Inhomogeneous Lipschitz norm #
This file defines the Lipschitz norm, which probably in some form should end up in Mathlib. Lemmas about this norm that are proven in Carleson are collected here.
TODO: Assess Mathlib-readiness, complete basic results, optimize imports.
TODO The iLipENorm should be properly generalized to Mathlib standards.
Until then, it is defined in Defs.lean instead. See PR #493.
/-- The inhomogeneous Lipschitz norm on a ball. -/ def iLipENorm (ฯ : X โ ๐) (xโ : X) (R : โ) : โโฅ0โ := (โจ x โ ball xโ R, โฯ xโโ) + ENNReal.ofReal R * โจ (x โ ball xโ R) (y โ ball xโ R) (_ : x โ y), โฯ x - ฯ yโโ / edist x y
def
iLipNNNorm
{๐ : Type u_1}
{X : Type u_2}
[NormedField ๐]
[PseudoMetricSpace X]
(ฯ : X โ ๐)
(xโ : X)
(R : โ)
:
The NNReal version of the inhomogeneous Lipschitz norm on a ball, iLipENorm.
Equations
- iLipNNNorm ฯ xโ R = (iLipENorm ฯ xโ R).toNNReal
Instances For
theorem
iLipENorm_le_add
{๐ : Type u_1}
{X : Type u_2}
{z : X}
{R : โ}
{C C' : NNReal}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(h : โ x โ Metric.ball z R, โฯ xโ โค โC)
(h' : โ x โ Metric.ball z R, โ x' โ Metric.ball z R, x โ x' โ โฯ x - ฯ x'โ โค โC' * dist x x' / R)
:
theorem
iLipENorm_le
{๐ : Type u_1}
{X : Type u_2}
{z : X}
{R : โ}
{C : NNReal}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(h : โ x โ Metric.ball z R, โฯ xโ โค 2โปยน * โC)
(h' : โ x โ Metric.ball z R, โ x' โ Metric.ball z R, x โ x' โ โฯ x - ฯ x'โ โค 2โปยน * โC * dist x x' / R)
:
theorem
enorm_le_iLipENorm_of_mem
{๐ : Type u_1}
{X : Type u_2}
{x z : X}
{R : โ}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(hx : x โ Metric.ball z R)
:
theorem
LipschitzOnWith.of_iLipENorm_ne_top
{๐ : Type u_1}
{X : Type u_2}
{z : X}
{R : โ}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(hฯ : iLipENorm ฯ z R โ โค)
:
LipschitzOnWith (iLipNNNorm ฯ z R / R.toNNReal) ฯ (Metric.ball z R)
theorem
continuous_of_iLipENorm_ne_top
{๐ : Type u_1}
{X : Type u_2}
[MetricSpace X]
[NormedField ๐]
{z : X}
{R : โ}
{ฯ : X โ ๐}
(hฯ : tsupport ฯ โ Metric.ball z R)
(h'ฯ : iLipENorm ฯ z R โ โค)
:
Continuous ฯ
theorem
norm_le_iLipNNNorm_of_mem
{๐ : Type u_1}
{X : Type u_2}
{x z : X}
{R : โ}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(hฯ : iLipENorm ฯ z R โ โค)
(hx : x โ Metric.ball z R)
:
theorem
norm_le_iLipNNNorm_of_subset
{๐ : Type u_1}
{X : Type u_2}
{x z : X}
{R : โ}
{ฯ : X โ ๐}
[MetricSpace X]
[NormedField ๐]
(hฯ : iLipENorm ฯ z R โ โค)
(h : Function.support ฯ โ Metric.ball z R)
: