*Typing rules for PTSF.
Basic properties of PTS.
Context Validity: if a judgment is valid, its context is well-formed.
Inversion Lemmas , one for each kind of term
from a typing derivation of some particular term, we can
infer informations about its type and subterms.
Weakening Property: if a judgement is valid, we can insert a well-typed term
in the context, it will remain valid. This is where the type checking for
inserting items in a context is done.
Theorem weakening:
(forall Γ M N, Γ ⊢ M : N -> forall Δ A s n Γ', ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ M ↑ 1 # n : N ↑ 1 # n ) /\
(forall Γ H M N, Γ ⊢ H : M = N -> forall Δ A s n Γ', ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ H ↑h 1 # n : M ↑ 1 # n = N ↑ 1 # n ) /\
(forall Γ , Γ ⊣ -> forall Δ A s n Γ', ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣).1 subgoals, subgoal 1 (ID 1645)
============================
(forall (Γ : Env) (M N : Term),
Γ ⊢ M : N ->
forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ M ↑ 1 # n : N ↑ 1 # n) /\
(forall (Γ : Env) (H : Prf) (M N : Term),
Γ ⊢ H : M = N ->
forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ H ↑h 1 # n : M ↑ 1 # n = N ↑ 1 # n) /\
(forall Γ : Env,
Γ ⊣ ->
forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣)
(dependent evars:)
apply typ_induc; simpl in *; intros;eauto.9 subgoals, subgoal 1 (ID 1703)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
============================
Γ' ⊢ (if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 2 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 4 (ID 1784) is:
Γ' ⊣
subgoal 5 (ID 1796) is:
Γ' ⊣
subgoal 6 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 7 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 8 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 9 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using ,)
destruct (le_gt_dec n v).10 subgoals, subgoal 1 (ID 4014)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
Γ' ⊢ #(S v) : A ↑ 1 # n
subgoal 2 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 3 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 5 (ID 1784) is:
Γ' ⊣
subgoal 6 (ID 1796) is:
Γ' ⊣
subgoal 7 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 8 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 9 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 10 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using ,)
constructor. 11 subgoals, subgoal 1 (ID 4018)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
Γ' ⊣
subgoal 2 (ID 4019) is:
A ↑ 1 # n ↓ S v ⊂ Γ'
subgoal 3 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 4 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 6 (ID 1784) is:
Γ' ⊣
subgoal 7 (ID 1796) is:
Γ' ⊣
subgoal 8 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 9 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 10 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 11 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using ,)
eapply H; eauto. 10 subgoals, subgoal 1 (ID 4019)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Γ'
subgoal 2 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 3 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 5 (ID 1784) is:
Γ' ⊣
subgoal 6 (ID 1796) is:
Γ' ⊣
subgoal 7 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 8 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 9 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 10 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using ,)
destruct i as (AA & ?& ?). 10 subgoals, subgoal 1 (ID 4036)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Γ'
subgoal 2 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 3 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 5 (ID 1784) is:
Γ' ⊣
subgoal 6 (ID 1796) is:
Γ' ⊣
subgoal 7 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 8 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 9 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 10 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using ,)
exists AA; split.11 subgoals, subgoal 1 (ID 4040)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
A ↑ 1 # n = AA ↑ (S (S v))
subgoal 2 (ID 4041) is:
AA ↓ S v ∈ Γ'
subgoal 3 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 4 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 6 (ID 1784) is:
Γ' ⊣
subgoal 7 (ID 1796) is:
Γ' ⊣
subgoal 8 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 9 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 10 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 11 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using ,)
rewrite H2; change (S (S v)) with (1+ S v); rewrite_l liftP3; simpl; intuition. 10 subgoals, subgoal 1 (ID 4041)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
l : n <= v
============================
AA ↓ S v ∈ Γ'
subgoal 2 (ID 4015) is:
Γ' ⊢ #v : A ↑ 1 # n
subgoal 3 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 5 (ID 1784) is:
Γ' ⊣
subgoal 6 (ID 1796) is:
Γ' ⊣
subgoal 7 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 8 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 9 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 10 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using ,)
eapply ins_item_ge;eauto.9 subgoals, subgoal 1 (ID 4015)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
g : n > v
============================
Γ' ⊢ #v : A ↑ 1 # n
subgoal 2 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 4 (ID 1784) is:
Γ' ⊣
subgoal 5 (ID 1796) is:
Γ' ⊣
subgoal 6 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 7 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 8 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 9 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using ,)
constructor. 10 subgoals, subgoal 1 (ID 4104)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
g : n > v
============================
Γ' ⊣
subgoal 2 (ID 4105) is:
A ↑ 1 # n ↓ v ⊂ Γ'
subgoal 3 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 5 (ID 1784) is:
Γ' ⊣
subgoal 6 (ID 1796) is:
Γ' ⊣
subgoal 7 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 8 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 9 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 10 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using ,)
eapply H; eauto. 9 subgoals, subgoal 1 (ID 4105)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n Γ Γ'
H1 : Δ ⊢ A0 : !s
g : n > v
============================
A ↑ 1 # n ↓ v ⊂ Γ'
subgoal 2 (ID 1742) is:
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 4 (ID 1784) is:
Γ' ⊣
subgoal 5 (ID 1796) is:
Γ' ⊣
subgoal 6 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 7 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 8 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 9 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using ,)
eapply ins_item_lift_lt;eauto.8 subgoals, subgoal 1 (ID 1742)
Γ : Env
A : Term
B : Term
b : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ A : !s1
H : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : A :: Γ ⊢ b : B
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t1 : A :: Γ ⊢ B : !s2
H1 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H2 : ins_in_env Δ A0 n Γ Γ'
H3 : Δ ⊢ A0 : !s
============================
Γ' ⊢ λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 2 (ID 1758) is:
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 3 (ID 1784) is:
Γ' ⊣
subgoal 4 (ID 1796) is:
Γ' ⊣
subgoal 5 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 6 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 7 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 8 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using ,)
econstructor; eauto.7 subgoals, subgoal 1 (ID 1758)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ F ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢ a : A
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ a ↑ 1 # n : A ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H1 : ins_in_env Δ A0 n Γ Γ'
H2 : Δ ⊢ A0 : !s
============================
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : B [ ← a] ↑ 1 # n
subgoal 2 (ID 1784) is:
Γ' ⊣
subgoal 3 (ID 1796) is:
Γ' ⊣
subgoal 4 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 5 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 6 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 7 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using ,)
