Documentation

Mathlib.Algebra.GroupWithZero.WithZero

Adjoining a zero to a group #

This file proves that one can adjoin a new zero element to a group and get a group with zero.

Main definitions #

instance WithZero.one {α : Type u_1} [One α] :
Equations
@[simp]
theorem WithZero.coe_one {α : Type u_1} [One α] :
1 = 1
instance WithZero.instMulZeroClass {α : Type u_1} [Mul α] :
Equations
@[simp]
theorem WithZero.coe_mul {α : Type u_1} [Mul α] (a b : α) :
↑(a * b) = a * b
theorem WithZero.unzero_mul {α : Type u_1} [Mul α] {x y : WithZero α} (hxy : x * y 0) :
unzero hxy = unzero * unzero
Equations
Equations

Coercion as a monoid hom.

Equations
@[simp]
theorem WithZero.coeMonoidHom_apply {α : Type u_1} [MulOneClass α] (a✝ : α) :
coeMonoidHom a✝ = a✝
theorem WithZero.monoidWithZeroHom_ext {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] f g : WithZero α →*₀ β (h : (↑f).comp coeMonoidHom = (↑g).comp coeMonoidHom) :
f = g
theorem WithZero.monoidWithZeroHom_ext_iff {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] {f g : WithZero α →*₀ β} :
noncomputable def WithZero.lift' {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] :
(α →* β) (WithZero α →*₀ β)

The (multiplicative) universal property of WithZero.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem WithZero.lift'_symm_apply_apply {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (F : WithZero α →*₀ β) (a✝ : α) :
(lift'.symm F) a✝ = F a✝
theorem WithZero.lift'_zero {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : α →* β) :
(lift' f) 0 = 0
@[simp]
theorem WithZero.lift'_coe {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : α →* β) (x : α) :
(lift' f) x = f x
theorem WithZero.lift'_unique {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : WithZero α →*₀ β) :
noncomputable def WithZero.map' {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) :

The MonoidWithZero homomorphism WithZero α →* WithZero β induced by a monoid homomorphism f : α →* β.

Equations
theorem WithZero.map'_zero {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) :
(map' f) 0 = 0
@[simp]
theorem WithZero.map'_coe {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) (x : α) :
(map' f) x = (f x)
@[simp]
theorem WithZero.map'_id {β : Type u_2} [MulOneClass β] :
theorem WithZero.map'_map' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →* β) (g : β →* γ) (x : WithZero α) :
(map' g) ((map' f) x) = (map' (g.comp f)) x
@[simp]
theorem WithZero.map'_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →* β) (g : β →* γ) :
map' (g.comp f) = (map' g).comp (map' f)
instance WithZero.pow {α : Type u_1} [One α] [Pow α ] :
Equations
@[simp]
theorem WithZero.coe_pow {α : Type u_1} [One α] [Pow α ] (a : α) (n : ) :
↑(a ^ n) = a ^ n
Equations
  • One or more equations did not get rendered due to their size.
Equations
instance WithZero.inv {α : Type u_1} [Inv α] :

Extend the inverse operation on α to WithZero α by sending 0 to 0.

Equations
@[simp]
theorem WithZero.coe_inv {α : Type u_1} [Inv α] (a : α) :
a⁻¹ = (↑a)⁻¹
@[simp]
theorem WithZero.inv_zero {α : Type u_1} [Inv α] :
0⁻¹ = 0
Equations
instance WithZero.div {α : Type u_1} [Div α] :
Equations
theorem WithZero.coe_div {α : Type u_1} [Div α] (a b : α) :
↑(a / b) = a / b
instance WithZero.instPowInt {α : Type u_1} [One α] [Pow α ] :
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem WithZero.coe_zpow {α : Type u_1} [One α] [Pow α ] (a : α) (n : ) :
↑(a ^ n) = a ^ n
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations

If α is a group then WithZero α is a group with zero.

Equations
  • One or more equations did not get rendered due to their size.

Any group is isomorphic to the units of itself adjoined with 0.

Equations
def WithZero.withZeroUnitsEquiv {G : Type u_4} [GroupWithZero G] [DecidablePred fun (a : G) => a = 0] :

Any group with zero is isomorphic to adjoining 0 to the units of itself.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def MulEquiv.withZero {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : α ≃* β) :

A version of Equiv.optionCongr for WithZero.

Equations
noncomputable def MulEquiv.unzero {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : WithZero α ≃* WithZero β) :
α ≃* β

The inverse of MulEquiv.withZero.

Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations