Documentation

Mathlib.Topology.Algebra.Module.LocallyConvex

Locally convex topological modules #

A LocallyConvexSpace is a topological semimodule over an ordered semiring in which any point admits a neighborhood basis made of convex sets, or equivalently, in which convex neighborhoods of a point form a neighborhood basis at that point.

In a module, this is equivalent to 0 satisfying such properties.

Main results #

TODO #

class LocallyConvexSpace (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] :

A LocallyConvexSpace is a topological semimodule over an ordered semiring in which convex neighborhoods of a point form a neighborhood basis at that point.

Instances
    theorem locallyConvexSpace_iff (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] :
    LocallyConvexSpace ๐•œ E โ†” โˆ€ (x : E), (nhds x).HasBasis (fun (s : Set E) => s โˆˆ nhds x โˆง Convex ๐•œ s) id
    theorem LocallyConvexSpace.ofBases (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] {ฮน : Type u_3} (b : E โ†’ ฮน โ†’ Set E) (p : E โ†’ ฮน โ†’ Prop) (hbasis : โˆ€ (x : E), (nhds x).HasBasis (p x) (b x)) (hconvex : โˆ€ (x : E) (i : ฮน), p x i โ†’ Convex ๐•œ (b x i)) :
    LocallyConvexSpace ๐•œ E
    theorem LocallyConvexSpace.convex_basis_zero (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] [LocallyConvexSpace ๐•œ E] :
    (nhds 0).HasBasis (fun (s : Set E) => s โˆˆ nhds 0 โˆง Convex ๐•œ s) id
    theorem locallyConvexSpace_iff_exists_convex_subset (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] :
    LocallyConvexSpace ๐•œ E โ†” โˆ€ (x : E), โˆ€ U โˆˆ nhds x, โˆƒ S โˆˆ nhds x, Convex ๐•œ S โˆง S โІ U
    theorem LocallyConvexSpace.ofBasisZero (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] {ฮน : Type u_3} (b : ฮน โ†’ Set E) (p : ฮน โ†’ Prop) (hbasis : (nhds 0).HasBasis p b) (hconvex : โˆ€ (i : ฮน), p i โ†’ Convex ๐•œ (b i)) :
    LocallyConvexSpace ๐•œ E
    theorem locallyConvexSpace_iff_zero (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] :
    LocallyConvexSpace ๐•œ E โ†” (nhds 0).HasBasis (fun (s : Set E) => s โˆˆ nhds 0 โˆง Convex ๐•œ s) id
    theorem locallyConvexSpace_iff_exists_convex_subset_zero (๐•œ : Type u_1) (E : Type u_2) [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] :
    LocallyConvexSpace ๐•œ E โ†” โˆ€ U โˆˆ nhds 0, โˆƒ S โˆˆ nhds 0, Convex ๐•œ S โˆง S โІ U

    Convex subsets of locally convex spaces are locally path-connected.

    theorem LocallyConvexSpace.convex_open_basis_zero (๐•œ : Type u_1) (E : Type u_2) [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul ๐•œ E] [LocallyConvexSpace ๐•œ E] :
    (nhds 0).HasBasis (fun (s : Set E) => 0 โˆˆ s โˆง IsOpen s โˆง Convex ๐•œ s) id
    theorem Disjoint.exists_open_convexes {๐•œ : Type u_1} {E : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul ๐•œ E] [LocallyConvexSpace ๐•œ E] {s t : Set E} (disj : Disjoint s t) (hsโ‚ : Convex ๐•œ s) (hsโ‚‚ : IsCompact s) (htโ‚ : Convex ๐•œ t) (htโ‚‚ : IsClosed t) :
    โˆƒ (u : Set E) (v : Set E), IsOpen u โˆง IsOpen v โˆง Convex ๐•œ u โˆง Convex ๐•œ v โˆง s โІ u โˆง t โІ v โˆง Disjoint u v

    In a locally convex space, if s, t are disjoint convex sets, s is compact and t is closed, then we can find open disjoint convex sets containing them.

    theorem locallyConvexSpace_sInf {๐•œ : Type u_2} {E : Type u_3} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] {ts : Set (TopologicalSpace E)} (h : โˆ€ t โˆˆ ts, LocallyConvexSpace ๐•œ E) :
    LocallyConvexSpace ๐•œ E
    theorem locallyConvexSpace_iInf {ฮน : Sort u_1} {๐•œ : Type u_2} {E : Type u_3} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] {ts' : ฮน โ†’ TopologicalSpace E} (h' : โˆ€ (i : ฮน), LocallyConvexSpace ๐•œ E) :
    LocallyConvexSpace ๐•œ E
    theorem locallyConvexSpace_inf {๐•œ : Type u_2} {E : Type u_3} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] {tโ‚ tโ‚‚ : TopologicalSpace E} (hโ‚ : LocallyConvexSpace ๐•œ E) (hโ‚‚ : LocallyConvexSpace ๐•œ E) :
    LocallyConvexSpace ๐•œ E
    theorem locallyConvexSpace_induced {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [AddCommMonoid F] [Module ๐•œ F] {t : TopologicalSpace F} [LocallyConvexSpace ๐•œ F] (f : E โ†’โ‚—[๐•œ] F) :
    LocallyConvexSpace ๐•œ E
    instance Pi.locallyConvexSpace {๐•œ : Type u_2} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] {ฮน : Type u_5} {X : ฮน โ†’ Type u_6} [(i : ฮน) โ†’ AddCommMonoid (X i)] [(i : ฮน) โ†’ TopologicalSpace (X i)] [(i : ฮน) โ†’ Module ๐•œ (X i)] [โˆ€ (i : ฮน), LocallyConvexSpace ๐•œ (X i)] :
    LocallyConvexSpace ๐•œ ((i : ฮน) โ†’ X i)
    instance Prod.locallyConvexSpace {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [AddCommMonoid F] [Module ๐•œ F] [TopologicalSpace E] [TopologicalSpace F] [LocallyConvexSpace ๐•œ E] [LocallyConvexSpace ๐•œ F] :
    LocallyConvexSpace ๐•œ (E ร— F)
    theorem Convex.eventually_nhdsWithin_segment {E : Type u_1} {๐•œ : Type u_2} [Semiring ๐•œ] [PartialOrder ๐•œ] [IsOrderedRing ๐•œ] [AddCommMonoid E] [Module ๐•œ E] [TopologicalSpace E] [LocallyConvexSpace ๐•œ E] {s : Set E} (hs : Convex ๐•œ s) {xโ‚€ : E} (hxโ‚€s : xโ‚€ โˆˆ s) {p : E โ†’ Prop} (h : โˆ€แถ  (x : E) in nhdsWithin xโ‚€ s, p x) :
    โˆ€แถ  (x : E) in nhdsWithin xโ‚€ s, โˆ€ y โˆˆ segment ๐•œ xโ‚€ x, p y