change n with (0+n); rewrite_l substP1; simpl.7 subgoals, subgoal 1 (ID 4154)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ F ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢ a : A
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ a ↑ 1 # n : A ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H1 : ins_in_env Δ A0 n Γ Γ'
H2 : Δ ⊢ A0 : !s
============================
Γ' ⊢ F ↑ 1 # n · a ↑ 1 # n : (B ↑ 1 # (S n)) [ ← a ↑ 1 # n]
subgoal 2 (ID 1784) is:
Γ' ⊣
subgoal 3 (ID 1796) is:
Γ' ⊣
subgoal 4 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 5 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 6 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 7 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using ,)
econstructor; eauto.6 subgoals, subgoal 1 (ID 1784)
Δ : Env
A : Term
s : Sorts
n : nat
Γ' : Env
H : ins_in_env Δ A n nil Γ'
H0 : Δ ⊢ A : !s
============================
Γ' ⊣
subgoal 2 (ID 1796) is:
Γ' ⊣
subgoal 3 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 4 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 5 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 6 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using ,)
inversion H; subst;eauto.5 subgoals, subgoal 1 (ID 1796)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s0 -> Γ' ⊢ A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
n : nat
Γ' : Env
H0 : ins_in_env Δ A0 n (A :: Γ) Γ'
H1 : Δ ⊢ A0 : !s0
============================
Γ' ⊣
subgoal 2 (ID 1862) is:
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 3 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 4 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 5 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using ,)
inversion H0; subst;eauto.4 subgoals, subgoal 1 (ID 1862)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ a ↑ 1 # n : A ↑ 1 # n
t0 : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t1 : A :: Γ ⊢ b : B
H1 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H3 : ins_in_env Δ A0 n Γ Γ'
H4 : Δ ⊢ A0 : !s
============================
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
b [ ← a] ↑ 1 # n
subgoal 2 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 3 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 4 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using ,)
change n with (0+n); rewrite_l substP1; simpl.4 subgoals, subgoal 1 (ID 4351)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ a ↑ 1 # n : A ↑ 1 # n
t0 : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t1 : A :: Γ ⊢ b : B
H1 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H3 : ins_in_env Δ A0 n Γ Γ'
H4 : Δ ⊢ A0 : !s
============================
Γ' ⊢ β((λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n)
: (λ [A ↑ 1 # n], b ↑ 1 # (S n)) · a ↑ 1 # n =
(b ↑ 1 # (S n)) [ ← a ↑ 1 # n]
subgoal 2 (ID 1896) is:
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 3 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 4 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using ,)
econstructor;eauto.3 subgoals, subgoal 1 (ID 1896)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
Γ' ⊢ {H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n)}
: Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using ,)
econstructor; [eexact r|eexact r0|eauto..].3 subgoals, subgoal 1 (ID 4405)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # (S n) ↑ 1 # 1) [ ← #0 ∽ H ↑h 1 # n ↑h 1]
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
rewrite_l_rev liftP2;intuition.3 subgoals, subgoal 1 (ID 4436)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← #0 ∽ H ↑h 1 # n ↑h 1]
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
rewrite_r_rev liftP2;intuition.3 subgoals, subgoal 1 (ID 4512)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← #0 ∽ H ↑h 1 ↑h 1 # (1 + n)]
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
replace (#0 ∽ H ↑h 1 ↑h 1 # (1 + n)) with ((#0 ∽ H ↑h 1) ↑ 1 # (S n)) by trivial.3 subgoals, subgoal 1 (ID 4587)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← (#0 ∽ H ↑h 1) ↑ 1 # (S n)]
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
replace (1+S n) with (S (0+S n)) by trivial.3 subgoals, subgoal 1 (ID 4592)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # 1 ↑ 1 # (S (0 + S n))) [ ← (#0 ∽ H ↑h 1) ↑ 1 # (S n)]
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
rewrite_l_rev substP1;simpl.3 subgoals, subgoal 1 (ID 4598)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : B ↑ 1 # n = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : B ↑ 1 # (S n) =
(B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # (S n)
subgoal 2 (ID 1936) is:
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 3 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using ,)
eapply H5;eauto.2 subgoals, subgoal 1 (ID 1936)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
Γ' ⊢ ⟨H ↑h 1 # n, [A ↑ 1 # n]K ↑h 1 # (S n) ⟩
: λ [A ↑ 1 # n], b ↑ 1 # (S n) = λ [A' ↑ 1 # n], b' ↑ 1 # (S n)
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using ,)
econstructor; [eexact r|eexact r0|eauto..].2 subgoals, subgoal 1 (ID 4628)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # (S n) ↑ 1 # 1) [ ← #0 ∽ H ↑h 1 # n ↑h 1]
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
rewrite_l_rev liftP2;intuition.2 subgoals, subgoal 1 (ID 4671)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← #0 ∽ H ↑h 1 # n ↑h 1]
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
rewrite_r_rev liftP2;intuition.2 subgoals, subgoal 1 (ID 4759)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← #0 ∽ H ↑h 1 ↑h 1 # (1 + n)]
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
replace (#0 ∽ H ↑h 1 ↑h 1 # (1 + n)) with ((#0 ∽ H ↑h 1) ↑ 1 # (S n)) by trivial.2 subgoals, subgoal 1 (ID 4846)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # 1 ↑ 1 # (1 + S n)) [ ← (#0 ∽ H ↑h 1) ↑ 1 # (S n)]
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
replace (1+S n) with (S (0+S n)) by trivial.2 subgoals, subgoal 1 (ID 4851)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # 1 ↑ 1 # (S (0 + S n))) [ ← (#0 ∽ H ↑h 1) ↑ 1 # (S n)]
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
rewrite_l_rev substP1;simpl.2 subgoals, subgoal 1 (ID 4857)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ A ↑ 1 # n : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ A' ↑ 1 # n : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ b ↑ 1 # n : B ↑ 1 # n
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ b' ↑ 1 # n : B' ↑ 1 # n
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ B ↑ 1 # n : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n (A' :: Γ) Γ' -> Δ ⊢ A : !s -> Γ' ⊢ B' ↑ 1 # n : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ H ↑h 1 # n : A ↑ 1 # n = A' ↑ 1 # n
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n (A :: Γ) Γ' ->
Δ ⊢ A0 : !s ->
Γ' ⊢ K ↑h 1 # n : b ↑ 1 # n = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H8 : ins_in_env Δ A0 n Γ Γ'
H9 : Δ ⊢ A0 : !s
============================
A ↑ 1 # n :: Γ' ⊢ K ↑h 1 # (S n) : b ↑ 1 # (S n) =
(b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] ↑ 1 # (S n)
subgoal 2 (ID 1966) is:
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using ,)
eapply H7;eauto.1 subgoals, subgoal 1 (ID 1966)
Γ : Env
F : Term
F' : Term
a : Term
a' : Term
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
t : Γ ⊢ F : Π (A), B
H0 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' ->
Δ ⊢ A0 : !s -> Γ' ⊢ F ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢ F' : Π (A'), B'
H1 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ F' ↑ 1 # n : Π (A' ↑ 1 # n), B' ↑ 1 # (S n)
t1 : Γ ⊢ a : A
H2 : forall (Δ : Env) (A0 : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A0 n Γ Γ' -> Δ ⊢ A0 : !s -> Γ' ⊢ a ↑ 1 # n : A ↑ 1 # n
t2 : Γ ⊢ a' : A'
H3 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' -> Δ ⊢ A : !s -> Γ' ⊢ a' ↑ 1 # n : A' ↑ 1 # n
t3 : Γ ⊢ H : F = F'
H4 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ H ↑h 1 # n : F ↑ 1 # n = F' ↑ 1 # n
t4 : Γ ⊢ K : a = a'
H5 : forall (Δ : Env) (A : Term) (s : Sorts) (n : nat) (Γ' : Env),
ins_in_env Δ A n Γ Γ' ->
Δ ⊢ A : !s -> Γ' ⊢ K ↑h 1 # n : a ↑ 1 # n = a' ↑ 1 # n
Δ : Env
A0 : Term
s : Sorts
n : nat
Γ' : Env
H6 : ins_in_env Δ A0 n Γ Γ'
H7 : Δ ⊢ A0 : !s
============================
Γ' ⊢ H ↑h 1 # n ·h K ↑h 1 # n : F ↑ 1 # n · a ↑ 1 # n =
F' ↑ 1 # n · a' ↑ 1 # n
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using , ?4858 using , ?4859 using , ?4860 using ,)
econstructor; eauto.No more subgoals.
