Documentation

Mathlib.Algebra.Order.Hom.Monoid

Ordered monoid and group homomorphisms #

This file defines morphisms between (additive) ordered monoids.

Types of morphisms #

Notation #

Implementation notes #

There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion.

There is no OrderGroupHom -- the idea is that OrderMonoidHom is used. The constructor for OrderMonoidHom needs a proof of map_one as well as map_mul; a separate constructor OrderMonoidHom.mk' will construct ordered group homs (i.e. ordered monoid homs between ordered groups) given only a proof that multiplication is preserved,

Implicit {} brackets are often used instead of type class [] brackets. This is done when the instances can be inferred because they are implicit arguments to the type OrderMonoidHom. When they can be inferred from the type it is faster to use this method than to use type class inference.

Removed typeclasses #

This file used to define typeclasses for order-preserving (additive) monoid homomorphisms: OrderAddMonoidHomClass, OrderMonoidHomClass, and OrderMonoidWithZeroHomClass.

In https://github.com/leanprover-community/mathlib4/pull/10544 we migrated from these typeclasses to assumptions like [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N], making some definitions and lemmas irrelevant.

Tags #

ordered monoid, ordered group, monoid with zero

structure OrderAddMonoidHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] extends α →+ β :
Type (max u_6 u_7)

α →+o β is the type of monotone functions α → β that preserve the OrderedAddCommMonoid structure.

OrderAddMonoidHom is also used for ordered group homomorphisms.

When possible, instead of parametrizing results over (f : α →+o β), you should parametrize over (F : Type*) [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N] (f : F).

structure OrderAddMonoidIso (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [Add α] [Add β] extends α ≃+ β :
Type (max u_6 u_7)

α ≃+o β is the type of monotone isomorphisms α ≃ β that preserve the OrderedAddCommMonoid structure.

OrderAddMonoidIso is also used for ordered group isomorphisms.

When possible, instead of parametrizing results over (f : α ≃+o β), you should parametrize over (F : Type*) [FunLike F M N] [AddEquivClass F M N] [OrderIsoClass F M N] (f : F).

structure OrderMonoidHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] extends α →* β :
Type (max u_6 u_7)

α →*o β is the type of functions α → β that preserve the OrderedCommMonoid structure.

OrderMonoidHom is also used for ordered group homomorphisms.

When possible, instead of parametrizing results over (f : α →*o β), you should parametrize over (F : Type*) [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N] (f : F).

def OrderMonoidHomClass.toOrderMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidHomClass F α β] (f : F) :
α →*o β

Turn an element of a type F satisfying OrderHomClass F α β and MonoidHomClass F α β into an actual OrderMonoidHom. This is declared as the default coercion from F to α →*o β.

Equations
  • f = { toMonoidHom := f, monotone' := }
def OrderMonoidHomClass.toOrderAddMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] (f : F) :
α →+o β

Turn an element of a type F satisfying OrderHomClass F α β and AddMonoidHomClass F α β into an actual OrderAddMonoidHom. This is declared as the default coercion from F to α →+o β.

Equations
  • f = { toAddMonoidHom := f, monotone' := }
instance instCoeTCOrderMonoidHomOfOrderHomClassOfMonoidHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidHomClass F α β] :
CoeTC F (α →*o β)

Any type satisfying OrderMonoidHomClass can be cast into OrderMonoidHom via OrderMonoidHomClass.toOrderMonoidHom.

Equations
instance instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] :
CoeTC F (α →+o β)

Any type satisfying OrderAddMonoidHomClass can be cast into OrderAddMonoidHom via OrderAddMonoidHomClass.toOrderAddMonoidHom

Equations
structure OrderMonoidIso (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [Mul α] [Mul β] extends α ≃* β :
Type (max u_6 u_7)

α ≃*o β is the type of isomorphisms α ≃ β that preserve the OrderedCommMonoid structure.

OrderMonoidIso is also used for ordered group isomorphisms.

When possible, instead of parametrizing results over (f : α ≃*o β), you should parametrize over (F : Type*) [FunLike F M N] [MulEquivClass F M N] [OrderIsoClass F M N] (f : F).

def OrderMonoidIsoClass.toOrderMonoidIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [EquivLike F α β] [OrderIsoClass F α β] [MulEquivClass F α β] (f : F) :
α ≃*o β

Turn an element of a type F satisfying OrderIsoClass F α β and MulEquivClass F α β into an actual OrderMonoidIso. This is declared as the default coercion from F to α ≃*o β.

Equations
  • f = { toMulEquiv := f, map_le_map_iff' := }
def OrderMonoidIsoClass.toOrderAddMonoidIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [EquivLike F α β] [OrderIsoClass F α β] [AddEquivClass F α β] (f : F) :
α ≃+o β

Turn an element of a type F satisfying OrderIsoClass F α β and AddEquivClass F α β into an actual OrderAddMonoidIso. This is declared as the default coercion from F to α ≃+o β.

Equations
  • f = { toAddEquiv := f, map_le_map_iff' := }
instance instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass_1 {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] :
CoeTC F (α →+o β)

Any type satisfying OrderAddMonoidHomClass can be cast into OrderAddMonoidHom via OrderAddMonoidHomClass.toOrderAddMonoidHom

Equations
instance instCoeTCOrderMonoidIsoOfOrderIsoClassOfMulEquivClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [EquivLike F α β] [OrderIsoClass F α β] [MulEquivClass F α β] :
CoeTC F (α ≃*o β)

Any type satisfying OrderMonoidIsoClass can be cast into OrderMonoidIso via OrderMonoidIsoClass.toOrderMonoidIso.

Equations
instance instCoeTCOrderAddMonoidIsoOfOrderIsoClassOfAddEquivClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [EquivLike F α β] [OrderIsoClass F α β] [AddEquivClass F α β] :
CoeTC F (α ≃+o β)

Any type satisfying OrderAddMonoidIsoClass can be cast into OrderAddMonoidIso via OrderAddMonoidIsoClass.toOrderAddMonoidIso

Equations
structure OrderMonoidWithZeroHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] extends α →*₀ β :
Type (max u_6 u_7)

OrderMonoidWithZeroHom α β is the type of functions α → β that preserve the MonoidWithZero structure.

OrderMonoidWithZeroHom is also used for group homomorphisms.

When possible, instead of parametrizing results over (f : α →+ β), you should parameterize over (F : Type*) [FunLike F M N] [MonoidWithZeroHomClass F M N] [OrderHomClass F M N] (f : F).

def OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidWithZeroHomClass F α β] (f : F) :
α →*₀o β

Turn an element of a type F satisfying OrderHomClass F α β and MonoidWithZeroHomClass F α β into an actual OrderMonoidWithZeroHom. This is declared as the default coercion from F to α →+*₀o β.

Equations
  • f = { toMonoidWithZeroHom := f, monotone' := }
theorem map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Preorder α] [Zero α] [Preorder β] [Zero β] [OrderHomClass F α β] [ZeroHomClass F α β] (f : F) {a : α} (ha : 0 a) :
0 f a

See also NonnegHomClass.apply_nonneg.

theorem map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Preorder α] [Zero α] [Preorder β] [Zero β] [OrderHomClass F α β] [ZeroHomClass F α β] (f : F) {a : α} (ha : a 0) :
f a 0
theorem monotone_iff_map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
Monotone f ∀ (a : α), 0 a0 f a
theorem antitone_iff_map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
Antitone f ∀ (a : α), 0 af a 0
theorem monotone_iff_map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
Monotone f ∀ (a : α), a 0f a 0
theorem antitone_iff_map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
Antitone f ∀ (a : α), a 00 f a
theorem strictMono_iff_map_pos {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
StrictMono f ∀ (a : α), 0 < a0 < f a
theorem strictAnti_iff_map_neg {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
StrictAnti f ∀ (a : α), 0 < af a < 0
theorem strictMono_iff_map_neg {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
StrictMono f ∀ (a : α), a < 0f a < 0
theorem strictAnti_iff_map_pos {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] [AddCommGroup β] [PartialOrder β] [IsOrderedAddMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
StrictAnti f ∀ (a : α), a < 00 < f a
instance OrderMonoidHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
FunLike (α →*o β) α β
Equations
instance OrderAddMonoidHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
FunLike (α →+o β) α β
Equations
instance OrderMonoidHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
OrderHomClass (α →*o β) α β
instance OrderAddMonoidHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
OrderHomClass (α →+o β) α β
instance OrderMonoidHom.instMonoidHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
MonoidHomClass (α →*o β) α β
theorem OrderMonoidHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] {f g : α →*o β} (h : ∀ (a : α), f a = g a) :
f = g
theorem OrderAddMonoidHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] {f g : α →+o β} (h : ∀ (a : α), f a = g a) :
f = g
theorem OrderMonoidHom.ext_iff {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] {f g : α →*o β} :
f = g ∀ (a : α), f a = g a
theorem OrderAddMonoidHom.ext_iff {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] {f g : α →+o β} :
f = g ∀ (a : α), f a = g a
theorem OrderMonoidHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
(↑f.toMonoidHom).toFun = f
theorem OrderAddMonoidHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
(↑f.toAddMonoidHom).toFun = f
@[simp]
theorem OrderMonoidHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →* β) (h : Monotone (↑f).toFun) :
{ toMonoidHom := f, monotone' := h } = f
@[simp]
theorem OrderAddMonoidHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+ β) (h : Monotone (↑f).toFun) :
{ toAddMonoidHom := f, monotone' := h } = f
@[simp]
theorem OrderMonoidHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (h : Monotone (↑f).toFun) :
{ toMonoidHom := f, monotone' := h } = f
@[simp]
theorem OrderAddMonoidHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (h : Monotone (↑f).toFun) :
{ toAddMonoidHom := f, monotone' := h } = f
def OrderMonoidHom.toOrderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
α →o β

Reinterpret an ordered monoid homomorphism as an order homomorphism.

Equations
def OrderAddMonoidHom.toOrderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
α →o β

Reinterpret an ordered additive monoid homomorphism as an order homomorphism.

Equations
@[simp]
theorem OrderMonoidHom.coe_monoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
f = f
@[simp]
theorem OrderAddMonoidHom.coe_addMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
f = f
@[simp]
theorem OrderMonoidHom.coe_orderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
f = f
@[simp]
theorem OrderAddMonoidHom.coe_orderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
f = f
def OrderMonoidHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
α →*o β

Copy of an OrderMonoidHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', map_one' := , map_mul' := , monotone' := }
def OrderAddMonoidHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
α →+o β

Copy of an OrderAddMonoidHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', map_zero' := , map_add' := , monotone' := }
@[simp]
theorem OrderMonoidHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
(f.copy f' h) = f'
@[simp]
theorem OrderAddMonoidHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
(f.copy f' h) = f'
theorem OrderMonoidHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
f.copy f' h = f
theorem OrderAddMonoidHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
f.copy f' h = f
def OrderMonoidHom.id (α : Type u_2) [Preorder α] [MulOneClass α] :
α →*o α

The identity map as an ordered monoid homomorphism.

Equations
def OrderAddMonoidHom.id (α : Type u_2) [Preorder α] [AddZeroClass α] :
α →+o α

The identity map as an ordered additive monoid homomorphism.

Equations
@[simp]
theorem OrderMonoidHom.coe_id (α : Type u_2) [Preorder α] [MulOneClass α] :
@[simp]
def OrderMonoidHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
α →*o γ

Composition of OrderMonoidHoms as an OrderMonoidHom.

Equations
  • f.comp g = { toMonoidHom := f.comp g, monotone' := }
def OrderAddMonoidHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
α →+o γ

Composition of OrderAddMonoidHoms as an OrderAddMonoidHom

Equations
  • f.comp g = { toAddMonoidHom := f.comp g, monotone' := }
@[simp]
theorem OrderMonoidHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
(f.comp g) = f g
@[simp]
theorem OrderAddMonoidHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
(f.comp g) = f g
@[simp]
theorem OrderMonoidHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) (a : α) :
(f.comp g) a = f (g a)
@[simp]
theorem OrderAddMonoidHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) (a : α) :
(f.comp g) a = f (g a)
theorem OrderMonoidHom.coe_comp_monoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
(f.comp g) = (↑f).comp g
theorem OrderAddMonoidHom.coe_comp_addMonoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
(f.comp g) = (↑f).comp g
theorem OrderMonoidHom.coe_comp_orderHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
(f.comp g) = (↑f).comp g
theorem OrderAddMonoidHom.coe_comp_orderHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
(f.comp g) = (↑f).comp g
@[simp]
theorem OrderMonoidHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] [MulOneClass δ] (f : γ →*o δ) (g : β →*o γ) (h : α →*o β) :
(f.comp g).comp h = f.comp (g.comp h)
@[simp]
theorem OrderAddMonoidHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] [AddZeroClass δ] (f : γ →+o δ) (g : β →+o γ) (h : α →+o β) :
(f.comp g).comp h = f.comp (g.comp h)
@[simp]
theorem OrderMonoidHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
@[simp]
theorem OrderAddMonoidHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
@[simp]
theorem OrderMonoidHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
@[simp]
theorem OrderAddMonoidHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
@[simp]
theorem OrderMonoidHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] {g₁ g₂ : β →*o γ} {f : α →*o β} (hf : Function.Surjective f) :
g₁.comp f = g₂.comp f g₁ = g₂
@[simp]
theorem OrderAddMonoidHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] {g₁ g₂ : β →+o γ} {f : α →+o β} (hf : Function.Surjective f) :
g₁.comp f = g₂.comp f g₁ = g₂
@[simp]
theorem OrderMonoidHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] {g : β →*o γ} {f₁ f₂ : α →*o β} (hg : Function.Injective g) :
g.comp f₁ = g.comp f₂ f₁ = f₂
@[simp]
theorem OrderAddMonoidHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] {g : β →+o γ} {f₁ f₂ : α →+o β} (hg : Function.Injective g) :
g.comp f₁ = g.comp f₂ f₁ = f₂
instance OrderMonoidHom.instOne {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
One (α →*o β)

1 is the homomorphism sending all elements to 1.

Equations
instance OrderAddMonoidHom.instZero {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
Zero (α →+o β)

0 is the homomorphism sending all elements to 0.

Equations
@[simp]
theorem OrderMonoidHom.coe_one {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
1 = 1
@[simp]
theorem OrderAddMonoidHom.coe_zero {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
0 = 0
@[simp]
theorem OrderMonoidHom.one_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (a : α) :
1 a = 1
@[simp]
theorem OrderAddMonoidHom.zero_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (a : α) :
0 a = 0
@[simp]
theorem OrderMonoidHom.one_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →*o β) :
comp 1 f = 1
@[simp]
theorem OrderAddMonoidHom.zero_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : α →+o β) :
comp 0 f = 0
@[simp]
theorem OrderMonoidHom.comp_one {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) :
f.comp 1 = 1
@[simp]
theorem OrderAddMonoidHom.comp_zero {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) :
f.comp 0 = 0

For two ordered monoid morphisms f and g, their product is the ordered monoid morphism sending a to f a * g a.

Equations

For two ordered additive monoid morphisms f and g, their product is the ordered additive monoid morphism sending a to f a + g a.

Equations
@[simp]
theorem OrderMonoidHom.coe_mul {α : Type u_2} {β : Type u_3} [CommMonoid α] [PartialOrder α] [CommMonoid β] [PartialOrder β] [IsOrderedMonoid β] (f g : α →*o β) :
⇑(f * g) = f * g
@[simp]
theorem OrderAddMonoidHom.coe_add {α : Type u_2} {β : Type u_3} [AddCommMonoid α] [PartialOrder α] [AddCommMonoid β] [PartialOrder β] [IsOrderedAddMonoid β] (f g : α →+o β) :
⇑(f + g) = f + g
@[simp]
theorem OrderMonoidHom.mul_apply {α : Type u_2} {β : Type u_3} [CommMonoid α] [PartialOrder α] [CommMonoid β] [PartialOrder β] [IsOrderedMonoid β] (f g : α →*o β) (a : α) :
(f * g) a = f a * g a
@[simp]
theorem OrderAddMonoidHom.add_apply {α : Type u_2} {β : Type u_3} [AddCommMonoid α] [PartialOrder α] [AddCommMonoid β] [PartialOrder β] [IsOrderedAddMonoid β] (f g : α →+o β) (a : α) :
(f + g) a = f a + g a
theorem OrderMonoidHom.mul_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CommMonoid α] [PartialOrder α] [CommMonoid β] [PartialOrder β] [CommMonoid γ] [PartialOrder γ] [IsOrderedMonoid γ] (g₁ g₂ : β →*o γ) (f : α →*o β) :
(g₁ * g₂).comp f = g₁.comp f * g₂.comp f
theorem OrderAddMonoidHom.add_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommMonoid α] [PartialOrder α] [AddCommMonoid β] [PartialOrder β] [AddCommMonoid γ] [PartialOrder γ] [IsOrderedAddMonoid γ] (g₁ g₂ : β →+o γ) (f : α →+o β) :
(g₁ + g₂).comp f = g₁.comp f + g₂.comp f
theorem OrderMonoidHom.comp_mul {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CommMonoid α] [PartialOrder α] [CommMonoid β] [PartialOrder β] [CommMonoid γ] [PartialOrder γ] [IsOrderedMonoid β] [IsOrderedMonoid γ] (g : β →*o γ) (f₁ f₂ : α →*o β) :
g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂
theorem OrderAddMonoidHom.comp_add {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommMonoid α] [PartialOrder α] [AddCommMonoid β] [PartialOrder β] [AddCommMonoid γ] [PartialOrder γ] [IsOrderedAddMonoid β] [IsOrderedAddMonoid γ] (g : β →+o γ) (f₁ f₂ : α →+o β) :
g.comp (f₁ + f₂) = g.comp f₁ + g.comp f₂
@[simp]
theorem OrderMonoidHom.toMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : Preorder α} {x✝¹ : Preorder β} {x✝² : MulOneClass α} {x✝³ : MulOneClass β} (f : α →*o β) :
f.toMonoidHom = f
@[simp]
theorem OrderAddMonoidHom.toAddMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : Preorder α} {x✝¹ : Preorder β} {x✝² : AddZeroClass α} {x✝³ : AddZeroClass β} (f : α →+o β) :
@[simp]
theorem OrderMonoidHom.toOrderHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : Preorder α} {x✝¹ : Preorder β} {x✝² : MulOneClass α} {x✝³ : MulOneClass β} (f : α →*o β) :
f.toOrderHom = f
@[simp]
theorem OrderAddMonoidHom.toOrderHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : Preorder α} {x✝¹ : Preorder β} {x✝² : AddZeroClass α} {x✝³ : AddZeroClass β} (f : α →+o β) :
f.toOrderHom = f
def OrderMonoidHom.mk' {α : Type u_2} {β : Type u_3} {x✝ : CommGroup α} {x✝¹ : PartialOrder α} {x✝² : CommGroup β} {x✝³ : PartialOrder β} (f : αβ) (hf : Monotone f) (map_mul : ∀ (a b : α), f (a * b) = f a * f b) :
α →*o β

