min
and max
in linearly ordered groups. #
@[simp]
theorem
max_one_div_max_inv_one_eq_self
{α : Type u_1}
[Group α]
[LinearOrder α]
[MulLeftMono α]
(a : α)
:
@[simp]
theorem
max_zero_sub_max_neg_zero_eq_self
{α : Type u_1}
[AddGroup α]
[LinearOrder α]
[AddLeftMono α]
(a : α)
:
Alias of max_zero_sub_max_neg_zero_eq_self
.
theorem
min_neg_neg
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b : α)
:
theorem
max_neg_neg
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b : α)
:
theorem
min_div_div_right'
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
(a b c : α)
:
theorem
min_sub_sub_right
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c : α)
:
theorem
max_div_div_right'
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
(a b c : α)
:
theorem
max_sub_sub_right
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c : α)
:
theorem
min_div_div_left'
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
(a b c : α)
:
theorem
min_sub_sub_left
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c : α)
:
theorem
max_div_div_left'
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
(a b c : α)
:
theorem
max_sub_sub_left
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c : α)
:
theorem
max_sub_max_le_max
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c d : α)
:
theorem
abs_max_sub_max_le_max
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c d : α)
:
theorem
abs_min_sub_min_le_max
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c d : α)
:
theorem
abs_max_sub_max_le_abs
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b c : α)
: