?17611 using ?17619 , ?17612 using ?17620 , ?17617 using , ?17619 using , ?17620 using , ?17626 using , ?17627 using , ?17634 using , ?17647 using ?17654 , ?17648 using ?17656 , ?17649 using ?17657 , ?17654 using , ?17656 using , ?17657 using , ?17663 using , ?17664 using , ?17676 using ?17683 , ?17677 using ?17685 , ?17678 using ?17686 , ?17683 using , ?17685 using , ?17686 using , ?17695 using , ?17702 using ?17707 ?17706 , ?17705 using , ?17706 using , ?17707 using , ?17719 using ?17726 , ?17720 using ?17728 , ?17721 using ?17729 , ?17726 using , ?17728 using , ?17729 using , ?17738 using , ?17744 using , ?17745 using , ?17746 using , ?17764 using ?17788 ?17787 , ?17765 using ?17794 ?17793 , ?17786 using , ?17787 using , ?17788 using , ?17792 using , ?17793 using , ?17794 using , ?17796 using ?17809 ?17808 , ?17797 using , ?17798 using ?17848 ?17847 , ?17799 using , ?17800 using ?17826 , ?17807 using , ?17808 using , ?17809 using , ?17826 using , ?17827 using ?17834 , ?17828 using ?17836 , ?17829 using ?17837 , ?17834 using , ?17836 using , ?17837 using , ?17841 using , ?17842 using , ?17846 using , ?17847 using , ?17848 using , ?17853 using ?17857 ?17856 ?17855 , ?17855 using , ?17856 using , ?17857 using , ?17858 using ?17961 , ?17859 using ?17983 , ?17860 using , ?17861 using , ?17862 using , ?17863 using , ?17864 using , ?17865 using , ?17896 using ?17903 , ?17897 using ?17905 , ?17898 using ?17906 , ?17903 using , ?17905 using , ?17906 using , ?17912 using , ?17913 using , ?17920 using , ?17933 using ?17940 , ?17934 using ?17942 , ?17935 using ?17943 , ?17940 using , ?17942 using , ?17943 using , ?17949 using , ?17950 using , ?17961 using , ?17962 using ?17969 , ?17963 using ?17971 , ?17964 using ?17972 , ?17969 using , ?17971 using , ?17972 using , ?17981 using , ?17983 using ?18000 , ?17984 using ?17989 ?17988 , ?17987 using , ?17988 using , ?17989 using , ?18000 using , ?18001 using ?18008 , ?18002 using ?18010 , ?18003 using ?18011 , ?18008 using , ?18010 using , ?18011 using , ?18020 using , ?18032 using ?18039 , ?18033 using ?18041 , ?18034 using ?18042 , ?18039 using , ?18041 using , ?18042 using , ?18051 using , ?18058 using ?18063 ?18062 , ?18061 using , ?18062 using , ?18063 using , ?18075 using ?18082 , ?18076 using ?18084 , ?18077 using ?18085 , ?18082 using , ?18084 using , ?18085 using , ?18094 using , ?18100 using , ?18101 using , ?18102 using , ?18119 using , ?18120 using , ?18121 using , ?18137 using ?18140 ?18139 , ?18139 using , ?18140 using , ?18141 using ?18185 ?18184 ?18183 , ?18164 using ?18171 , ?18165 using ?18173 , ?18166 using ?18174 , ?18171 using , ?18173 using , ?18174 using , ?18180 using , ?18181 using , ?18183 using , ?18184 using ?18237 , ?18185 using , ?18187 using , ?18206 using ?18213 , ?18207 using ?18215 , ?18208 using ?18216 , ?18213 using , ?18215 using , ?18216 using , ?18222 using , ?18223 using , ?18225 using , ?18237 using , ?18238 using ?18245 , ?18239 using ?18247 , ?18240 using ?18248 , ?18245 using , ?18247 using , ?18248 