Makes an ordered group homomorphism from a proof that the map preserves multiplication.

Equations
def OrderAddMonoidHom.mk' {α : Type u_2} {β : Type u_3} {x✝ : AddCommGroup α} {x✝¹ : PartialOrder α} {x✝² : AddCommGroup β} {x✝³ : PartialOrder β} (f : αβ) (hf : Monotone f) (map_mul : ∀ (a b : α), f (a + b) = f a + f b) :
α →+o β

Makes an ordered additive group homomorphism from a proof that the map preserves addition.

Equations
instance OrderMonoidIso.instEquivLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
EquivLike (α ≃*o β) α β
Equations
instance OrderAddMonoidIso.instEquivLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
EquivLike (α ≃+o β) α β
Equations
instance OrderMonoidIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
OrderIsoClass (α ≃*o β) α β
instance OrderAddMonoidIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
OrderIsoClass (α ≃+o β) α β
instance OrderMonoidIso.instMulEquivClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
MulEquivClass (α ≃*o β) α β
instance OrderAddMonoidIso.instAddEquivClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
AddEquivClass (α ≃+o β) α β
theorem OrderMonoidIso.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] {f g : α ≃*o β} (h : ∀ (a : α), f a = g a) :
f = g
theorem OrderAddMonoidIso.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] {f g : α ≃+o β} (h : ∀ (a : α), f a = g a) :
f = g
theorem OrderAddMonoidIso.ext_iff {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] {f g : α ≃+o β} :
f = g ∀ (a : α), f a = g a
theorem OrderMonoidIso.ext_iff {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] {f g : α ≃*o β} :
f = g ∀ (a : α), f a = g a
theorem OrderMonoidIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f.toFun = f
theorem OrderAddMonoidIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f.toFun = f
@[simp]
theorem OrderMonoidIso.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃* β) (h : ∀ {a b : α}, f.toFun a f.toFun b a b) :
{ toMulEquiv := f, map_le_map_iff' := h } = f
@[simp]
theorem OrderAddMonoidIso.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+ β) (h : ∀ {a b : α}, f.toFun a f.toFun b a b) :
{ toAddEquiv := f, map_le_map_iff' := h } = f
@[simp]
theorem OrderMonoidIso.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) (h : ∀ {a b : α}, (↑f).toFun a (↑f).toFun b a b) :
{ toMulEquiv := f, map_le_map_iff' := h } = f
@[simp]
theorem OrderAddMonoidIso.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) (h : ∀ {a b : α}, (↑f).toFun a (↑f).toFun b a b) :
{ toAddEquiv := f, map_le_map_iff' := h } = f
def OrderMonoidIso.toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
α ≃o β

Reinterpret an ordered monoid isomorphism as an order isomorphism.

Equations
def OrderAddMonoidIso.toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
α ≃o β

Reinterpret an ordered additive monoid isomomorphism as an order isomomorphism.

Equations
@[simp]
theorem OrderMonoidIso.coe_mulEquiv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f = f
@[simp]
theorem OrderAddMonoidIso.coe_addEquiv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f = f
@[simp]
theorem OrderMonoidIso.coe_orderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f = f
@[simp]
theorem OrderAddMonoidIso.coe_orderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f = f
def OrderMonoidIso.refl (α : Type u_2) [Preorder α] [Mul α] :
α ≃*o α

The identity map as an ordered monoid isomorphism.

Equations
def OrderAddMonoidIso.refl (α : Type u_2) [Preorder α] [Add α] :
α ≃+o α

The identity map as an ordered additive monoid isomorphism.

