Documentation

Init.Data.Ord

inductive Ordering :

The result of a comparison according to a total order.

The relationship between the compared items may be:

Instances For
Equations

Swaps less-than and greater-than ordering results.

Examples:

Equations
@[macro_inline]

If a and b are Ordering, then a.then b returns a unless it is .eq, in which case it returns b. Additionally, it has “short-circuiting” behavior similar to boolean &&: if a is not .eq then the expression for b is not evaluated.

This is a useful primitive for constructing lexicographic comparator functions. The deriving Ord syntax on a structure uses the Ord instance to compare each field in order, combining the results equivalently to Ordering.then.

Use compareLex to lexicographically combine two comparison functions.

Examples:

structure Person where
  name : String
  age : Nat

-- Sort people first by name (in ascending order), and people with the same name by age (in
-- descending order)
instance : Ord Person where
  compare a b := (compare a.name b.name).then (compare b.age a.age)
#eval Ord.compare (⟨"Gert", 33⟩ : Person) ⟨"Dana", 50⟩
Ordering.gt
#eval Ord.compare (⟨"Gert", 33⟩ : Person) ⟨"Gert", 50⟩
Ordering.gt
#eval Ord.compare (⟨"Gert", 33⟩ : Person) ⟨"Gert", 20⟩
Ordering.lt
Equations

Checks whether the ordering is eq.

Equations

Checks whether the ordering is not eq.

Equations

Checks whether the ordering is lt or eq.

Equations

Checks whether the ordering is lt.

Equations

Checks whether the ordering is gt.

Equations

Checks whether the ordering is gt or eq.

Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Ordering.swap_inj {o₁ o₂ : Ordering} :
o₁.swap = o₂.swap o₁ = o₂
theorem Ordering.swap_then (o₁ o₂ : Ordering) :
(o₁.then o₂).swap = o₁.swap.then o₂.swap
theorem Ordering.then_eq_lt {o₁ o₂ : Ordering} :
o₁.then o₂ = lt o₁ = lt o₁ = eq o₂ = lt
theorem Ordering.then_eq_eq {o₁ o₂ : Ordering} :
o₁.then o₂ = eq o₁ = eq o₂ = eq
theorem Ordering.then_eq_gt {o₁ o₂ : Ordering} :
o₁.then o₂ = gt o₁ = gt o₁ = eq o₂ = gt
@[simp]
theorem Ordering.lt_then {o : Ordering} :
@[simp]
theorem Ordering.gt_then {o : Ordering} :
@[simp]
theorem Ordering.eq_then {o : Ordering} :
eq.then o = o
theorem Ordering.isLE_then_iff_or {o₁ o₂ : Ordering} :
(o₁.then o₂).isLE = true o₁ = lt o₁ = eq o₂.isLE = true
theorem Ordering.isLE_then_iff_and {o₁ o₂ : Ordering} :
(o₁.then o₂).isLE = true o₁.isLE = true (o₁ = lt o₂.isLE = true)
theorem Ordering.isLE_left_of_isLE_then {o₁ o₂ : Ordering} (h : (o₁.then o₂).isLE = true) :
o₁.isLE = true
theorem Ordering.isGE_left_of_isGE_then {o₁ o₂ : Ordering} (h : (o₁.then o₂).isGE = true) :
o₁.isGE = true
@[inline]
def compareOfLessAndEq {α : Type u_1} (x y : α) [LT α] [Decidable (x < y)] [DecidableEq α] :

Uses decidable less-than and equality relations to find an Ordering.

In particular, if x < y then the result is Ordering.lt. If x = y then the result is Ordering.eq. Otherwise, it is Ordering.gt.

compareOfLessAndBEq uses BEq instead of DecidableEq.

Equations
@[inline]
def compareOfLessAndBEq {α : Type u_1} (x y : α) [LT α] [Decidable (x < y)] [BEq α] :

Uses a decidable less-than relation and Boolean equality to find an Ordering.

In particular, if x < y then the result is Ordering.lt. If x == y then the result is Ordering.eq. Otherwise, it is Ordering.gt.

compareOfLessAndEq uses DecidableEq instead of BEq.

Equations
@[inline]
def compareLex {α : Sort u_1} {β : Sort u_2} (cmp₁ cmp₂ : αβOrdering) (a : α) (b : β) :

Compares a and b lexicographically by cmp₁ and cmp₂.

a and b are first compared by cmp₁. If this returns Ordering.eq, a and b are compared by cmp₂ to break the tie.

To lexicographically combine two Orderings, use Ordering.then.

Equations
Instances For
@[simp]
theorem compareLex_eq_eq {α : Sort u_1} {cmp₁ cmp₂ : ααOrdering} {a b : α} :
compareLex cmp₁ cmp₂ a b = Ordering.eq cmp₁ a b = Ordering.eq cmp₂ a b = Ordering.eq
theorem compareOfLessAndEq_eq_swap_of_lt_iff_not_gt_and_ne {α : Type u} [LT α] [DecidableLT α] [DecidableEq α] (h : ∀ (x y : α), x < y ¬y < x x y) {x y : α} :
theorem lt_iff_not_gt_and_ne_of_antisymm_of_total_of_not_le {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableEq α] (antisymm : ∀ {x y : α}, x yy xx = y) (total : ∀ (x y : α), x y y x) (not_le : ∀ {x y : α}, ¬x y y < x) (x y : α) :
x < y ¬y < x x y
theorem compareOfLessAndEq_eq_swap {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableEq α] (antisymm : ∀ {x y : α}, x yy xx = y) (total : ∀ (x y : α), x y y x) (not_le : ∀ {x y : α}, ¬x y y < x) {x y : α} :
@[simp]
theorem compareOfLessAndEq_eq_lt {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableEq α] {x y : α} :
theorem compareOfLessAndEq_eq_eq {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableLE α] [DecidableEq α] (refl : ∀ (x : α), x x) (not_le : ∀ {x y : α}, ¬x y y < x) {x y : α} :
theorem compareOfLessAndEq_eq_gt_of_lt_iff_not_gt_and_ne {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableEq α] {x y : α} (h : ∀ (x y : α), x < y ¬y < x x y) :
theorem compareOfLessAndEq_eq_gt {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableEq α] (antisymm : ∀ {x y : α}, x yy xx = y) (total : ∀ (x y : α), x y y x) (not_le : ∀ {x y : α}, ¬x y y < x) (x y : α) :
theorem isLE_compareOfLessAndEq {α : Type u} [LT α] [LE α] [DecidableLT α] [DecidableLE α] [DecidableEq α] (antisymm : ∀ {x y : α}, x yy xx = y) (not_le : ∀ {x y : α}, ¬x y y < x) (total : ∀ (x y : α), x y y x) {x y : α} :
class Ord (α : Type u) :

Ord α provides a computable total order on α, in terms of the compare : α → α → Ordering function.

Typically instances will be transitive, reflexive, and antisymmetric, but this is not enforced by the typeclass.

There is a derive handler, so appending deriving Ord to an inductive type or structure will attempt to create an Ord instance.

  • compare : ααOrdering

    Compare two elements in α using the comparator contained in an [Ord α] instance.

Instances
@[inline]
def compareOn {β : Type u_1} {α : Sort u_2} [ord : Ord β] (f : αβ) (x y : α) :

Compares two values by comparing the results of applying a function.

In particular, x is compared to y by comparing f x and f y.

Examples:

Equations
Instances For
instance instOrdNat :
Equations
instance instOrdInt :
Equations
instance instOrdBool :
Equations
Equations
instance instOrdFin (n : Nat) :
Ord (Fin n)
Equations
Equations
Equations
Equations
Equations
Equations
instance instOrdChar :
Equations
instance instOrdInt8 :
Equations
Equations
Equations
Equations
Equations
instance instOrdBitVec {n : Nat} :
Equations
instance instOrdOption {α : Type u_1} [Ord α] :
Ord (Option α)
Equations
  • One or more equations did not get rendered due to their size.
Equations
instance List.instOrd {α : Type u_1} [Ord α] :
Ord (List α)
Equations
theorem List.compareLex_cons_cons {α : Type u_1} {cmp : ααOrdering} {x y : α} {xs ys : List α} :
List.compareLex cmp (x :: xs) (y :: ys) = (cmp x y).then (List.compareLex cmp xs ys)
@[simp]
theorem List.compare_cons_cons {α : Type u_1} [Ord α] {x y : α} {xs ys : List α} :
compare (x :: xs) (y :: ys) = (compare x y).then (compare xs ys)
theorem List.compareLex_nil_cons {α : Type u_1} {cmp : ααOrdering} {x : α} {xs : List α} :
@[simp]
theorem List.compare_nil_cons {α : Type u_1} [Ord α] {x : α} {xs : List α} :
theorem List.compareLex_cons_nil {α : Type u_1} {cmp : ααOrdering} {x : α} {xs : List α} :
@[simp]
theorem List.compare_cons_nil {α : Type u_1} [Ord α] {x : α} {xs : List α} :
theorem List.compareLex_nil_nil {α : Type u_1} {cmp : ααOrdering} :
@[simp]
theorem List.isLE_compareLex_nil_left {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
theorem List.isLE_compare_nil_left {α : Type u_1} [Ord α] {xs : List α} :
theorem List.isLE_compareLex_nil_right {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
@[simp]
theorem List.isLE_compare_nil_right {α : Type u_1} [Ord α] {xs : List α} :
theorem List.isGE_compareLex_nil_left {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
@[simp]
theorem List.isGE_compare_nil_left {α : Type u_1} [Ord α] {xs : List α} :
theorem List.isGE_compareLex_nil_right {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
theorem List.isGE_compare_nil_right {α : Type u_1} [Ord α] {xs : List α} :
theorem List.compareLex_nil_left_eq_eq {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
@[simp]
theorem List.compare_nil_left_eq_eq {α : Type u_1} [Ord α] {xs : List α} :
theorem List.compareLex_nil_right_eq_eq {α : Type u_1} {cmp : ααOrdering} {xs : List α} :
@[simp]
theorem List.compare_nil_right_eq_eq {α : Type u_1} [Ord α] {xs : List α} :
@[irreducible]
def Array.compareLex.go {α : Type u_1} (cmp : ααOrdering) (a₁ a₂ : Array α) (i : Nat) :
Equations
  • One or more equations did not get rendered due to their size.
instance Array.instOrd {α : Type u_1} [Ord α] :
Ord (Array α)
Equations
theorem List.compareLex_eq_compareLex_toArray {α : Type u_1} {cmp : ααOrdering} {l₁ l₂ : List α} :
List.compareLex cmp l₁ l₂ = Array.compareLex cmp l₁.toArray l₂.toArray
theorem List.compare_eq_compare_toArray {α : Type u_1} [Ord α] {l₁ l₂ : List α} :
compare l₁ l₂ = compare l₁.toArray l₂.toArray
theorem Array.compareLex_eq_compareLex_toList {α : Type u_1} {cmp : ααOrdering} {a₁ a₂ : Array α} :
Array.compareLex cmp a₁ a₂ = List.compareLex cmp a₁.toList a₂.toList
theorem Array.compare_eq_compare_toList {α : Type u_1} [Ord α] {a₁ a₂ : Array α} :
compare a₁ a₂ = compare a₁.toList a₂.toList
instance Vector.instOrd {α : Type u_1} {n : Nat} [Ord α] :
Ord (Vector α n)
Equations
theorem Vector.compareLex_eq_compareLex_toArray {α : Type u_1} {n : Nat} {cmp : ααOrdering} {a b : Vector α n} :
theorem Vector.compareLex_eq_compareLex_toList {α : Type u_1} {n : Nat} {cmp : ααOrdering} {a b : Vector α n} :
theorem Vector.compare_eq_compare_toArray {α : Type u_1} {n : Nat} [Ord α] {a b : Vector α n} :
theorem Vector.compare_eq_compare_toList {α : Type u_1} {n : Nat} [Ord α] {a b : Vector α n} :
def lexOrd {α : Type u_1} {β : Type u_2} [Ord α] [Ord β] :
Ord (α × β)

The lexicographic order on pairs.

Equations
def ltOfOrd {α : Type u_1} [Ord α] :
LT α

Constructs an LT instance from an Ord instance that asserts that the result of compare is Ordering.lt.

Equations
def leOfOrd {α : Type u_1} [Ord α] :
LE α

Constructs an LT instance from an Ord instance that asserts that the result of compare satisfies Ordering.isLE.

Equations
def Ord.toBEq {α : Type u_1} (ord : Ord α) :
BEq α

Constructs a BEq instance from an Ord instance.

Equations
def Ord.toLT {α : Type u_1} (ord : Ord α) :
LT α

Constructs an LT instance from an Ord instance.

Equations
def Ord.toLE {α : Type u_1} (ord : Ord α) :
LE α

Constructs an LE instance from an Ord instance.

Equations
def Ord.opposite {α : Type u_1} (ord : Ord α) :
Ord α

Inverts the order of an Ord instance.

The result is an Ord α instance that returns Ordering.lt when ord would return Ordering.gt and that returns Ordering.gt when ord would return Ordering.lt.

Equations
def Ord.on {β : Type u_1} {α : Type u_2} :
Ord β(f : αβ) → Ord α

Constructs an Ord instance that compares values according to the results of f.

In particular, ord.on f compares x and y by comparing f x and f y according to ord.

The function compareOn can be used to perform this comparison without constructing an intermediate Ord instance.

Equations
def Ord.lex {α : Type u_1} {β : Type u_2} :
Ord αOrd βOrd (α × β)

Constructs the lexicographic order on products α × β from orders for α and β.

Equations
def Ord.lex' {α : Type u_1} (ord₁ ord₂ : Ord α) :
Ord α

Constructs an Ord instance from two existing instances by combining them lexicographically.

The resulting instance compares elements first by ord₁ and then, if this returns Ordering.eq, by ord₂.

The function compareLex can be used to perform this comparison without constructing an intermediate Ord instance. Ordering.then can be used to lexicographically combine the results of comparisons.

Equations
def Ord.arrayOrd {α : Type u_1} [a : Ord α] :
Ord (Array α)

Constructs an order which compares elements of an Array in lexicographic order.

Equations
  • One or more equations did not get rendered due to their size.