s
can be covered by at most N
balls with radius r
.
- mk: ∀ {X : Type u_1} [inst : PseudoMetricSpace X] {s : Set X} {n : ℕ} {r : ℝ} (balls : Finset X), balls.card ≤ n → s ⊆ ⋃ x ∈ balls, Metric.ball x r → CoveredByBalls s n r
Instances
theorem
coveredByBalls_iff
{X : Type u_1}
[PseudoMetricSpace X]
(s : Set X)
(n : ℕ)
(r : ℝ)
:
CoveredByBalls s n r ↔ ∃ (balls : Finset X), balls.card ≤ n ∧ s ⊆ ⋃ x ∈ balls, Metric.ball x r
theorem
CoveredByBalls.mono_set
{X : Type u_1}
[PseudoMetricSpace X]
{s t : Set X}
{n : ℕ}
{r : ℝ}
(h : CoveredByBalls t n r)
(h2 : s ⊆ t)
:
CoveredByBalls s n r
theorem
CoveredByBalls.mono_nat
{X : Type u_1}
[PseudoMetricSpace X]
{s : Set X}
{n m : ℕ}
{r : ℝ}
(h : CoveredByBalls s n r)
(h2 : n ≤ m)
:
CoveredByBalls s m r
theorem
CoveredByBalls.mono_real
{X : Type u_1}
[PseudoMetricSpace X]
{s : Set X}
{n : ℕ}
{r r' : ℝ}
(h : CoveredByBalls s n r)
(h2 : r ≤ r')
:
CoveredByBalls s n r'
@[simp]
theorem
CoveredByBalls.empty
{X : Type u_1}
[PseudoMetricSpace X]
{n : ℕ}
{r : ℝ}
:
CoveredByBalls ∅ n r
@[simp]
theorem
CoveredByBalls.zero_left
{X : Type u_1}
[PseudoMetricSpace X]
{s : Set X}
{r : ℝ}
:
CoveredByBalls s 0 r ↔ s = ∅
@[simp]
theorem
CoveredByBalls.zero_right
{X : Type u_1}
[PseudoMetricSpace X]
{s : Set X}
{n : ℕ}
:
CoveredByBalls s n 0 ↔ s = ∅
Balls of radius r
in are covered by n
balls of radius r'
Equations
- BallsCoverBalls X r r' n = ∀ (x : X), CoveredByBalls (Metric.ball x r) n r'
Instances For
theorem
CoveredByBalls.trans
{X : Type u_1}
[PseudoMetricSpace X]
{s : Set X}
{n m : ℕ}
{r r' : ℝ}
(h : CoveredByBalls s n r)
(h2 : BallsCoverBalls X r r' m)
:
CoveredByBalls s (n * m) r'
theorem
BallsCoverBalls.mono
{X : Type u_1}
[PseudoMetricSpace X]
{n : ℕ}
{r₁ r₂ r₃ : ℝ}
(h : BallsCoverBalls X r₂ r₃ n)
(h2 : r₁ ≤ r₂)
:
BallsCoverBalls X r₁ r₃ n
theorem
BallsCoverBalls.trans
{X : Type u_1}
[PseudoMetricSpace X]
{n m : ℕ}
{r₁ r₂ r₃ : ℝ}
(h1 : BallsCoverBalls X r₁ r₂ n)
(h2 : BallsCoverBalls X r₂ r₃ m)
:
BallsCoverBalls X r₁ r₃ (n * m)
theorem
BallCoversSelf
{X : Type u_1}
[PseudoMetricSpace X]
(x : X)
(r : ℝ)
:
CoveredByBalls (Metric.ball x r) 1 r
theorem
BallsCoverBalls.pow_mul
{X : Type u_1}
[PseudoMetricSpace X]
{n : ℕ}
{r a : ℝ}
{k : ℕ}
(h : ∀ (r : ℝ), BallsCoverBalls X (a * r) r n)
:
BallsCoverBalls X (a ^ k * r) r (n ^ k)
theorem
BallsCoverBalls.pow
{X : Type u_1}
[PseudoMetricSpace X]
{n : ℕ}
{a : ℝ}
{k : ℕ}
(h : ∀ (r : ℝ), BallsCoverBalls X (a * r) r n)
:
BallsCoverBalls X (a ^ k) 1 (n ^ k)