Equations
@[simp]
theorem OrderMonoidIso.coe_refl (α : Type u_2) [Preorder α] [Mul α] :
@[simp]
theorem OrderAddMonoidIso.coe_refl (α : Type u_2) [Preorder α] [Add α] :
instance OrderMonoidIso.instInhabited (α : Type u_2) [Preorder α] [Mul α] :
Equations
def OrderMonoidIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
α ≃*o γ

Transitivity of multiplication-preserving order isomorphisms

Equations
  • f.trans g = { toMulEquiv := (↑f).trans g, map_le_map_iff' := }
def OrderAddMonoidIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
α ≃+o γ

Transitivity of addition-preserving order isomorphisms

Equations
  • f.trans g = { toAddEquiv := (↑f).trans g, map_le_map_iff' := }
@[simp]
theorem OrderMonoidIso.coe_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
(f.trans g) = g f
@[simp]
theorem OrderAddMonoidIso.coe_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
(f.trans g) = g f
@[simp]
theorem OrderMonoidIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) (a : α) :
(f.trans g) a = g (f a)
@[simp]
theorem OrderAddMonoidIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) (a : α) :
(f.trans g) a = g (f a)
theorem OrderMonoidIso.coe_trans_mulEquiv {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
(f.trans g) = (↑f).trans g
theorem OrderAddMonoidIso.coe_trans_addEquiv {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
(f.trans g) = (↑f).trans g
theorem OrderMonoidIso.coe_trans_orderIso {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
(f.trans g) = (↑f).trans g
theorem OrderAddMonoidIso.coe_trans_orderIso {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
(f.trans g) = (↑f).trans g
@[simp]
theorem OrderMonoidIso.trans_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [Mul α] [Mul β] [Mul γ] [Mul δ] (f : α ≃*o β) (g : β ≃*o γ) (h : γ ≃*o δ) :
(f.trans g).trans h = f.trans (g.trans h)
@[simp]
theorem OrderAddMonoidIso.trans_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [Add α] [Add β] [Add γ] [Add δ] (f : α ≃+o β) (g : β ≃+o γ) (h : γ ≃+o δ) :
(f.trans g).trans h = f.trans (g.trans h)
@[simp]
theorem OrderMonoidIso.trans_refl {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
@[simp]
theorem OrderAddMonoidIso.trans_refl {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
@[simp]
theorem OrderMonoidIso.refl_trans {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
@[simp]
theorem OrderAddMonoidIso.refl_trans {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
@[simp]
theorem OrderMonoidIso.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] {g₁ g₂ : α ≃*o β} {f : β ≃*o γ} (hf : Function.Injective f) :
g₁.trans f = g₂.trans f g₁ = g₂
@[simp]
theorem OrderAddMonoidIso.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] {g₁ g₂ : α ≃+o β} {f : β ≃+o γ} (hf : Function.Injective f) :
g₁.trans f = g₂.trans f g₁ = g₂
@[simp]
theorem OrderMonoidIso.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] {g : α ≃*o β} {f₁ f₂ : β ≃*o γ} (hg : Function.Surjective g) :
g.trans f₁ = g.trans f₂ f₁ = f₂
@[simp]
theorem OrderAddMonoidIso.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] {g : α ≃+o β} {f₁ f₂ : β ≃+o γ} (hg : Function.Surjective g) :
g.trans f₁ = g.trans f₂ f₁ = f₂
@[simp]
theorem OrderMonoidIso.toMulEquiv_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f.toMulEquiv = f
@[simp]
theorem OrderAddMonoidIso.toAddEquiv_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f.toAddEquiv = f
@[simp]
theorem OrderMonoidIso.toOrderIso_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f.toOrderIso = f
@[simp]
theorem OrderAddMonoidIso.toOrderIso_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f.toOrderIso = f
def OrderMonoidIso.symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
β ≃*o α

The inverse of an isomorphism is an isomorphism.

Equations
  • f.symm = { toMulEquiv := f.symm, map_le_map_iff' := }
def OrderAddMonoidIso.symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
β ≃+o α

The inverse of an order isomorphism is an order isomorphism.

Equations
  • f.symm = { toAddEquiv := f.symm, map_le_map_iff' := }
def OrderMonoidIso.Simps.apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (h : α ≃*o β) :
αβ

See Note [custom simps projection].

Equations
def OrderAddMonoidIso.Simps.apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (h : α ≃+o β) :
αβ

See Note [custom simps projection].

Equations
def OrderMonoidIso.Simps.symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (h : α ≃*o β) :
βα

See Note [custom simps projection]

Equations
def OrderAddMonoidIso.Simps.symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (h : α ≃+o β) :
βα

See Note [custom simps projection].

Equations
theorem OrderMonoidIso.invFun_eq_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] {f : α ≃*o β} :
f.invFun = f.symm
theorem OrderAddMonoidIso.invFun_eq_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] {f : α ≃+o β} :
f.invFun = f.symm
@[simp]
theorem OrderMonoidIso.coe_toEquiv_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
(↑f).symm = f.symm

simp-normal form of invFun_eq_symm.