(dependent evars: ?1994 using ?2001 , ?1995 using ?2000 , ?2000 using , ?2001 using , ?2117 using , ?2118 using , ?2119 using , ?2120 using , ?2181 using , ?2182 using , ?2186 using , ?2187 using , ?2188 using , ?2191 using , ?2192 using , ?2193 using , ?2220 using , ?2221 using , ?2225 using , ?2226 using , ?2227 using , ?2230 using , ?2231 using , ?2232 using , ?2235 using , ?2236 using , ?2237 using , ?3827 using , ?3829 using , ?3830 using , ?3831 using , ?3835 using , ?3836 using , ?3837 using , ?3840 using , ?3843 using , ?3844 using , ?3845 using , ?3848 using , ?3849 using , ?3850 using , ?3957 using , ?3958 using ?3971 ?3970 ?3969 , ?3959 using , ?3963 using , ?3964 using , ?3965 using , ?3969 using , ?3970 using , ?3971 using , ?3972 using , ?3973 using , ?3974 using , ?4001 using , ?4002 using , ?4003 using , ?4020 using , ?4021 using , ?4022 using , ?4023 using , ?4095 using , ?4096 using , ?4097 using , ?4098 using , ?4106 using , ?4107 using , ?4108 using , ?4109 using , ?4112 using , ?4113 using , ?4114 using , ?4124 using , ?4125 using , ?4126 using , ?4131 using , ?4132 using , ?4133 using , ?4136 using , ?4137 using , ?4138 using , ?4142 using , ?4143 using , ?4144 using , ?4160 using , ?4163 using , ?4164 using , ?4165 using , ?4168 using , ?4169 using , ?4170 using , ?4233 using , ?4330 using , ?4335 using , ?4340 using , ?4341 using , ?4342 using , ?4356 using , ?4357 using , ?4358 using , ?4359 using , ?4365 using , ?4366 using , ?4367 using , ?4370 using , ?4371 using , ?4372 using , ?4375 using , ?4376 using , ?4377 using , ?4381 using , ?4382 using , ?4383 using , ?4392 using , ?4393 using , ?4394 using , ?4395 using , ?4396 using , ?4397 using , ?4406 using , ?4407 using , ?4408 using , ?4411 using , ?4412 using , ?4413 using , ?4416 using , ?4417 using , ?4418 using , ?4422 using , ?4423 using , ?4424 using , ?4428 using , ?4429 using , ?4430 using , ?4599 using , ?4600 using , ?4601 using , ?4611 using , ?4612 using , ?4613 using , ?4614 using , ?4615 using , ?4616 using , ?4617 using , ?4618 using , ?4629 using , ?4630 using , ?4631 using , ?4634 using , ?4635 using , ?4636 using , ?4639 using , ?4640 using , ?4641 using , ?4645 using , ?4646 using , ?4647 using , ?4651 using , ?4652 using , ?4653 using , ?4657 using , ?4658 using , ?4659 using , ?4663 using , ?4664 using , ?4665 using , ?4858 using , ?4859 using , ?4860 using , ?4871 using , ?4872 using , ?4873 using , ?4874 using , ?4881 using , ?4882 using , ?4883 using , ?4886 using , ?4887 using , ?4888 using , ?4891 using , ?4892 using , ?4893 using , ?4896 using , ?4897 using , ?4898 using , ?4901 using , ?4902 using , ?4903 using , ?4906 using , ?4907 using , ?4908 using ,)
Qed.
Theorem thinning : forall Γ M N A s, Γ ⊢ M : N -> Γ ⊢ A : !s -> A::Γ ⊢ M ↑ 1 : N ↑ 1.1 subgoals, subgoal 1 (ID 4918)
============================
forall (Γ : Env) (M N A : Term) (s : Sorts),
Γ ⊢ M : N -> Γ ⊢ A : !s -> A :: Γ ⊢ M ↑ 1 : N ↑ 1
(dependent evars:)
intros;eapply weakening;eassumption||econstructor.No more subgoals.
(dependent evars: ?4934 using ?4941 , ?4935 using ?4943 , ?4936 using ?4944 , ?4937 using ?4946 , ?4941 using , ?4943 using , ?4944 using , ?4946 using ,)
Qed.
Theorem thinning_h : forall Γ H M N A s, Γ ⊢ H : M = N -> Γ ⊢ A : !s -> A::Γ ⊢ H ↑h 1 : M ↑ 1 = N ↑ 1.1 subgoals, subgoal 1 (ID 4964)
============================
forall (Γ : Env) (H : Prf) (M N A : Term) (s : Sorts),
Γ ⊢ H : M = N -> Γ ⊢ A : !s -> A :: Γ ⊢ H ↑h 1 : M ↑ 1 = N ↑ 1
(dependent evars:)
intros;eapply weakening;eassumption||econstructor.No more subgoals.
(dependent evars: ?4979 using ?4986 , ?4980 using ?4988 , ?4981 using ?4989 , ?4982 using ?4991 , ?4986 using ?4993 , ?4988 using ?4995 , ?4989 using ?4996 , ?4991 using ?4998 , ?4993 using , ?4995 using , ?4996 using , ?4998 using ,)
Qed.
