Documentation

Mathlib.LinearAlgebra.Span.Basic

The span of a set of vectors, as a submodule #

Notations #

@[simp]
theorem Submodule.span_coe_eq_restrictScalars {R : Type u_1} {M : Type u_4} {S : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) [Semiring S] [SMul S R] [Module S M] [IsScalarTower S R M] :

A version of Submodule.span_eq for when the span is by a smaller ring.

theorem Submodule.image_span_subset {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (s : Set M) (N : Submodule R₂ M₂) :
f '' (span R s) N ms, f m N

A version of Submodule.map_span_le that does not require the RingHomSurjective assumption.

theorem Submodule.image_span_subset_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (s : Set M) :
f '' (span R s) (span R₂ (f '' s))
theorem Submodule.map_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) (s : Set M) :
map f (span R s) = span R₂ (f '' s)
theorem LinearMap.map_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) (s : Set M) :

Alias of Submodule.map_span.

theorem Submodule.map_span_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) (s : Set M) (N : Submodule R₂ M₂) :
map f (span R s) N ms, f m N
theorem LinearMap.map_span_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) (s : Set M) (N : Submodule R₂ M₂) :
Submodule.map f (Submodule.span R s) N ms, f m N

Alias of Submodule.map_span_le.

theorem Submodule.span_preimage_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (s : Set M₂) :
span R (f ⁻¹' s) comap f (span R₂ s)
theorem LinearMap.span_preimage_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (s : Set M₂) :

Alias of Submodule.span_preimage_le.

theorem Submodule.linearMap_eq_iff_of_eq_span {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] {V : Submodule R M} (f g : V →ₗ[R] N) {S : Set M} (hV : V = span R S) :
f = g ∀ (s : S), f s, = g s,
theorem Submodule.linearMap_eq_iff_of_span_eq_top {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] (f g : M →ₗ[R] N) {S : Set M} (hM : span R S = ) :
f = g ∀ (s : S), f s = g s
theorem Submodule.linearMap_eq_zero_iff_of_span_eq_top {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] (f : M →ₗ[R] N) {S : Set M} (hM : span R S = ) :
f = 0 ∀ (s : S), f s = 0
theorem Submodule.linearMap_eq_zero_iff_of_eq_span {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] {V : Submodule R M} (f : V →ₗ[R] N) {S : Set M} (hV : V = span R S) :
f = 0 ∀ (s : S), f s, = 0
theorem Submodule.span_smul_eq_of_isUnit {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) (r : R) (hr : IsUnit r) :
span R (r s) = span R s

See Submodule.span_smul_eq (in RingTheory.Ideal.Operations) for span R (r • s) = r • span R s that holds for arbitrary r in a CommSemiring.

We can regard coe_iSup_of_chain as the statement that (↑) : (Submodule R M) → Set M is Scott continuous for the ω-complete partial order induced by the complete lattice structures.

theorem Submodule.span_le_restrictScalars (R : Type u_1) {M : Type u_4} (S : Type u_7) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) [Semiring S] [SMul R S] [Module S M] [IsScalarTower R S M] :

If R is "smaller" ring than S then the span by R is smaller than the span by S.

@[simp]
theorem Submodule.span_subset_span (R : Type u_1) {M : Type u_4} (S : Type u_7) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) [Semiring S] [SMul R S] [Module S M] [IsScalarTower R S M] :
(span R s) (span S s)

A version of Submodule.span_le_restrictScalars with coercions.

theorem Submodule.span_span_of_tower (R : Type u_1) {M : Type u_4} (S : Type u_7) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) [Semiring S] [SMul R S] [Module S M] [IsScalarTower R S M] :
span S (span R s) = span S s

Taking the span by a large ring of the span by the small ring is the same as taking the span by just the large ring.

