Cast of naturals into ordered fields #
This file concerns the canonical homomorphism ℕ → F
, where F
is a LinearOrderedSemifield
.
Main results #
Nat.cast_div_le
: in all cases,↑(m / n) ≤ ↑m / ↑ n
theorem
Nat.cast_inv_le_one
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
(n : ℕ)
:
theorem
Nat.cast_div_le
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{m n : ℕ}
:
Natural division is always less than division in the field.
theorem
Nat.inv_pos_of_nat
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
:
theorem
Nat.one_div_pos_of_nat
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
:
theorem
Nat.one_div_le_one_div
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n m : ℕ}
(h : n ≤ m)
:
theorem
Nat.one_div_lt_one_div
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n m : ℕ}
(h : n < m)
:
theorem
Nat.one_div_cast_pos
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
(hn : n ≠ 0)
:
theorem
Nat.one_div_cast_nonneg
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
(n : ℕ)
:
theorem
Nat.one_div_cast_ne_zero
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
(hn : n ≠ 0)
: