Documentation

Mathlib.Algebra.Group.Subgroup.Lattice

Lattice structure of subgroups #

We prove subgroups of a group form a complete lattice.

There are also theorems about the subgroups generated by an element or a subset of a group, defined both inductively and as the infimum of the set of subgroups containing a given element/subset.

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

Conversion to/from Additive/Multiplicative #

Subgroups of a group G are isomorphic to additive subgroups of Additive G.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[reducible, inline]

Additive subgroup of an additive group Additive G are isomorphic to subgroup of G.

Equations

Additive subgroups of an additive group A are isomorphic to subgroups of Multiplicative A.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Subgroups of an additive group Multiplicative A are isomorphic to additive subgroups of A.

Equations
instance Subgroup.instTop {G : Type u_1} [Group G] :

The subgroup G of the group G.

Equations
instance AddSubgroup.instTop {G : Type u_1} [AddGroup G] :

The AddSubgroup G of the AddGroup G.

Equations
def Subgroup.topEquiv {G : Type u_1} [Group G] :
≃* G

The top subgroup is isomorphic to the group.

This is the group version of Submonoid.topEquiv.

Equations
def AddSubgroup.topEquiv {G : Type u_1} [AddGroup G] :
≃+ G

The top additive subgroup is isomorphic to the additive group.

This is the additive group version of AddSubmonoid.topEquiv.

Equations
@[simp]
theorem AddSubgroup.topEquiv_symm_apply_coe {G : Type u_1} [AddGroup G] (x : G) :
(topEquiv.symm x) = x
@[simp]
theorem Subgroup.topEquiv_apply {G : Type u_1} [Group G] (x : ) :
topEquiv x = x
@[simp]
theorem AddSubgroup.topEquiv_apply {G : Type u_1} [AddGroup G] (x : ) :
topEquiv x = x
@[simp]
theorem Subgroup.topEquiv_symm_apply_coe {G : Type u_1} [Group G] (x : G) :
(topEquiv.symm x) = x
instance Subgroup.instBot {G : Type u_1} [Group G] :

The trivial subgroup {1} of a group G.

Equations
instance AddSubgroup.instBot {G : Type u_1} [AddGroup G] :

The trivial AddSubgroup {0} of an AddGroup G.

Equations
instance Subgroup.instInhabited {G : Type u_1} [Group G] :
Equations
@[simp]
theorem Subgroup.mem_bot {G : Type u_1} [Group G] {x : G} :
x x = 1
@[simp]
theorem AddSubgroup.mem_bot {G : Type u_1} [AddGroup G] {x : G} :
x x = 0
@[simp]
theorem Subgroup.mem_top {G : Type u_1} [Group G] (x : G) :
@[simp]
theorem AddSubgroup.mem_top {G : Type u_1} [AddGroup G] (x : G) :
@[simp]
theorem Subgroup.coe_top {G : Type u_1} [Group G] :
@[simp]
theorem AddSubgroup.coe_top {G : Type u_1} [AddGroup G] :
@[simp]
theorem Subgroup.coe_bot {G : Type u_1} [Group G] :
= {1}
@[simp]
theorem AddSubgroup.coe_bot {G : Type u_1} [AddGroup G] :
= {0}
Equations
Equations
theorem Subgroup.eq_bot_iff_forall {G : Type u_1} [Group G] (H : Subgroup G) :
H = xH, x = 1
theorem AddSubgroup.eq_bot_iff_forall {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
H = xH, x = 0
@[simp]
theorem Subgroup.coe_eq_univ {G : Type u_1} [Group G] {H : Subgroup G} :
H = Set.univ H =
@[simp]
theorem AddSubgroup.coe_eq_univ {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
H = Set.univ H =
theorem Subgroup.coe_eq_singleton {G : Type u_1} [Group G] {H : Subgroup G} :
(∃ (g : G), H = {g}) H =
theorem AddSubgroup.coe_eq_singleton {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
(∃ (g : G), H = {g}) H =
theorem Subgroup.nontrivial_iff_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
Nontrivial H xH, x 1
theorem AddSubgroup.nontrivial_iff_exists_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
Nontrivial H xH, x 0
theorem Subgroup.exists_ne_one_of_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) [Nontrivial H] :
xH, x 1
theorem AddSubgroup.exists_ne_zero_of_nontrivial {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [Nontrivial H] :
xH, x 0
theorem Subgroup.bot_or_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) :

A subgroup is either the trivial subgroup or nontrivial.