theorem Submodule.span_singleton_eq_span_singleton {R : Type u_9} {M : Type u_10} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {x y : M} :
span R {x} = span R {y} ∃ (z : Rˣ), z x = y
theorem Submodule.span_image {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {s : Set M} [RingHomSurjective σ₁₂] (f : F) :
span R₂ (f '' s) = map f (span R s)
@[simp]
theorem Submodule.span_image' {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {s : Set M} [RingHomSurjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) :
span R₂ (f '' s) = map f (span R s)
theorem Submodule.apply_mem_span_image_of_mem_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) {x : M} {s : Set M} (h : x span R s) :
f x span R₂ (f '' s)
theorem Submodule.apply_mem_span_image_iff_mem_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] {f : F} {x : M} {s : Set M} (hf : Function.Injective f) :
f x span R₂ (f '' s) x span R s
@[simp]
theorem Submodule.map_subtype_span_singleton {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {p : Submodule R M} (x : p) :
map p.subtype (span R {x}) = span R {x}
theorem Submodule.not_mem_span_of_apply_not_mem_span_image {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] {σ₁₂ : R →+* R₂} [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] [RingHomSurjective σ₁₂] (f : F) {x : M} {s : Set M} (h : f xspan R₂ (f '' s)) :
xspan R s

f is an explicit argument so we can apply this theorem and obtain h as a new goal.

theorem Submodule.iSup_toAddSubmonoid {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Sort u_9} (p : ιSubmodule R M) :
(⨆ (i : ι), p i).toAddSubmonoid = ⨆ (i : ι), (p i).toAddSubmonoid
theorem Submodule.iSup_induction {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Sort u_9} (p : ιSubmodule R M) {C : MProp} {x : M} (hx : x ⨆ (i : ι), p i) (hp : ∀ (i : ι), xp i, C x) (h0 : C 0) (hadd : ∀ (x y : M), C xC yC (x + y)) :
C x

An induction principle for elements of ⨆ i, p i. If C holds for 0 and all elements of p i for all i, and is preserved under addition, then it holds for all elements of the supremum of p.

theorem Submodule.iSup_induction' {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Sort u_9} (p : ιSubmodule R M) {C : (x : M) → x ⨆ (i : ι), p iProp} (mem : ∀ (i : ι) (x : M) (hx : x p i), C x ) (zero : C 0 ) (add : ∀ (x y : M) (hx : x ⨆ (i : ι), p i) (hy : y ⨆ (i : ι), p i), C x hxC y hyC (x + y) ) {x : M} (hx : x ⨆ (i : ι), p i) :
C x hx

A dependent version of submodule.iSup_induction.

The span of a finite subset is compact in the lattice of submodules.

theorem Submodule.finite_span_isCompactElement {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (S : Set M) (h : S.Finite) :

The span of a finite subset is compact in the lattice of submodules.

def Submodule.prod {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) {M' : Type u_9} [AddCommMonoid M'] [Module R M'] (q₁ : Submodule R M') :
Submodule R (M × M')

The product of two submodules is a submodule.