using , ?18254 using , ?18255 using , ?18267 using ?18274 , ?18268 using ?18276 , ?18269 using ?18277 , ?18274 using , ?18276 using , ?18277 using , ?18283 using , ?18284 using , ?18290 using , ?18291 using , ?18292 using , ?18309 using , ?18310 using , ?18311 using , ?18327 using ?18330 ?18329 , ?18329 using ?18334 , ?18330 using ?18432 ?18431 , ?18331 using , ?18334 using , ?18336 using ?18356 , ?18337 using ?18380 , ?18356 using , ?18357 using ?18364 , ?18358 using ?18366 , ?18359 using ?18367 , ?18364 using , ?18366 using , ?18367 using , ?18380 using , ?18381 using ?18388 , ?18382 using ?18390 , ?18383 using ?18391 , ?18388 using , ?18390 using , ?18391 using , ?18401 using ?18408 , ?18402 using ?18410 , ?18403 using ?18411 , ?18408 using ?18415 , ?18410 using ?18417 , ?18411 using ?18418 , ?18415 using , ?18417 using , ?18418 using , ?18422 using , ?18423 using , ?18425 using , ?18426 using , ?18428 using , ?18429 using , ?18431 using , ?18432 using , ?18433 using , ?18436 using ?18441 , ?18437 using ?18477 , ?18441 using ?18454 , ?18442 using , ?18454 using , ?18455 using ?18462 , ?18456 using ?18464 , ?18457 using ?18465 , ?18462 using , ?18464 using , ?18465 using , ?18469 using , ?18470 using , ?18477 using ?18492 , ?18478 using , ?18492 using , ?18493 using ?18500 , ?18494 using ?18502 , ?18495 using ?18503 , ?18500 using , ?18502 using , ?18503 using , ?18507 using , ?18508 using , ?18510 using , ?18519 using ?18526 , ?18520 using ?18528 , ?18521 using ?18529 , ?18526 using ?18533 , ?18528 using ?18535 , ?18529 using ?18536 , ?18533 using , ?18535 using , ?18536 using , ?18540 using , ?18541 using ,)
Qed.equality_subst_ext is defined
Corollary equality_subst : forall Γ F N H M1 M2 A,A::Γ ⊢ F : N->Γ ⊢ H : M1 = M2->Γ ⊢ M1 : A->Γ ⊢ M2 : A -> Γ ⊢ F [ ← M1] = F [ ← M2].1 subgoals, subgoal 1 (ID 18571)
============================
forall (Γ : list Term) (F N : Term) (H : Prf) (M1 M2 A : Term),
A :: Γ ⊢ F : N ->
Γ ⊢ H : M1 = M2 -> Γ ⊢ M1 : A -> Γ ⊢ M2 : A -> Γ ⊢ F [ ← M1] = F [ ← M2]
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 18582)
Γ : list Term
F : Term
N : Term
H : Prf
M1 : Term
M2 : Term
A : Term
H0 : A :: Γ ⊢ F : N
H1 : Γ ⊢ H : M1 = M2
H2 : Γ ⊢ M1 : A
H3 : Γ ⊢ M2 : A
============================
Γ ⊢ F [ ← M1] = F [ ← M2]
(dependent evars:)
change F[← M2] with (subst_mult_term 0 F[← M2] nil);change 0 with (@length Prf nil).1 subgoals, subgoal 1 (ID 18588)
Γ : list Term
F : Term
N : Term
H : Prf
M1 : Term
M2 : Term
A : Term
H0 : A :: Γ ⊢ F : N
H1 : Γ ⊢ H : M1 = M2
H2 : Γ ⊢ M1 : A
H3 : Γ ⊢ M2 : A
============================
Γ ⊢ F [(length nil) ← M1] =
subst_mult_term (length nil) F [(length nil) ← M2] nil
(dependent evars:)
eapply equality_subst_ext;try eassumption;econstructor;eassumption.No more subgoals.
(dependent evars: ?18589 using , ?18590 using , ?18591 using , ?18592 using , ?18593 using , ?18594 using ,)
Qed.equality_subst is defined
We use trees with an arbitrary (finite) number of branches for derivations. We encode the rules by natural numbers.