Theorem thinning_n : forall n Δ Δ', trunc n Δ Δ' -> forall M T , Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n.1 subgoals, subgoal 1 (ID 5017)
============================
forall (n : nat) (Δ Δ' : list Term),
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
(dependent evars:)
induction n; intros;inversion H; subst.2 subgoals, subgoal 1 (ID 5153)
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
H : trunc 0 Δ' Δ'
H1 : Δ' ⊣
============================
Δ' ⊢ M ↑ 0 : T ↑ 0
subgoal 2 (ID 5161) is:
x :: Γ ⊢ M ↑ (S n) : T ↑ (S n)
(dependent evars:)
do 2 rewrite_l lift0; trivial.1 subgoals, subgoal 1 (ID 5161)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
============================
x :: Γ ⊢ M ↑ (S n) : T ↑ (S n)
(dependent evars:)
change (S n) with (1+n).1 subgoals, subgoal 1 (ID 5171)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
============================
x :: Γ ⊢ M ↑ (1 + n) : T ↑ (1 + n)
(dependent evars:)
replace (M ↑ (1+n)) with ((M ↑ n )↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 5175)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
============================
x :: Γ ⊢ M ↑ n ↑ 1 : T ↑ (1 + n)
(dependent evars:)
replace (T ↑ (1+n)) with ((T ↑ n) ↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 5184)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
============================
x :: Γ ⊢ M ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
inversion H1; subst.1 subgoals, subgoal 1 (ID 5237)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
s : Sorts
H4 : Γ ⊢ x : !s
============================
x :: Γ ⊢ M ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
apply thinning with s; trivial.1 subgoals, subgoal 1 (ID 5238)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
s : Sorts
H4 : Γ ⊢ x : !s
============================
Γ ⊢ M ↑ n : T ↑ n
(dependent evars:)
eapply IHn. 3 subgoals, subgoal 1 (ID 5241)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
s : Sorts
H4 : Γ ⊢ x : !s
============================
trunc n Γ ?5240
subgoal 2 (ID 5242) is:
?5240 ⊢ M : T
subgoal 3 (ID 5243) is:
Γ ⊣
(dependent evars: ?5240 open,)
apply H3. 2 subgoals, subgoal 1 (ID 5242)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
s : Sorts
H4 : Γ ⊢ x : !s
============================
Δ' ⊢ M : T
subgoal 2 (ID 5243) is:
Γ ⊣
(dependent evars: ?5240 using ,)
trivial. 1 subgoals, subgoal 1 (ID 5243)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢ M : T -> Δ ⊣ -> Δ ⊢ M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢ M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H : trunc (S n) (x :: Γ) Δ'
H1 : x :: Γ ⊣
s : Sorts
H4 : Γ ⊢ x : !s
============================
Γ ⊣
(dependent evars: ?5240 using ,)
eauto.No more subgoals.
(dependent evars: ?5240 using , ?5244 using , ?5245 using ,)
Qed.
Theorem thinning_n_h : forall n Δ Δ' H M N ,trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n.1 subgoals, subgoal 1 (ID 5331)
============================
forall (n : nat) (Δ Δ' : list Term) (H : Prf) (M N : Term),
trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n
(dependent evars:)
induction n;inversion 1;intros;subst.2 subgoals, subgoal 1 (ID 5467)
Δ' : list Term
H : Prf
M : Term
N : Term
H1 : Δ' ⊢ H : M = N
H4 : Δ' ⊣
H0 : trunc 0 Δ' Δ'
============================
Δ' ⊢ H ↑h 0 : M ↑ 0 = N ↑ 0
subgoal 2 (ID 5474) is:
x :: Γ ⊢ H ↑h (S n) : M ↑ (S n) = N ↑ (S n)
(dependent evars:)
do 2 rewrite_l lift0; rewrite_r lift0; trivial.1 subgoals, subgoal 1 (ID 5474)
n : nat
IHn : forall (Δ Δ' : list Term) (H : Prf) (M N : Term),
trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n
Δ' : list Term
H : Prf
M : Term
N : Term
Γ : list Term
x : Term
H2 : trunc n Γ Δ'
H5 : Δ' ⊢ H : M = N
H6 : x :: Γ ⊣
H0 : trunc (S n) (x :: Γ) Δ'
============================
x :: Γ ⊢ H ↑h (S n) : M ↑ (S n) = N ↑ (S n)
(dependent evars:)
change (S n) with (1+n).1 subgoals, subgoal 1 (ID 5488)
n : nat
IHn : forall (Δ Δ' : list Term) (H : Prf) (M N : Term),
trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n
Δ' : list Term
H : Prf
M : Term
N : Term
Γ : list Term
x : Term
H2 : trunc n Γ Δ'
H5 : Δ' ⊢ H : M = N
H6 : x :: Γ ⊣
H0 : trunc (S n) (x :: Γ) Δ'
============================
x :: Γ ⊢ H ↑h (1 + n) : M ↑ (1 + n) = N ↑ (1 + n)
(dependent evars:)
do 2 rewrite_l_rev lift_lift;rewrite_r_rev lift_lift.1 subgoals, subgoal 1 (ID 5500)
n : nat
IHn : forall (Δ Δ' : list Term) (H : Prf) (M N : Term),
trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n
Δ' : list Term
H : Prf
M : Term
N : Term
Γ : list Term
x : Term
H2 : trunc n Γ Δ'
H5 : Δ' ⊢ H : M = N
H6 : x :: Γ ⊣
H0 : trunc (S n) (x :: Γ) Δ'
============================
x :: Γ ⊢ H ↑h n ↑h 1 : M ↑ n ↑ 1 = N ↑ n ↑ 1
(dependent evars:)
inversion H6;subst.1 subgoals, subgoal 1 (ID 5548)
n : nat
IHn : forall (Δ Δ' : list Term) (H : Prf) (M N : Term),
trunc n Δ Δ' -> Δ' ⊢ H : M = N -> Δ ⊣ -> Δ ⊢ H ↑h n : M ↑ n = N ↑ n
Δ' : list Term
H : Prf
M : Term
N : Term
Γ : list Term
x : Term
H2 : trunc n Γ Δ'
H5 : Δ' ⊢ H : M = N
H6 : x :: Γ ⊣
H0 : trunc (S n) (x :: Γ) Δ'
s : Sorts
H3 : Γ ⊢ x : !s
============================
x :: Γ ⊢ H ↑h n ↑h 1 : M ↑ n ↑ 1 = N ↑ n ↑ 1
(dependent evars:)
eapply thinning_h with s;[eapply IHn;try eapply wf_typ;eassumption|assumption].No more subgoals.
(dependent evars: ?5551 using , ?5555 using , ?5556 using ,)
Qed.
Substitution Property: if a judgment is valid and we replace a variable by a
well-typed term of the same type, it will remain valid.
Lemma sub_trunc : forall Δ a A n Γ Γ', sub_in_env Δ a A n Γ Γ' -> trunc n Γ' Δ.1 subgoals, subgoal 1 (ID 5575)
============================
forall (Δ : Env) (a A : Term) (n : nat) (Γ Γ' : Env),
sub_in_env Δ a A n Γ Γ' -> trunc n Γ' Δ
(dependent evars:)
induction 1;constructor;trivial.No more subgoals.
(dependent evars:)
Qed.
Theorem substitution :
(forall Γ M N , Γ ⊢ M : N -> forall Δ a A Γ' n, Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ M [ n ← a ] : N [ n ← a ] ) /\
(forall Γ H M N , Γ ⊢H:M = N -> forall Δ a A Γ' n, Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ H[n←h a]:M [ n ← a ] = N [ n ← a ] ) /\
(forall Γ , Γ ⊣ -> forall Δ a A Γ' n, Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣).1 subgoals, subgoal 1 (ID 5634)
============================
(forall (Γ : Env) (M N : Term),
Γ ⊢ M : N ->
forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ M [n ← a] : N [n ← a]) /\
(forall (Γ : Env) (H : Prf) (M N : Term),
Γ ⊢ H : M = N ->
forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : M [n ← a] = N [n ← a]) /\
(forall Γ : Env,
Γ ⊣ ->
forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣)
(dependent evars:)
apply typ_induc; simpl in *; intros;try (econstructor;eauto;fail).7 subgoals, subgoal 1 (ID 5694)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
============================
Γ'
⊢ match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => a ↑ n
| inright _ => #(v - 1)
end : A [n ← a]
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using ,)
destruct lt_eq_lt_dec as [ [] | ].9 subgoals, subgoal 1 (ID 8865)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
Γ' ⊢ #v : A [n ← a]
subgoal 2 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 3 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using ,)
constructor. 10 subgoals, subgoal 1 (ID 8870)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
Γ' ⊣
subgoal 2 (ID 8871) is:
A [n ← a] ↓ v ⊂ Γ'
subgoal 3 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 4 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 5 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 6 (ID 5779) is:
Γ' ⊣
subgoal 7 (ID 5791) is:
Γ' ⊣
subgoal 8 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 9 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 10 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using ,)
eapply H; eauto. 9 subgoals, subgoal 1 (ID 8871)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
A [n ← a] ↓ v ⊂ Γ'
subgoal 2 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 3 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using ,)
eapply nth_sub_item_inf. 11 subgoals, subgoal 1 (ID 8936)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
sub_in_env ?8934 a ?8933 n ?8935 Γ'
subgoal 2 (ID 8937) is:
n > v
subgoal 3 (ID 8938) is:
A ↓ v ⊂ ?8935
subgoal 4 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 5 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 6 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 7 (ID 5779) is:
Γ' ⊣
subgoal 8 (ID 5791) is:
Γ' ⊣
subgoal 9 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 10 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 11 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 open, ?8934 open, ?8935 open,)
apply H1. 10 subgoals, subgoal 1 (ID 8937)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
n > v
subgoal 2 (ID 8938) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 4 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 5 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 6 (ID 5779) is:
Γ' ⊣
subgoal 7 (ID 5791) is:
Γ' ⊣
subgoal 8 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 9 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 10 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
intuition. 9 subgoals, subgoal 1 (ID 8938)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : v < n
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 8866) is:
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 3 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
trivial.8 subgoals, subgoal 1 (ID 8866)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
e : v = n
============================
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
destruct i as (AA & ?& ?). 8 subgoals, subgoal 1 (ID 8949)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H3 : A = AA ↑ (S v)
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
e : v = n
============================
Γ' ⊢ a ↑ n : A [n ← a]
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
subst. 8 subgoals, subgoal 1 (ID 8958)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊢ a ↑ n : AA ↑ (S n) [n ← a]
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
rewrite_l substP3; intuition.8 subgoals, subgoal 1 (ID 8962)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊢ a ↑ n : AA ↑ n
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
set (subst_item H1).8 subgoals, subgoal 1 (ID 9014)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
Γ' ⊢ a ↑ n : AA ↑ n
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
rewrite <- (fun_item i H4). 8 subgoals, subgoal 1 (ID 9020)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
Γ' ⊢ a ↑ n : A0 ↑ n
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using ,)
eapply thinning_n. 10 subgoals, subgoal 1 (ID 9022)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
trunc n Γ' ?9021
subgoal 2 (ID 9023) is:
?9021 ⊢ a : A0
subgoal 3 (ID 9024) is:
Γ' ⊣
subgoal 4 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 5 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 6 (ID 5779) is:
Γ' ⊣
subgoal 7 (ID 5791) is:
Γ' ⊣
subgoal 8 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 9 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 10 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 open,)
eapply sub_trunc. 10 subgoals, subgoal 1 (ID 9028)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
sub_in_env ?9021 ?9025 ?9026 n ?9027 Γ'
subgoal 2 (ID 9023) is:
?9021 ⊢ a : A0
subgoal 3 (ID 9024) is:
Γ' ⊣
subgoal 4 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 5 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 6 (ID 5779) is:
Γ' ⊣
subgoal 7 (ID 5791) is:
Γ' ⊣
subgoal 8 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 9 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 10 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 open, ?9025 open, ?9026 open, ?9027 open,)
apply H1. 9 subgoals, subgoal 1 (ID 9023)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
Δ ⊢ a : A0
subgoal 2 (ID 9024) is:
Γ' ⊣
subgoal 3 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using ,)
trivial.8 subgoals, subgoal 1 (ID 9024)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
H4 : AA ↓ n ∈ Γ
i := subst_item H1 : A0 ↓ n ∈ Γ
============================
Γ' ⊣
subgoal 2 (ID 8867) is:
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using ,)
eapply H; eauto. 7 subgoals, subgoal 1 (ID 8867)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
Γ' ⊢ #(v - 1) : A [n ← a]
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using ,)
constructor. 8 subgoals, subgoal 1 (ID 9092)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
Γ' ⊣
subgoal 2 (ID 9093) is:
A [n ← a] ↓ v - 1 ⊂ Γ'
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using ,)
eapply H; eauto. 7 subgoals, subgoal 1 (ID 9093)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
i : A ↓ v ⊂ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
A [n ← a] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
destruct i as (AA & ? &?). 7 subgoals, subgoal 1 (ID 9165)
Γ : Env
A : Term
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H3 : A = AA ↑ (S v)