A subgroup is either the trivial subgroup or nontrivial.

theorem Subgroup.bot_or_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
H = xH, x 1

A subgroup is either the trivial subgroup or contains a non-identity element.

theorem AddSubgroup.bot_or_exists_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
H = xH, x 0

A subgroup is either the trivial subgroup or contains a nonzero element.

theorem Subgroup.ne_bot_iff_exists_ne_one {G : Type u_1} [Group G] {H : Subgroup G} :
H ∃ (a : H), a 1
theorem AddSubgroup.ne_bot_iff_exists_ne_zero {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
H ∃ (a : H), a 0
instance Subgroup.instMin {G : Type u_1} [Group G] :

The inf of two subgroups is their intersection.

Equations
instance AddSubgroup.instMin {G : Type u_1} [AddGroup G] :

The inf of two AddSubgroups is their intersection.

Equations
@[simp]
theorem Subgroup.coe_inf {G : Type u_1} [Group G] (p p' : Subgroup G) :
(pp') = p p'
@[simp]
theorem AddSubgroup.coe_inf {G : Type u_1} [AddGroup G] (p p' : AddSubgroup G) :
(pp') = p p'
@[simp]
theorem Subgroup.mem_inf {G : Type u_1} [Group G] {p p' : Subgroup G} {x : G} :
x pp' x p x p'
@[simp]
theorem AddSubgroup.mem_inf {G : Type u_1} [AddGroup G] {p p' : AddSubgroup G} {x : G} :
x pp' x p x p'
instance Subgroup.instInfSet {G : Type u_1} [Group G] :
Equations
Equations
@[simp]
theorem Subgroup.coe_sInf {G : Type u_1} [Group G] (H : Set (Subgroup G)) :
(sInf H) = sH, s
@[simp]
theorem AddSubgroup.coe_sInf {G : Type u_1} [AddGroup G] (H : Set (AddSubgroup G)) :
(sInf H) = sH, s
@[simp]
theorem Subgroup.mem_sInf {G : Type u_1} [Group G] {S : Set (Subgroup G)} {x : G} :
x sInf S pS, x p
@[simp]
theorem AddSubgroup.mem_sInf {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {x : G} :
x sInf S pS, x p
theorem Subgroup.mem_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} {x : G} :
x ⨅ (i : ι), S i ∀ (i : ι), x S i
theorem AddSubgroup.mem_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} {x : G} :
x ⨅ (i : ι), S i ∀ (i : ι), x S i
@[simp]
theorem Subgroup.coe_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} :
(⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
@[simp]
theorem AddSubgroup.coe_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} :
(⨅ (i : ι), S i) = ⋂ (i : ι), (S i)

Subgroups of a group form a complete lattice.

Equations
  • One or more equations did not get rendered due to their size.

The AddSubgroups of an AddGroup form a complete lattice.

Equations
  • One or more equations did not get rendered due to their size.
theorem Subgroup.mem_sup_left {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
x Sx ST
theorem AddSubgroup.mem_sup_left {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
x Sx ST
theorem Subgroup.mem_sup_right {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
x Tx ST
theorem AddSubgroup.mem_sup_right {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
x Tx ST
theorem Subgroup.mul_mem_sup {G : Type u_1} [Group G] {S T : Subgroup G} {x y : G} (hx : x S) (hy : y T) :
x * y ST
theorem AddSubgroup.add_mem_sup {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x y : G} (hx : x S) (hy : y T) :
x + y ST
theorem Subgroup.mem_iSup_of_mem {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} (i : ι) {x : G} :
x S ix iSup S
theorem AddSubgroup.mem_iSup_of_mem {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} (i : ι) {x : G} :
x S ix iSup S
theorem Subgroup.mem_sSup_of_mem {G : Type u_1} [Group G] {S : Set (Subgroup G)} {s : Subgroup G} (hs : s S) {x : G} :
x sx sSup S
theorem AddSubgroup.mem_sSup_of_mem {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {s : AddSubgroup G} (hs : s S) {x : G} :
x sx sSup S
Equations
theorem Subgroup.eq_top_iff' {G : Type u_1} [Group G] (H : Subgroup G) :
H = ∀ (x : G), x H
theorem AddSubgroup.eq_top_iff' {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
H = ∀ (x : G), x H
def Subgroup.closure {G : Type u_1} [Group G] (k : Set G) :

The Subgroup generated by a set.

Equations
def AddSubgroup.closure {G : Type u_1} [AddGroup G] (k : Set G) :

The AddSubgroup generated by a set

Equations
theorem Subgroup.mem_closure {G : Type u_1} [Group G] {k : Set G} {x : G} :
x closure k ∀ (K : Subgroup G), k Kx K
theorem AddSubgroup.mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {x : G} :
x closure k ∀ (K : AddSubgroup G), k Kx K
@[simp]
theorem Subgroup.subset_closure {G : Type u_1} [Group G] {k : Set G} :
k (closure k)

The subgroup generated by a set includes the set.

@[simp]
theorem AddSubgroup.subset_closure {G : Type u_1} [AddGroup G] {k : Set G} :
k (closure k)

The AddSubgroup generated by a set includes the set.

theorem Subgroup.not_mem_of_not_mem_closure {G : Type u_1} [Group G] {k : Set G} {P : G} (hP : Pclosure k) :
Pk
theorem AddSubgroup.not_mem_of_not_mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {P : G} (hP : Pclosure k) :
Pk
@[simp]
theorem Subgroup.closure_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} :
closure k K k K

A subgroup K includes closure k if and only if it includes k.

@[simp]
theorem AddSubgroup.closure_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} :
closure k K k K

An additive subgroup K includes closure k if and only if it includes k

theorem Subgroup.closure_eq_of_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
theorem AddSubgroup.closure_eq_of_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
theorem Subgroup.closure_induction {G : Type u_1} [Group G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 1 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x * y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp x⁻¹ ) {x : G} (hx : x closure k) :
p x hx

An induction principle for closure membership. If p holds for 1 and all elements of k, and is preserved under multiplication and inverse, then p holds for all elements of the closure of k.

See also Subgroup.closure_induction_left and Subgroup.closure_induction_right for versions that only require showing p is preserved by multiplication by elements in k.

theorem AddSubgroup.closure_induction {G : Type u_1} [AddGroup G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 0 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x + y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp (-x) ) {x : G} (hx : x closure k) :
p x hx

An induction principle for additive closure membership. If p holds for 0 and all elements of k, and is preserved under addition and inverses, then p holds for all elements of the additive closure of k.

See also AddSubgroup.closure_induction_left and AddSubgroup.closure_induction_left for versions that only require showing p is preserved by addition by elements in k.

theorem Subgroup.closure_induction₂ {G : Type u_1} [Group G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 1 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 1 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x * y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y * z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x⁻¹ y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x y⁻¹ hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
p x y hx hy

An induction principle for closure membership for predicates with two arguments.

theorem AddSubgroup.closure_induction₂ {G : Type u_1} [AddGroup G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 0 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 0 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x + y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y + z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp (-x) y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x (-y) hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
p x y hx hy

An induction principle for additive closure membership, for predicates with two arguments.

closure forms a Galois insertion with the coercion to set.

Equations

closure forms a Galois insertion with the coercion to set.

Equations
theorem Subgroup.closure_mono {G : Type u_1} [Group G] h k : Set G (h' : h k) :

Subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k.

theorem AddSubgroup.closure_mono {G : Type u_1} [AddGroup G] h k : Set G (h' : h k) :

Additive subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k

@[simp]
theorem Subgroup.closure_eq {G : Type u_1} [Group G] (K : Subgroup G) :
closure K = K

Closure of a subgroup K equals K.

@[simp]
theorem AddSubgroup.closure_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
closure K = K

Additive closure of an additive subgroup K equals K

@[simp]
@[simp]
theorem Subgroup.closure_union {G : Type u_1} [Group G] (s t : Set G) :
closure (s t) = closure sclosure t
theorem AddSubgroup.closure_union {G : Type u_1} [AddGroup G] (s t : Set G) :
closure (s t) = closure sclosure t
theorem Subgroup.sup_eq_closure {G : Type u_1} [Group G] (H H' : Subgroup G) :
HH' = closure (H H')
theorem AddSubgroup.sup_eq_closure {G : Type u_1} [AddGroup G] (H H' : AddSubgroup G) :
HH' = closure (H H')
theorem Subgroup.closure_iUnion {G : Type u_1} [Group G] {ι : Sort u_2} (s : ιSet G) :
closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
theorem AddSubgroup.closure_iUnion {G : Type u_1} [AddGroup G] {ι : Sort u_2} (s : ιSet G) :
closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
@[simp]
theorem Subgroup.closure_eq_bot_iff {G : Type u_1} [Group G] {k : Set G} :
@[simp]
theorem AddSubgroup.closure_eq_bot_iff {G : Type u_1} [AddGroup G] {k : Set G} :
theorem Subgroup.iSup_eq_closure {G : Type u_1} [Group G] {ι : Sort u_2} (p : ιSubgroup G) :
⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
theorem AddSubgroup.iSup_eq_closure {G : Type u_1} [AddGroup G] {ι : Sort u_2} (p : ιAddSubgroup G) :
⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
theorem Subgroup.mem_closure_singleton {G : Type u_1} [Group G] {x y : G} :
y closure {x} ∃ (n : ), x ^ n = y

The subgroup generated by an element of a group equals the set of integer number powers of the element.

theorem AddSubgroup.mem_closure_singleton {G : Type u_1} [AddGroup G] {x y : G} :
y closure {x} ∃ (n : ), n x = y

The AddSubgroup generated by an element of an AddGroup equals the set of natural number multiples of the element.

@[simp]
theorem Subgroup.mem_closure_singleton_self {G : Type u_1} [Group G] (x : G) :
@[simp]
@[simp]
theorem Subgroup.closure_insert_one {G : Type u_1} [Group G] (s : Set G) :
@[simp]
theorem AddSubgroup.closure_insert_zero {G : Type u_1} [AddGroup G] (s : Set G) :
theorem Subgroup.mem_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [ : Nonempty ι] {K : ιSubgroup G} (hK : Directed (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
x iSup K ∃ (i : ι), x K i
theorem AddSubgroup.mem_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [ : Nonempty ι] {K : ιAddSubgroup G} (hK : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
x iSup K ∃ (i : ι), x K i
theorem Subgroup.coe_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [Nonempty ι] {S : ιSubgroup G} (hS : Directed (fun (x1 x2 : Subgroup G) => x1 x2) S) :
(⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
theorem AddSubgroup.coe_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [Nonempty ι] {S : ιAddSubgroup G} (hS : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) S) :
(⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
theorem Subgroup.mem_sSup_of_directedOn {G : Type u_1} [Group G] {K : Set (Subgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
x sSup K sK, x s
theorem AddSubgroup.mem_sSup_of_directedOn {G : Type u_1} [AddGroup G] {K : Set (AddSubgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
x sSup K sK, x s
theorem Subgroup.mem_sup {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
x st ys, zt, y * z = x
theorem AddSubgroup.mem_sup {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
x st ys, zt, y + z = x
theorem Subgroup.mem_sup' {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
x st ∃ (y : s) (z : t), y * z = x
theorem AddSubgroup.mem_sup' {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
x st ∃ (y : s) (z : t), y + z = x
theorem Subgroup.mem_closure_pair {C : Type u_2} [CommGroup C] {x y z : C} :
z closure {x, y} ∃ (m : ) (n : ), x ^ m * y ^ n = z
theorem AddSubgroup.mem_closure_pair {C : Type u_2} [AddCommGroup C] {x y z : C} :
z closure {x, y} ∃ (m : ) (n : ), m x + n y = z
theorem Subgroup.disjoint_def {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 1
theorem AddSubgroup.disjoint_def {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 0
theorem Subgroup.disjoint_def' {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 1
theorem AddSubgroup.disjoint_def' {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 0
theorem Subgroup.disjoint_iff_mul_eq_one {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x * y = 1x = 1 y = 1
theorem AddSubgroup.disjoint_iff_add_eq_zero {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x + y = 0x = 0 y = 0
theorem Subgroup.mul_injective_of_disjoint {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} (h : Disjoint H₁ H₂) :
Function.Injective fun (g : H₁ × H₂) => g.1 * g.2
theorem AddSubgroup.add_injective_of_disjoint {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} (h : Disjoint H₁ H₂) :
Function.Injective fun (g : H₁ × H₂) => g.1 + g.2