Documentation

Carleson.LipschitzNorm

Inhomogeneous Lipschitz norm #

This file defines the Lipschitz norm, which probably in some form should end up in Mathlib. Lemmas about this norm that are proven in Carleson are collected here.

TODO: Assess Mathlib-readiness, complete basic results, optimize imports.

TODO The iLipENorm should be properly generalized to Mathlib standards. Until then, it is defined in Defs.lean instead. See PR #493.

/-- The inhomogeneous Lipschitz norm on a ball. -/ def iLipENorm (ฯ† : X โ†’ ๐•œ) (xโ‚€ : X) (R : โ„) : โ„โ‰ฅ0โˆž := (โจ† x โˆˆ ball xโ‚€ R, โ€–ฯ† xโ€–โ‚‘) + ENNReal.ofReal R * โจ† (x โˆˆ ball xโ‚€ R) (y โˆˆ ball xโ‚€ R) (_ : x โ‰  y), โ€–ฯ† x - ฯ† yโ€–โ‚‘ / edist x y

def iLipNNNorm {๐•œ : Type u_1} {X : Type u_2} [NormedField ๐•œ] [PseudoMetricSpace X] (ฯ† : X โ†’ ๐•œ) (xโ‚€ : X) (R : โ„) :

The NNReal version of the inhomogeneous Lipschitz norm on a ball, iLipENorm.

Equations
Instances For
    theorem iLipENorm_le_add {๐•œ : Type u_1} {X : Type u_2} {z : X} {R : โ„} {C C' : NNReal} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (h : โˆ€ x โˆˆ Metric.ball z R, โ€–ฯ† xโ€– โ‰ค โ†‘C) (h' : โˆ€ x โˆˆ Metric.ball z R, โˆ€ x' โˆˆ Metric.ball z R, x โ‰  x' โ†’ โ€–ฯ† x - ฯ† x'โ€– โ‰ค โ†‘C' * dist x x' / R) :
    iLipENorm ฯ† z R โ‰ค โ†‘C + โ†‘C'
    theorem iLipENorm_le {๐•œ : Type u_1} {X : Type u_2} {z : X} {R : โ„} {C : NNReal} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (h : โˆ€ x โˆˆ Metric.ball z R, โ€–ฯ† xโ€– โ‰ค 2โปยน * โ†‘C) (h' : โˆ€ x โˆˆ Metric.ball z R, โˆ€ x' โˆˆ Metric.ball z R, x โ‰  x' โ†’ โ€–ฯ† x - ฯ† x'โ€– โ‰ค 2โปยน * โ†‘C * dist x x' / R) :
    iLipENorm ฯ† z R โ‰ค โ†‘C
    theorem enorm_le_iLipENorm_of_mem {๐•œ : Type u_1} {X : Type u_2} {x z : X} {R : โ„} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (hx : x โˆˆ Metric.ball z R) :
    theorem LipschitzOnWith.of_iLipENorm_ne_top {๐•œ : Type u_1} {X : Type u_2} {z : X} {R : โ„} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (hฯ† : iLipENorm ฯ† z R โ‰  โŠค) :
    LipschitzOnWith (iLipNNNorm ฯ† z R / R.toNNReal) ฯ† (Metric.ball z R)
    theorem continuous_of_iLipENorm_ne_top {๐•œ : Type u_1} {X : Type u_2} [MetricSpace X] [NormedField ๐•œ] {z : X} {R : โ„} {ฯ† : X โ†’ ๐•œ} (hฯ† : tsupport ฯ† โІ Metric.ball z R) (h'ฯ† : iLipENorm ฯ† z R โ‰  โŠค) :
    theorem norm_le_iLipNNNorm_of_mem {๐•œ : Type u_1} {X : Type u_2} {x z : X} {R : โ„} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (hฯ† : iLipENorm ฯ† z R โ‰  โŠค) (hx : x โˆˆ Metric.ball z R) :
    โ€–ฯ† xโ€– โ‰ค โ†‘(iLipNNNorm ฯ† z R)
    theorem norm_le_iLipNNNorm_of_subset {๐•œ : Type u_1} {X : Type u_2} {x z : X} {R : โ„} {ฯ† : X โ†’ ๐•œ} [MetricSpace X] [NormedField ๐•œ] (hฯ† : iLipENorm ฯ† z R โ‰  โŠค) (h : Function.support ฯ† โІ Metric.ball z R) :
    โ€–ฯ† xโ€– โ‰ค โ†‘(iLipNNNorm ฯ† z R)