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
A [n ← a] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
subst.7 subgoals, subgoal 1 (ID 9168)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↑ (S v) [n ← a] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
rewrite_l substP3; intuition. 7 subgoals, subgoal 1 (ID 9172)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↑ v ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
exists AA; split. 8 subgoals, subgoal 1 (ID 9236)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↑ v = AA ↑ (S (v - 1))
subgoal 2 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
replace (S (v-1)) with v. 9 subgoals, subgoal 1 (ID 9241)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↑ v = AA ↑ v
subgoal 2 (ID 9238) is:
v = S (v - 1)
subgoal 3 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
trivial.8 subgoals, subgoal 1 (ID 9238)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
rewrite minus_Sn_m. 9 subgoals, subgoal 1 (ID 9243)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
v = S v - 1
subgoal 2 (ID 9244) is:
1 <= v
subgoal 3 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
intuition. 8 subgoals, subgoal 1 (ID 9244)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
1 <= v
subgoal 2 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
destruct v. 9 subgoals, subgoal 1 (ID 9271)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ 0 ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < 0
============================
1 <= 0
subgoal 2 (ID 9276) is:
1 <= S v
subgoal 3 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
apply lt_n_O in l; elim l. 8 subgoals, subgoal 1 (ID 9276)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < S v
============================
1 <= S v
subgoal 2 (ID 9237) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
intuition.7 subgoals, subgoal 1 (ID 9237)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↓ v - 1 ∈ Γ'
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using ,)
eapply nth_sub_sup. 9 subgoals, subgoal 1 (ID 9301)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
sub_in_env ?9297 ?9299 ?9300 ?9296 ?9298 Γ'
subgoal 2 (ID 9302) is:
?9296 <= v - 1
subgoal 3 (ID 9303) is:
AA ↓ S (v - 1) ∈ ?9298
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 open, ?9297 open, ?9298 open, ?9299 open, ?9300 open,)
apply H1. 8 subgoals, subgoal 1 (ID 9302)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
n <= v - 1
subgoal 2 (ID 9303) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
destruct v. 9 subgoals, subgoal 1 (ID 9312)
Γ : Env
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ 0 ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < 0
============================
n <= 0 - 1
subgoal 2 (ID 9317) is:
n <= S v - 1
subgoal 3 (ID 9303) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 5 (ID 5779) is:
Γ' ⊣
subgoal 6 (ID 5791) is:
Γ' ⊣
subgoal 7 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 8 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 9 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
apply lt_n_O in l; elim l. 8 subgoals, subgoal 1 (ID 9317)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < S v
============================
n <= S v - 1
subgoal 2 (ID 9303) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
simpl. 8 subgoals, subgoal 1 (ID 9320)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < S v
============================
n <= v - 0
subgoal 2 (ID 9303) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
rewrite <- minus_n_O.8 subgoals, subgoal 1 (ID 9321)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < S v
============================
n <= v
subgoal 2 (ID 9303) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 4 (ID 5779) is:
Γ' ⊣
subgoal 5 (ID 5791) is:
Γ' ⊣
subgoal 6 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 7 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 8 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
intuition. 7 subgoals, subgoal 1 (ID 9303)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↓ S (v - 1) ∈ Γ
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
rewrite <- pred_of_minus. 7 subgoals, subgoal 1 (ID 9339)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↓ S (pred v) ∈ Γ
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
rewrite <- (S_pred v n l). 7 subgoals, subgoal 1 (ID 9340)
Γ : Env
v : nat
w : Γ ⊣
H : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ' ⊣
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n Γ Γ'
H2 : Γ ⊣
l : n < v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 5752) is:
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 3 (ID 5779) is:
Γ' ⊣
subgoal 4 (ID 5791) is:
Γ' ⊣
subgoal 5 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 6 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 7 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
trivial.6 subgoals, subgoal 1 (ID 5752)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ F [n ← a] : Π (A [n ← a]), B [(S n) ← a]
t0 : Γ ⊢ a : A
H0 : forall (Δ : Env) (a0 A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a0 : A0 ->
sub_in_env Δ a0 A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ a [n ← a0] : A [n ← a0]
Δ : Env
a0 : Term
A0 : Term
Γ' : Env
n : nat
H1 : Δ ⊢ a0 : A0
H2 : sub_in_env Δ a0 A0 n Γ Γ'
H3 : Γ ⊣
============================
Γ' ⊢ F [n ← a0] · a [n ← a0] : B [ ← a] [n ← a0]
subgoal 2 (ID 5779) is:
Γ' ⊣
subgoal 3 (ID 5791) is:
Γ' ⊣
subgoal 4 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 5 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 6 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
rewrite_l subst_travers. 6 subgoals, subgoal 1 (ID 9344)
Γ : Env
F : Term
a : Term
A : Term
B : Term
t : Γ ⊢ F : Π (A), B
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ F [n ← a] : Π (A [n ← a]), B [(S n) ← a]
t0 : Γ ⊢ a : A
H0 : forall (Δ : Env) (a0 A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a0 : A0 ->
sub_in_env Δ a0 A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ a [n ← a0] : A [n ← a0]
Δ : Env
a0 : Term
A0 : Term
Γ' : Env
n : nat
H1 : Δ ⊢ a0 : A0
H2 : sub_in_env Δ a0 A0 n Γ Γ'
H3 : Γ ⊣
============================
Γ' ⊢ F [n ← a0] · a [n ← a0] : (B [(n + 1) ← a0]) [ ← a [n ← a0]]
subgoal 2 (ID 5779) is:
Γ' ⊣
subgoal 3 (ID 5791) is:
Γ' ⊣
subgoal 4 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 5 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 6 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using ,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial); eauto.5 subgoals, subgoal 1 (ID 5779)
Δ : Env
a : Term
A : Term
Γ' : Env
n : nat
H : Δ ⊢ a : A
H0 : sub_in_env Δ a A n nil Γ'
============================
Γ' ⊣
subgoal 2 (ID 5791) is:
Γ' ⊣
subgoal 3 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 4 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 5 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using ,)
inversion H0.4 subgoals, subgoal 1 (ID 5791)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H0 : Δ ⊢ a : A0
H1 : sub_in_env Δ a A0 n (A :: Γ) Γ'
============================
Γ' ⊣
subgoal 2 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 3 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 4 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using ,)
