Documentation

Carleson.ToMathlib.Interval

theorem Set.Ico_subset_Ici {α : Type u_1} {a b c : α} [Preorder α] (h : c a) :
Ico a b Ici c
theorem Set.Icc_subset_Ici {α : Type u_1} {a b c : α} [Preorder α] (h : c a) :
Icc a b Ici c
theorem Set.Ioc_subset_Ioi {α : Type u_1} {a b c : α} [Preorder α] (h : c a) :
Ioc a b Ioi c
theorem Set.Ioo_subset_Ioi {α : Type u_1} {a b c : α} [Preorder α] (h : c a) :
Ioo a b Ioi c
theorem Set.iUnion_Ico_eq_Ici {α : Type u_1} [LinearOrder α] {f : α} (hf : ∀ (n : ), f 0 f n) (h2f : ¬BddAbove (range f)) :
⋃ (i : ), Ico (f i) (f (i + 1)) = Ici (f 0)
theorem Set.iUnion_Ioc_eq_Ioi {α : Type u_1} [LinearOrder α] {f : α} (hf : ∀ (n : ), f 0 f n) (h2f : ¬BddAbove (range f)) :
⋃ (i : ), Ioc (f i) (f (i + 1)) = Ioi (f 0)
theorem Set.pairwise_disjoint_Ico_monotone {α : Type u_1} [LinearOrder α] {ι : Type u_2} [LinearOrder ι] [SuccOrder ι] {f : ια} (hf : Monotone f) :
Pairwise (Function.onFun Disjoint fun (i : ι) => Ico (f i) (f (Order.succ i)))
theorem Set.pairwise_disjoint_Ioc_monotone {α : Type u_1} [LinearOrder α] {ι : Type u_2} [LinearOrder ι] [SuccOrder ι] {f : ια} (hf : Monotone f) :
Pairwise (Function.onFun Disjoint fun (i : ι) => Ioc (f i) (f (Order.succ i)))