Equations
  • p.prod q₁ = { carrier := p ×ˢ q₁, add_mem' := , zero_mem' := , smul_mem' := }
Instances For
    @[simp]
    theorem Submodule.prod_coe {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) {M' : Type u_9} [AddCommMonoid M'] [Module R M'] (q₁ : Submodule R M') :
    (p.prod q₁) = p ×ˢ q₁
    @[simp]
    theorem Submodule.mem_prod {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_9} [AddCommMonoid M'] [Module R M'] {p : Submodule R M} {q : Submodule R M'} {x : M × M'} :
    x p.prod q x.1 p x.2 q
    theorem Submodule.span_prod_le {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_9} [AddCommMonoid M'] [Module R M'] (s : Set M) (t : Set M') :
    span R (s ×ˢ t) (span R s).prod (span R t)
    @[simp]
    theorem Submodule.prod_top {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_9} [AddCommMonoid M'] [Module R M'] :
    .prod =
    @[simp]
    theorem Submodule.prod_bot {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_9} [AddCommMonoid M'] [Module R M'] :
    .prod =
    theorem Submodule.prod_mono {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_9} [AddCommMonoid M'] [Module R M'] {p p' : Submodule R M} {q q' : Submodule R M'} :
    p p'q q'p.prod q p'.prod q'
    @[simp]
    theorem Submodule.prod_inf_prod {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (p p' : Submodule R M) {M' : Type u_9} [AddCommMonoid M'] [Module R M'] (q₁ q₁' : Submodule R M') :
    p.prod q₁ p'.prod q₁' = (p p').prod (q₁ q₁')
    @[simp]
    theorem Submodule.prod_sup_prod {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (p p' : Submodule R M) {M' : Type u_9} [AddCommMonoid M'] [Module R M'] (q₁ q₁' : Submodule R M') :
    p.prod q₁ p'.prod q₁' = (p p').prod (q₁ q₁')
    @[simp]
    theorem Submodule.span_neg {R : Type u_1} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] (s : Set M) :
    span R (-s) = span R s
    theorem Submodule.isCompl_comap_subtype_of_isCompl_of_le {R : Type u_1} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {p q r : Submodule R M} (h₁ : IsCompl q r) (h₂ : q p) :
    IsCompl (comap p.subtype q) (comap p.subtype r)
    theorem Submodule.comap_map_eq {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) (p : Submodule R M) :
    theorem Submodule.comap_map_eq_self {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} {p : Submodule R M} (h : LinearMap.ker f p) :
    comap f (map f p) = p
    theorem LinearMap.range_domRestrict_eq_range_iff {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {S : Submodule R M} :
    range (f.domRestrict S) = range f S ker f =
    @[simp]
    theorem LinearMap.surjective_domRestrict_iff {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {S : Submodule R M} (hf : Function.Surjective f) :
    Function.Surjective (f.domRestrict S) S ker f =
    @[simp]
    theorem Submodule.biSup_comap_subtype_eq_top {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommGroup M] [Module R M] {ι : Type u_9} (s : Set ι) (p : ιSubmodule R M) :
    is, comap (⨆ is, p i).subtype (p i) =
    theorem Submodule.biSup_comap_eq_top_of_surjective {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {ι : Type u_9} (s : Set ι) (hs : s.Nonempty) (p : ιSubmodule R₂ M₂) (hp : is, p i = ) (f : M →ₛₗ[τ₁₂] M₂) (hf : Function.Surjective f) :
    is, comap f (p i) =
    theorem Submodule.biSup_comap_eq_top_of_range_eq_biSup {M : Type u_4} {M₂ : Type u_5} [AddCommGroup M] [AddCommGroup M₂] {R : Type u_9} {R₂ : Type u_10} [Ring R] [Ring R₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] [Module R M] [Module R₂ M₂] {ι : Type u_11} (s : Set ι) (hs : s.Nonempty) (p : ιSubmodule R₂ M₂) (f : M →ₛₗ[τ₁₂] M₂) (hf : LinearMap.range f = is, p i) :
    is, comap f (p i) =
    theorem Submodule.wcovBy_span_singleton_sup {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] (x : V) (s : Submodule K V) :
    s ⩿ span K {x} s

    There is no vector subspace between s and (K ∙ x) ⊔ s, WCovBy version.

    theorem Submodule.covBy_span_singleton_sup {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] {x : V} {s : Submodule K V} (h : xs) :
    s span K {x} s

    There is no vector subspace between s and (K ∙ x) ⊔ s, CovBy version.

    theorem Submodule.disjoint_span_singleton {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Submodule K V} {x : V} :
    Disjoint s (span K {x}) x sx = 0
    theorem Submodule.disjoint_span_singleton' {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Submodule K V} {x : V} (x0 : x 0) :
    Disjoint s (span K {x}) xs
    theorem Submodule.disjoint_span_singleton_of_not_mem {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Submodule K V} {x : V} (hx : xs) :
    Disjoint s (span K {x})
    theorem Submodule.isCompl_span_singleton_of_isCoatom_of_not_mem {K : Type u_3} {V : Type u_6} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Submodule K V} {x : V} (hs : IsCoatom s) (hx : xs) :
    IsCompl s (span K {x})
    theorem LinearMap.map_le_map_iff {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) {p p' : Submodule R M} :
    theorem LinearMap.map_le_map_iff' {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (hf : ker f = ) {p p' : Submodule R M} :
    theorem LinearMap.map_injective {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (hf : ker f = ) :
    theorem LinearMap.map_eq_top_iff {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_8} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (hf : range f = ) {p : Submodule R M} :
    def LinearMap.toSpanSingleton (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :

    Given an element x of a module M over R, the natural map from R to scalar multiples of x. See also LinearMap.ringLmapEquivSelf.