@[simp]
theorem OrderAddMonoidIso.coe_toEquiv_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
(↑f).symm = f.symm
@[simp]
theorem OrderMonoidIso.equivLike_inv_eq_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
@[simp]
theorem OrderAddMonoidIso.equivLike_neg_eq_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
@[simp]
theorem OrderMonoidIso.toEquiv_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f.symm = (↑f).symm
@[simp]
theorem OrderAddMonoidIso.toEquiv_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f.symm = (↑f).symm
@[simp]
theorem OrderMonoidIso.symm_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
f.symm.symm = f
@[simp]
theorem OrderAddMonoidIso.symm_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
f.symm.symm = f
theorem OrderMonoidIso.symm_bijective {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
@[simp]
theorem OrderMonoidIso.apply_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (y : β) :
e (e.symm y) = y

e.symm is a right inverse of e, written as e (e.symm y) = y.

@[simp]
theorem OrderAddMonoidIso.apply_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (y : β) :
e (e.symm y) = y

e.symm is a right inverse of e, written as e (e.symm y) = y.

@[simp]
theorem OrderMonoidIso.symm_apply_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (x : α) :
e.symm (e x) = x

e.symm is a left inverse of e, written as e.symm (e y) = y.

@[simp]
theorem OrderAddMonoidIso.symm_apply_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (x : α) :
e.symm (e x) = x

e.symm is a left inverse of e, written as e.symm (e y) = y.

@[simp]
theorem OrderMonoidIso.symm_comp_self {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) :
e.symm e = id
@[simp]
theorem OrderAddMonoidIso.symm_comp_self {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) :
e.symm e = id
@[simp]
theorem OrderMonoidIso.self_comp_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) :
e e.symm = id
@[simp]
theorem OrderAddMonoidIso.self_comp_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) :
e e.symm = id
theorem OrderMonoidIso.apply_eq_iff_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) {x : α} {y : β} :
e x = y x = e.symm y
theorem OrderAddMonoidIso.apply_eq_iff_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) {x : α} {y : β} :
e x = y x = e.symm y
theorem OrderMonoidIso.symm_apply_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) {x : β} {y : α} :
e.symm x = y x = e y
theorem OrderAddMonoidIso.symm_apply_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) {x : β} {y : α} :
e.symm x = y x = e y
theorem OrderMonoidIso.eq_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) {x : β} {y : α} :
y = e.symm x e y = x
theorem OrderAddMonoidIso.eq_symm_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) {x : β} {y : α} :
y = e.symm x e y = x
theorem OrderMonoidIso.eq_comp_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (f : βα) (g : αα) :
f = g e.symm f e = g
theorem OrderAddMonoidIso.eq_comp_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (f : βα) (g : αα) :
f = g e.symm f e = g
theorem OrderMonoidIso.comp_symm_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (f : βα) (g : αα) :
g e.symm = f g = f e
theorem OrderAddMonoidIso.comp_symm_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (f : βα) (g : αα) :
g e.symm = f g = f e
theorem OrderMonoidIso.eq_symm_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (f : αα) (g : αβ) :
f = e.symm g e f = g
theorem OrderAddMonoidIso.eq_symm_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (f : αα) (g : αβ) :
f = e.symm g e f = g
theorem OrderMonoidIso.symm_comp_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (e : α ≃*o β) (f : αα) (g : αβ) :
e.symm g = f g = e f
theorem OrderAddMonoidIso.symm_comp_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (e : α ≃+o β) (f : αα) (g : αβ) :
e.symm g = f g = e f
theorem OrderMonoidIso.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
theorem OrderAddMonoidIso.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
theorem OrderMonoidIso.strictMono_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
theorem OrderAddMonoidIso.strictMono_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
def OrderMonoidIso.mk' {α : Type u_2} {β : Type u_3} {x✝ : CommGroup α} {x✝¹ : PartialOrder α} {x✝² : CommGroup β} {x✝³ : PartialOrder β} (f : α β) (hf : ∀ {a b : α}, f a f b a b) (map_mul : ∀ (a b : α), f (a * b) = f a * f b) :
α ≃*o β

Makes an ordered group isomorphism from a proof that the map preserves multiplication.

Equations
def OrderAddMonoidIso.mk' {α : Type u_2} {β : Type u_3} {x✝ : AddCommGroup α} {x✝¹ : PartialOrder α} {x✝² : AddCommGroup β} {x✝³ : PartialOrder β} (f : α β) (hf : ∀ {a b : α}, f a f b a b) (map_mul : ∀ (a b : α), f (a + b) = f a + f b) :
α ≃+o β

Makes an ordered additive group isomorphism from a proof that the map preserves addition.

Equations
instance OrderMonoidWithZeroHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] :
FunLike (α →*₀o β) α β
Equations
theorem OrderMonoidWithZeroHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] {f g : α →*₀o β} (h : ∀ (a : α), f a = g a) :
f = g
theorem OrderMonoidWithZeroHom.ext_iff {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] {f g : α →*₀o β} :
f = g ∀ (a : α), f a = g a
@[simp]
theorem OrderMonoidWithZeroHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (h : Monotone (↑f).toFun) :
{ toMonoidWithZeroHom := f, monotone' := h } = f
@[simp]
theorem OrderMonoidWithZeroHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (h : Monotone (↑f).toFun) :
{ toMonoidWithZeroHom := f, monotone' := h } = f
def OrderMonoidWithZeroHom.toOrderMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
α →*o β

Reinterpret an ordered monoid with zero homomorphism as an order monoid homomorphism.

Equations
@[simp]
theorem OrderMonoidWithZeroHom.coe_monoidWithZeroHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
f = f
@[simp]
theorem OrderMonoidWithZeroHom.coe_orderMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
f = f
def OrderMonoidWithZeroHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
α →*o β

Copy of an OrderMonoidWithZeroHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', map_one' := , map_mul' := , monotone' := }
@[simp]
theorem OrderMonoidWithZeroHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
(f.copy f' h) = f'
theorem OrderMonoidWithZeroHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
f.copy f' h = f

The identity map as an ordered monoid with zero homomorphism.

Equations
def OrderMonoidWithZeroHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
α →*₀o γ

Composition of OrderMonoidWithZeroHoms as an OrderMonoidWithZeroHom.

Equations
  • f.comp g = { toMonoidWithZeroHom := f.comp g, monotone' := }
@[simp]
theorem OrderMonoidWithZeroHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
(f.comp g) = f g
@[simp]
theorem OrderMonoidWithZeroHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) (a : α) :
(f.comp g) a = f (g a)
theorem OrderMonoidWithZeroHom.coe_comp_monoidWithZeroHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
(f.comp g) = (↑f).comp g
theorem OrderMonoidWithZeroHom.coe_comp_orderMonoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
(f.comp g) = (↑f).comp g
@[simp]
theorem OrderMonoidWithZeroHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] [MulZeroOneClass δ] (f : γ →*₀o δ) (g : β →*₀o γ) (h : α →*₀o β) :
(f.comp g).comp h = f.comp (g.comp h)
@[simp]
theorem OrderMonoidWithZeroHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
@[simp]
theorem OrderMonoidWithZeroHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
@[simp]
theorem OrderMonoidWithZeroHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g₁ g₂ : β →*₀o γ} {f : α →*₀o β} (hf : Function.Surjective f) :
g₁.comp f = g₂.comp f g₁ = g₂
@[simp]
theorem OrderMonoidWithZeroHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g : β →*₀o γ} {f₁ f₂ : α →*₀o β} (hg : Function.Injective g) :
g.comp f₁ = g.comp f₂ f₁ = f₂

For two ordered monoid morphisms f and g, their product is the ordered monoid morphism sending a to f a * g a.

Equations
@[simp]
theorem OrderMonoidWithZeroHom.coe_mul {α : Type u_2} {β : Type u_3} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] (f g : α →*₀o β) :
⇑(f * g) = f * g
@[simp]
theorem OrderMonoidWithZeroHom.mul_apply {α : Type u_2} {β : Type u_3} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] (f g : α →*₀o β) (a : α) :
(f * g) a = f a * g a
theorem OrderMonoidWithZeroHom.mul_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] [LinearOrderedCommMonoidWithZero γ] (g₁ g₂ : β →*₀o γ) (f : α →*₀o β) :
(g₁ * g₂).comp f = g₁.comp f * g₂.comp f
theorem OrderMonoidWithZeroHom.comp_mul {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] [LinearOrderedCommMonoidWithZero γ] (g : β →*₀o γ) (f₁ f₂ : α →*₀o β) :
g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂
@[simp]
theorem OrderMonoidWithZeroHom.toMonoidWithZeroHom_eq_coe {α : Type u_2} {β : Type u_3} { : Preorder α} {hα' : MulZeroOneClass α} { : Preorder β} {hβ' : MulZeroOneClass β} (f : α →*₀o β) :
@[simp]
theorem OrderMonoidWithZeroHom.toOrderMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} { : Preorder α} {hα' : MulZeroOneClass α} { : Preorder β} {hβ' : MulZeroOneClass β} (f : α →*₀o β) :

Any ordered group is isomorphic to the units of itself adjoined with 0.

Equations
@[simp]
theorem OrderMonoidIso.val_unitsWithZero_symm_apply {α : Type u_6} [Group α] [Preorder α] (a : α) :
(unitsWithZero.symm a) = a
@[simp]