Order related properties of Lp spaces #
Results #
Lp E p μ
is anOrderedAddCommGroup
whenE
is aNormedLatticeAddCommGroup
.
TODO #
- move definitions of
Lp.posPart
andLp.negPart
to this file, and define them asPosPart.pos
andNegPart.neg
given by the lattice structure.
theorem
MeasureTheory.Lp.coeFn_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
(f g : ↥(Lp E p μ))
:
theorem
MeasureTheory.Lp.coeFn_nonneg
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
(f : ↥(Lp E p μ))
:
instance
MeasureTheory.Lp.instAddLeftMono
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[IsOrderedAddMonoid E]
:
AddLeftMono ↥(Lp E p μ)
instance
MeasureTheory.Lp.instIsOrderedAddMonoid
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[IsOrderedAddMonoid E]
:
IsOrderedAddMonoid ↥(Lp E p μ)
theorem
MeasureTheory.MemLp.sup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f g : α → E}
(hf : MemLp f p μ)
(hg : MemLp g p μ)
:
MemLp (f ⊔ g) p μ
@[deprecated MeasureTheory.MemLp.sup (since := "2025-02-21")]
theorem
MeasureTheory.Memℒp.sup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f g : α → E}
(hf : MemLp f p μ)
(hg : MemLp g p μ)
:
MemLp (f ⊔ g) p μ
Alias of MeasureTheory.MemLp.sup
.
theorem
MeasureTheory.MemLp.inf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f g : α → E}
(hf : MemLp f p μ)
(hg : MemLp g p μ)
:
MemLp (f ⊓ g) p μ
@[deprecated MeasureTheory.MemLp.inf (since := "2025-02-21")]
theorem
MeasureTheory.Memℒp.inf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f g : α → E}
(hf : MemLp f p μ)
(hg : MemLp g p μ)
:
MemLp (f ⊓ g) p μ
Alias of MeasureTheory.MemLp.inf
.
theorem
MeasureTheory.MemLp.abs
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f : α → E}
(hf : MemLp f p μ)
:
@[deprecated MeasureTheory.MemLp.abs (since := "2025-02-21")]
theorem
MeasureTheory.Memℒp.abs
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
{f : α → E}
(hf : MemLp f p μ)
:
Alias of MeasureTheory.MemLp.abs
.
instance
MeasureTheory.Lp.instLattice
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
:
Equations
theorem
MeasureTheory.Lp.coeFn_sup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
(f g : ↥(Lp E p μ))
:
theorem
MeasureTheory.Lp.coeFn_inf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
(f g : ↥(Lp E p μ))
:
theorem
MeasureTheory.Lp.coeFn_abs
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
(f : ↥(Lp E p μ))
:
instance
MeasureTheory.Lp.instHasSolidNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
[NormedAddCommGroup E]
[Lattice E]
[HasSolidNorm E]
[IsOrderedAddMonoid E]
[Fact (1 ≤ p)]
:
HasSolidNorm ↥(Lp E p μ)