    Equations
    Instances For
      @[simp]
      theorem LinearMap.toSpanSingleton_apply (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] (x : M) (b : R) :
      (toSpanSingleton R M x) b = b x
      theorem LinearMap.span_singleton_eq_range (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :

      The range of toSpanSingleton x is the span of x.

      theorem LinearMap.toSpanSingleton_one (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :
      (toSpanSingleton R M x) 1 = x
      @[simp]
      theorem LinearMap.toSpanSingleton_zero (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] :
      theorem LinearMap.eqOn_span_iff {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} {σ₁₂ : R →+* R₂} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {s : Set M} {f g : F} :
      Set.EqOn f g (Submodule.span R s) Set.EqOn (⇑f) (⇑g) s

      Two linear maps are equal on Submodule.span s iff they are equal on s.

      theorem LinearMap.eqOn_span' {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} {σ₁₂ : R →+* R₂} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {s : Set M} {f g : F} (H : Set.EqOn (⇑f) (⇑g) s) :
      Set.EqOn f g (Submodule.span R s)

      If two linear maps are equal on a set s, then they are equal on Submodule.span s.

      This version uses Set.EqOn, and the hidden argument will expand to h : x ∈ (span R s : Set M). See LinearMap.eqOn_span for a version that takes h : x ∈ span R s as an argument.

      theorem LinearMap.eqOn_span {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} {σ₁₂ : R →+* R₂} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {s : Set M} {f g : F} (H : Set.EqOn (⇑f) (⇑g) s) ⦃x : M (h : x Submodule.span R s) :
      f x = g x

      If two linear maps are equal on a set s, then they are equal on Submodule.span s.

      See also LinearMap.eqOn_span' for a version using Set.EqOn.

      theorem LinearMap.ext_on {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} {σ₁₂ : R →+* R₂} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {s : Set M} {f g : F} (hv : Submodule.span R s = ) (h : Set.EqOn (⇑f) (⇑g) s) :
      f = g

      If s generates the whole module and linear maps f, g are equal on s, then they are equal.

      theorem LinearMap.ext_on_range {R : Type u_1} {R₂ : Type u_2} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {F : Type u_8} {σ₁₂ : R →+* R₂} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] {ι : Sort u_9} {v : ιM} {f g : F} (hv : Submodule.span R (Set.range v) = ) (h : ∀ (i : ι), f (v i) = g (v i)) :
      f = g

      If the range of v : ι → M generates the whole module and linear maps f, g are equal at each v i, then they are equal.

      theorem LinearMap.ker_toSpanSingleton (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {x : M} (h : x 0) :
      theorem LinearMap.span_singleton_sup_ker_eq_top {K : Type u_3} {V : Type u_6} [Field K] [AddCommGroup V] [Module K V] (f : V →ₗ[K] K) {x : V} (hx : f x 0) :
      noncomputable def LinearEquiv.toSpanNonzeroSingleton (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) :
      R ≃ₗ[R] (Submodule.span R {x})

      Given a nonzero element x of a torsion-free module M over a ring R, the natural isomorphism from R to the span of x given by $r \mapsto r \cdot x$.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem LinearEquiv.toSpanNonzeroSingleton_apply (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) (t : R) :
        (toSpanNonzeroSingleton R M x h) t = t x,
        @[simp]
        theorem LinearEquiv.toSpanNonzeroSingleton_symm_apply_smul (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) (m : (Submodule.span R {x})) :
        (toSpanNonzeroSingleton R M x h).symm m x = m
        theorem LinearEquiv.toSpanNonzeroSingleton_one (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) :
        (toSpanNonzeroSingleton R M x h) 1 = x,
        @[reducible, inline]
        noncomputable abbrev LinearEquiv.coord (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) :
        (Submodule.span R {x}) ≃ₗ[R] R

        Given a nonzero element x of a torsion-free module M over a ring R, the natural isomorphism from the span of x to R given by $r \cdot x \mapsto r$.

        Equations
        Instances For
          theorem LinearEquiv.coord_self (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) :
          (coord R M x h) x, = 1
          theorem LinearEquiv.coord_apply_smul (R : Type u_1) (M : Type u_4) [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (x : M) (h : x 0) (y : (Submodule.span R {x})) :
          (coord R M x h) y x = y