Locally convex topological modules #
A LocallyConvexSpace
is a topological semimodule over an ordered semiring in which any point
admits a neighborhood basis made of convex sets, or equivalently, in which convex neighborhoods of
a point form a neighborhood basis at that point.
In a module, this is equivalent to 0
satisfying such properties.
Main results #
locallyConvexSpace_iff_zero
: in a module, local convexity at zero gives local convexity everywhereWithSeminorms.locallyConvexSpace
: a topology generated by a family of seminorms is locally convex (inAnalysis.LocallyConvex.WithSeminorms
)NormedSpace.locallyConvexSpace
: a normed space is locally convex (inAnalysis.LocallyConvex.WithSeminorms
)
TODO #
- define a structure
LocallyConvexFilterBasis
, extendingModuleFilterBasis
, for filter bases generating a locally convex topology
class
LocallyConvexSpace
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
:
A LocallyConvexSpace
is a topological semimodule over an ordered semiring in which convex
neighborhoods of a point form a neighborhood basis at that point.
Instances
theorem
locallyConvexSpace_iff
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
:
theorem
LocallyConvexSpace.ofBases
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
{ฮน : Type u_3}
(b : E โ ฮน โ Set E)
(p : E โ ฮน โ Prop)
(hbasis : โ (x : E), (nhds x).HasBasis (p x) (b x))
(hconvex : โ (x : E) (i : ฮน), p x i โ Convex ๐ (b x i))
:
LocallyConvexSpace ๐ E
theorem
LocallyConvexSpace.convex_basis_zero
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
[LocallyConvexSpace ๐ E]
:
theorem
locallyConvexSpace_iff_exists_convex_subset
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
:
theorem
LocallyConvexSpace.ofBasisZero
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
{ฮน : Type u_3}
(b : ฮน โ Set E)
(p : ฮน โ Prop)
(hbasis : (nhds 0).HasBasis p b)
(hconvex : โ (i : ฮน), p i โ Convex ๐ (b i))
:
LocallyConvexSpace ๐ E
theorem
locallyConvexSpace_iff_zero
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
:
theorem
locallyConvexSpace_iff_exists_convex_subset_zero
(๐ : Type u_1)
(E : Type u_2)
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
:
@[instance 100]
instance
LocallyConvexSpace.toLocPathConnectedSpace
(E : Type u_2)
[AddCommGroup E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[Module โ E]
[ContinuousSMul โ E]
[LocallyConvexSpace โ E]
:
theorem
Convex.locPathConnectedSpace
(E : Type u_2)
[AddCommGroup E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[Module โ E]
[ContinuousSMul โ E]
[LocallyConvexSpace โ E]
{S : Set E}
(hS : Convex โ S)
:
Convex subsets of locally convex spaces are locally path-connected.
theorem
LocallyConvexSpace.convex_open_basis_zero
(๐ : Type u_1)
(E : Type u_2)
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[ContinuousConstSMul ๐ E]
[LocallyConvexSpace ๐ E]
:
theorem
Disjoint.exists_open_convexes
{๐ : Type u_1}
{E : Type u_2}
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[ContinuousConstSMul ๐ E]
[LocallyConvexSpace ๐ E]
{s t : Set E}
(disj : Disjoint s t)
(hsโ : Convex ๐ s)
(hsโ : IsCompact s)
(htโ : Convex ๐ t)
(htโ : IsClosed t)
:
In a locally convex space, if s
, t
are disjoint convex sets, s
is compact and t
is
closed, then we can find open disjoint convex sets containing them.
theorem
locallyConvexSpace_sInf
{๐ : Type u_2}
{E : Type u_3}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
{ts : Set (TopologicalSpace E)}
(h : โ t โ ts, LocallyConvexSpace ๐ E)
:
LocallyConvexSpace ๐ E
theorem
locallyConvexSpace_iInf
{ฮน : Sort u_1}
{๐ : Type u_2}
{E : Type u_3}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
{ts' : ฮน โ TopologicalSpace E}
(h' : โ (i : ฮน), LocallyConvexSpace ๐ E)
:
LocallyConvexSpace ๐ E
theorem
locallyConvexSpace_inf
{๐ : Type u_2}
{E : Type u_3}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
{tโ tโ : TopologicalSpace E}
(hโ : LocallyConvexSpace ๐ E)
(hโ : LocallyConvexSpace ๐ E)
:
LocallyConvexSpace ๐ E
theorem
locallyConvexSpace_induced
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[AddCommMonoid F]
[Module ๐ F]
{t : TopologicalSpace F}
[LocallyConvexSpace ๐ F]
(f : E โโ[๐] F)
:
LocallyConvexSpace ๐ E
instance
Pi.locallyConvexSpace
{๐ : Type u_2}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
{ฮน : Type u_5}
{X : ฮน โ Type u_6}
[(i : ฮน) โ AddCommMonoid (X i)]
[(i : ฮน) โ TopologicalSpace (X i)]
[(i : ฮน) โ Module ๐ (X i)]
[โ (i : ฮน), LocallyConvexSpace ๐ (X i)]
:
LocallyConvexSpace ๐ ((i : ฮน) โ X i)
instance
Prod.locallyConvexSpace
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[AddCommMonoid F]
[Module ๐ F]
[TopologicalSpace E]
[TopologicalSpace F]
[LocallyConvexSpace ๐ E]
[LocallyConvexSpace ๐ F]
:
LocallyConvexSpace ๐ (E ร F)
instance
LinearOrderedSemiring.toLocallyConvexSpace
{R : Type u_1}
[TopologicalSpace R]
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
[OrderTopology R]
:
theorem
Convex.eventually_nhdsWithin_segment
{E : Type u_1}
{๐ : Type u_2}
[Semiring ๐]
[PartialOrder ๐]
[IsOrderedRing ๐]
[AddCommMonoid E]
[Module ๐ E]
[TopologicalSpace E]
[LocallyConvexSpace ๐ E]
{s : Set E}
(hs : Convex ๐ s)
{xโ : E}
(hxโs : xโ โ s)
{p : E โ Prop}
(h : โแถ (x : E) in nhdsWithin xโ s, p x)
:
โแถ (x : E) in nhdsWithin xโ s, โ y โ segment ๐ xโ x, p y