inversion H1; subst. 5 subgoals, subgoal 1 (ID 9509)
A : Term
s : Sorts
a : Term
Γ' : Env
t : Γ' ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ'0 : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ' Γ'0 -> Γ' ⊣ -> Γ'0 ⊢ A [n ← a] : !s
H0 : Γ' ⊢ a : A
H1 : sub_in_env Γ' a A 0 (A :: Γ') Γ'
============================
Γ' ⊣
subgoal 2 (ID 9521) is:
A [n0 ← a] :: Δ' ⊣
subgoal 3 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 4 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 5 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using ,)
eauto.4 subgoals, subgoal 1 (ID 9521)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
H0 : Δ ⊢ a : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ a A0 n0 Γ Δ'
H1 : sub_in_env Δ a A0 (S n0) (A :: Γ) (A [n0 ← a] :: Δ')
============================
A [n0 ← a] :: Δ' ⊣
subgoal 2 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 3 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 4 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using ,)
econstructor. 4 subgoals, subgoal 1 (ID 9593)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
H0 : Δ ⊢ a : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ a A0 n0 Γ Δ'
H1 : sub_in_env Δ a A0 (S n0) (A :: Γ) (A [n0 ← a] :: Δ')
============================
Δ' ⊢ A [n0 ← a] : !?9592
subgoal 2 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 3 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 4 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 open,)
eapply H. 6 subgoals, subgoal 1 (ID 9596)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
H0 : Δ ⊢ a : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ a A0 n0 Γ Δ'
H1 : sub_in_env Δ a A0 (S n0) (A :: Γ) (A [n0 ← a] :: Δ')
============================
?9594 ⊢ a : ?9595
subgoal 2 (ID 9597) is:
sub_in_env ?9594 a ?9595 n0 Γ Δ'
subgoal 3 (ID 9598) is:
Γ ⊣
subgoal 4 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 5 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 6 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 open, ?9595 open,)
apply H0. 5 subgoals, subgoal 1 (ID 9597)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
H0 : Δ ⊢ a : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ a A0 n0 Γ Δ'
H1 : sub_in_env Δ a A0 (S n0) (A :: Γ) (A [n0 ← a] :: Δ')
============================
sub_in_env Δ a A0 n0 Γ Δ'
subgoal 2 (ID 9598) is:
Γ ⊣
subgoal 3 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 4 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 5 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using ,)
trivial. 4 subgoals, subgoal 1 (ID 9598)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢ A : !s
H : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s
Δ : Env
a : Term
A0 : Term
H0 : Δ ⊢ a : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ a A0 n0 Γ Δ'
H1 : sub_in_env Δ a A0 (S n0) (A :: Γ) (A [n0 ← a] :: Δ')
============================
Γ ⊣
subgoal 2 (ID 5861) is:
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 3 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 4 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using ,)
eauto.3 subgoals, subgoal 1 (ID 5861)
Γ : Env
a : Term
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢ a : A
H : forall (Δ : Env) (a0 A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a0 : A0 ->
sub_in_env Δ a0 A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ a [n ← a0] : A [n ← a0]
t0 : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t1 : A :: Γ ⊢ b : B
H1 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
Δ : Env
a0 : Term
A0 : Term
Γ' : Env
n : nat
H3 : Δ ⊢ a0 : A0
H4 : sub_in_env Δ a0 A0 n Γ Γ'
H5 : Γ ⊣
============================
Γ' ⊢ β((λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0])
: (λ [A [n ← a0]], b [(S n) ← a0]) · a [n ← a0] =
b [ ← a] [n ← a0]
subgoal 2 (ID 5896) is:
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 3 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using ,)
rewrite_l subst_travers;replace (n+1) with (S n) by (rewrite plus_comm; trivial);econstructor;eauto.2 subgoals, subgoal 1 (ID 5896)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : B [n ← a] = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H6 : Δ ⊢ a : A0
H7 : sub_in_env Δ a A0 n Γ Γ'
H8 : Γ ⊣
============================
Γ' ⊢ {H [n ←h a], [A [n ← a]]K [(S n) ←h a]}
: Π (A [n ← a]), B [(S n) ← a] = Π (A' [n ← a]), B' [(S n) ← a]
subgoal 2 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using ,)
econstructor;[exact r|exact r0|eauto..].2 subgoals, subgoal 1 (ID 9746)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : B [n ← a] = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H6 : Δ ⊢ a : A0
H7 : sub_in_env Δ a A0 n Γ Γ'
H8 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : B [(S n) ← a] =
(B' [(S n) ← a] ↑ 1 # 1) [ ← #0 ∽ H [n ←h a] ↑h 1]
subgoal 2 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using ,)
rewrite_l_rev substP2;intuition;rewrite_r_rev substP2;intuition.2 subgoals, subgoal 1 (ID 9874)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : B [n ← a] = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H6 : Δ ⊢ a : A0
H7 : sub_in_env Δ a A0 n Γ Γ'
H8 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : B [(S n) ← a] =
(B' ↑ 1 # 1 [(1 + S n) ← a]) [ ← #0 ∽ H ↑h 1 [(1 + n) ←h a]]
subgoal 2 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using ,)
change (1+S n) with (S(0+S n)).2 subgoals, subgoal 1 (ID 9949)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : B [n ← a] = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H6 : Δ ⊢ a : A0
H7 : sub_in_env Δ a A0 n Γ Γ'
H8 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : B [(S n) ← a] =
(B' ↑ 1 # 1 [(S (0 + S n)) ← a]) [ ← #0 ∽ H ↑h 1 [(1 + n) ←h a]]
subgoal 2 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using ,)
change (#0 ∽ H ↑h 1 [(1 + n) ←h a]) with ((#0 ∽ H ↑h 1) [(S n) ← a]).2 subgoals, subgoal 1 (ID 9951)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ B : !s2
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t2 : A' :: Γ ⊢ B' : !s2'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t3 : Γ ⊢ H : A = A'
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t4 : A :: Γ ⊢ K : B = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H5 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : B [n ← a] = (B' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H6 : Δ ⊢ a : A0
H7 : sub_in_env Δ a A0 n Γ Γ'
H8 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : B [(S n) ← a] =
(B' ↑ 1 # 1 [(S (0 + S n)) ← a]) [ ← (#0 ∽ H ↑h 1) [(S n) ← a]]
subgoal 2 (ID 5937) is:
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using ,)
rewrite_l_rev substP4;simpl;eauto.1 subgoals, subgoal 1 (ID 5937)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ b' [n ← a] : B' [n ← a]
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : b [n ← a] = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H8 : Δ ⊢ a : A0
H9 : sub_in_env Δ a A0 n Γ Γ'
H10 : Γ ⊣
============================
Γ' ⊢ ⟨H [n ←h a], [A [n ← a]]K [(S n) ←h a] ⟩
: λ [A [n ← a]], b [(S n) ← a] = λ [A' [n ← a]], b' [(S n) ← a]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using ,)
econstructor;[exact r|exact r0|eauto..].1 subgoals, subgoal 1 (ID 9991)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ b' [n ← a] : B' [n ← a]
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : b [n ← a] = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H8 : Δ ⊢ a : A0
H9 : sub_in_env Δ a A0 n Γ Γ'
H10 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : b [(S n) ← a] =
(b' [(S n) ← a] ↑ 1 # 1) [ ← #0 ∽ H [n ←h a] ↑h 1]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using , ?9974 using , ?9975 using , ?9976 using , ?9977 using , ?9978 using , ?9979 using , ?9980 using , ?9981 using , ?9992 using , ?9993 using , ?10000 using , ?10001 using , ?10008 using , ?10009 using , ?10014 using , ?10019 using , ?10020 using , ?10025 using , ?10030 using , ?10031 using , ?10036 using , ?10041 using , ?10042 using , ?10047 using , ?10052 using , ?10053 using ,)
rewrite_l_rev substP2;intuition;rewrite_r_rev substP2;intuition.1 subgoals, subgoal 1 (ID 10153)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ b' [n ← a] : B' [n ← a]
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : b [n ← a] = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H8 : Δ ⊢ a : A0
H9 : sub_in_env Δ a A0 n Γ Γ'
H10 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : b [(S n) ← a] =
(b' ↑ 1 # 1 [(1 + S n) ← a]) [ ← #0 ∽ H ↑h 1 [(1 + n) ←h a]]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using , ?9974 using , ?9975 using , ?9976 using , ?9977 using , ?9978 using , ?9979 using , ?9980 using , ?9981 using , ?9992 using , ?9993 using , ?10000 using , ?10001 using , ?10008 using , ?10009 using , ?10014 using , ?10019 using , ?10020 using , ?10025 using , ?10030 using , ?10031 using , ?10036 using , ?10041 using , ?10042 using , ?10047 using , ?10052 using , ?10053 using ,)
change (1+S n) with (S(0+S n)).1 subgoals, subgoal 1 (ID 10240)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ b' [n ← a] : B' [n ← a]
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : b [n ← a] = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H8 : Δ ⊢ a : A0
H9 : sub_in_env Δ a A0 n Γ Γ'
H10 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : b [(S n) ← a] =
(b' ↑ 1 # 1 [(S (0 + S n)) ← a]) [ ← #0 ∽ H ↑h 1 [(1 + n) ←h a]]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using , ?9974 using , ?9975 using , ?9976 using , ?9977 using , ?9978 using , ?9979 using , ?9980 using , ?9981 using , ?9992 using , ?9993 using , ?10000 using , ?10001 using , ?10008 using , ?10009 using , ?10014 using , ?10019 using , ?10020 using , ?10025 using , ?10030 using , ?10031 using , ?10036 using , ?10041 using , ?10042 using , ?10047 using , ?10052 using , ?10053 using ,)
change (#0 ∽ H ↑h 1 [(1 + n) ←h a]) with ((#0 ∽ H ↑h 1) [(S n) ← a]).1 subgoals, subgoal 1 (ID 10242)
Γ : Env
A : Term
A' : Term
b : Term
b' : Term
B : Term
B' : Term
H : Prf
K : Prf
s1 : Sorts
s2 : Sorts
s3 : Sorts
s1' : Sorts
s2' : Sorts
s3' : Sorts
r : Rel s1 s2 s3
r0 : Rel s1' s2' s3'
t : Γ ⊢ A : !s1
H0 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 -> sub_in_env Δ a A0 n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A [n ← a] : !s1
t0 : Γ ⊢ A' : !s1'
H1 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A -> sub_in_env Δ a A n Γ Γ' -> Γ ⊣ -> Γ' ⊢ A' [n ← a] : !s1'
t1 : A :: Γ ⊢ b : B
H2 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ -> Γ' ⊢ b [n ← a] : B [n ← a]
t2 : A' :: Γ ⊢ b' : B'
H3 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ b' [n ← a] : B' [n ← a]
t3 : A :: Γ ⊢ B : !s2
H4 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' -> A :: Γ ⊣ -> Γ' ⊢ B [n ← a] : !s2
t4 : A' :: Γ ⊢ B' : !s2'
H5 : forall (Δ : Env) (a A : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A ->
sub_in_env Δ a A n (A' :: Γ) Γ' ->
A' :: Γ ⊣ -> Γ' ⊢ B' [n ← a] : !s2'
t5 : Γ ⊢ H : A = A'
H6 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n Γ Γ' ->
Γ ⊣ -> Γ' ⊢ H [n ←h a] : A [n ← a] = A' [n ← a]
t6 : A :: Γ ⊢ K : b = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1]
H7 : forall (Δ : Env) (a A0 : Term) (Γ' : Env) (n : nat),
Δ ⊢ a : A0 ->
sub_in_env Δ a A0 n (A :: Γ) Γ' ->
A :: Γ ⊣ ->
Γ' ⊢ K [n ←h a] : b [n ← a] = (b' ↑ 1 # 1) [ ← #0 ∽ H ↑h 1] [n ← a]
Δ : Env
a : Term
A0 : Term
Γ' : Env
n : nat
H8 : Δ ⊢ a : A0
H9 : sub_in_env Δ a A0 n Γ Γ'
H10 : Γ ⊣
============================
A [n ← a] :: Γ' ⊢ K [(S n) ←h a] : b [(S n) ← a] =
(b' ↑ 1 # 1 [(S (0 + S n)) ← a]) [ ← (#0 ∽ H ↑h 1) [(S n) ← a]]
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using , ?9974 using , ?9975 using , ?9976 using , ?9977 using , ?9978 using , ?9979 using , ?9980 using , ?9981 using , ?9992 using , ?9993 using , ?10000 using , ?10001 using , ?10008 using , ?10009 using , ?10014 using , ?10019 using , ?10020 using , ?10025 using , ?10030 using , ?10031 using , ?10036 using , ?10041 using , ?10042 using , ?10047 using , ?10052 using , ?10053 using ,)
rewrite_l_rev substP4;simpl;eauto.No more subgoals.
(dependent evars: ?5998 using ?6005 , ?5999 using ?6004 , ?6004 using , ?6005 using , ?6403 using , ?6404 using , ?6405 using , ?6406 using , ?6627 using , ?6628 using , ?6632 using , ?6633 using , ?6640 using , ?6641 using , ?6646 using , ?6655 using , ?6656 using , ?6657 using , ?6662 using , ?6663 using , ?6670 using , ?6671 using , ?6676 using , ?6681 using , ?6682 using , ?6687 using , ?6704 using , ?6705 using , ?6709 using , ?6710 using , ?6717 using , ?6718 using , ?6725 using , ?6726 using , ?6738 using , ?6740 using , ?6741 using , ?6751 using , ?6752 using , ?6762 using , ?6765 using , ?6766 using , ?6773 using , ?6774 using , ?6915 using , ?6916 using , ?6917 using , ?6918 using , ?6925 using , ?6926 using , ?6933 using , ?6934 using , ?6941 using , ?6942 using , ?6949 using , ?6950 using , ?6957 using , ?6958 using , ?6965 using , ?6966 using , ?6981 using , ?6982 using ?6999 ?6998 ?6997 , ?6983 using , ?6987 using , ?6988 using , ?6997 using , ?6998 using , ?6999 using , ?7000 using , ?7001 using , ?8844 using , ?8845 using , ?8872 using , ?8873 using , ?8874 using , ?8875 using , ?8933 using , ?8934 using , ?8935 using , ?9021 using , ?9025 using , ?9026 using , ?9027 using , ?9029 using , ?9030 using , ?9031 using , ?9032 using , ?9094 using , ?9095 using , ?9096 using , ?9097 using , ?9296 using , ?9297 using , ?9298 using , ?9299 using , ?9300 using , ?9351 using , ?9354 using , ?9355 using , ?9362 using , ?9363 using , ?9522 using , ?9523 using , ?9592 using , ?9594 using , ?9595 using , ?9599 using , ?9600 using , ?9681 using , ?9682 using , ?9683 using , ?9684 using , ?9690 using , ?9691 using , ?9698 using , ?9699 using , ?9706 using , ?9707 using , ?9712 using , ?9717 using , ?9718 using , ?9723 using , ?9733 using , ?9734 using , ?9735 using , ?9736 using , ?9737 using , ?9738 using , ?9747 using , ?9748 using , ?9755 using , ?9756 using , ?9763 using , ?9764 using , ?9769 using , ?9774 using , ?9775 using , ?9780 using , ?9785 using , ?9786 using , ?9957 using , ?9958 using , ?9963 using , ?9974 using , ?9975 using , ?9976 using , ?9977 using , ?9978 using , ?9979 using , ?9980 using , ?9981 using , ?9992 using , ?9993 using , ?10000 using , ?10001 using , ?10008 using , ?10009 using , ?10014 using , ?10019 using , ?10020 using , ?10025 using , ?10030 using , ?10031 using , ?10036 using , ?10041 using , ?10042 using , ?10047 using , ?10052 using , ?10053 using , ?10248 using , ?10249 using , ?10254 using ,)
Qed.
Well-formation of contexts: if a context is valid, every term inside
is well-typed by a sort.