Typing Rules.
Lemma wf_typ : forall Γ t T, Γ ⊢e t : T -> Γ ⊣e.1 subgoals, subgoal 1 (ID 23895)
============================
forall (Γ : Env) (t T : Term), Γ ⊢e t : T -> Γ ⊣e
(dependent evars:)
induction 1; intros; intuition.No more subgoals.
(dependent evars:)
Qed.
Lemma wf_typ_eq : forall Γ M N T, Γ ⊢e M = N : T -> Γ ⊣e.1 subgoals, subgoal 1 (ID 23990)
============================
forall (Γ : Env) (M N T : Term), Γ ⊢e M = N : T -> Γ ⊣e
(dependent evars:)
induction 1; intuition.1 subgoals, subgoal 1 (ID 24142)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
H2 : A :: Γ ⊢e M : B
H3 : Γ ⊢e N : A
============================
Γ ⊣e
(dependent evars:)
apply wf_typ in H0; trivial.No more subgoals.
(dependent evars:)
Qed.
Hint Resolve wf_typ wf_typ_eq.Warning: the hint: eapply wf_typ will only be used by eauto
Warning: the hint: eapply wf_typ_eq will only be used by eauto
Theorem weakening: (forall Δ M T, Δ ⊢e M : T -> forall Γ A s n Δ', ins_in_env Γ A n Δ Δ' -> Γ ⊢e A :!s ->
Δ' ⊢e M ↑ 1 # n : T ↑ 1 # n ) /\
(forall Δ M N T, Δ ⊢e M = N : T -> forall Γ A s n Δ', ins_in_env Γ A n Δ Δ' -> Γ ⊢e A :!s ->
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : T ↑ 1 # n ) /\
(forall Γ, Γ ⊣e -> forall Δ Γ' n A , ins_in_env Δ A n Γ Γ' -> forall s, Δ ⊢e A : !s -> Γ' ⊣e).1 subgoals, subgoal 1 (ID 24182)
============================
(forall (Δ : Env) (M T : Term),
Δ ⊢e M : T ->
forall (Γ : Env) (A : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ A n Δ Δ' -> Γ ⊢e A : !s -> Δ' ⊢e M ↑ 1 # n : T ↑ 1 # n) /\
(forall (Δ : Env) (M N T : Term),
Δ ⊢e M = N : T ->
forall (Γ : Env) (A : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ A n Δ Δ' ->
Γ ⊢e A : !s -> Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : T ↑ 1 # n) /\
(forall Γ : Env,
Γ ⊣e ->
forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e)
(dependent evars:)
apply typ_induc; simpl in *; intros.17 subgoals, subgoal 1 (ID 24229)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
Γ0 : Env
A : Term
s0 : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A n Γ Δ'
H1 : Γ0 ⊢e A : !s0
============================
Δ' ⊢e !s : !t
subgoal 2 (ID 24242) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars:)
eauto.16 subgoals, subgoal 1 (ID 24242)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 2 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using ,)
destruct le_gt_dec.17 subgoals, subgoal 1 (ID 24890)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
Δ' ⊢e #(S v) : A ↑ 1 # n
subgoal 2 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using ,)
constructor. 18 subgoals, subgoal 1 (ID 24894)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
Δ' ⊣e
subgoal 2 (ID 24895) is:
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using ,)
eapply H; eauto. 17 subgoals, subgoal 1 (ID 24895)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 2 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
destruct i as (AA & ?& ?). 17 subgoals, subgoal 1 (ID 24916)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 2 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
exists AA; split. 18 subgoals, subgoal 1 (ID 24920)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n = AA ↑ (S (S v))
subgoal 2 (ID 24921) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
rewrite H2.18 subgoals, subgoal 1 (ID 24922)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↑ (S v) ↑ 1 # n = AA ↑ (S (S v))
subgoal 2 (ID 24921) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
change (S (S v)) with (1+ S v). 18 subgoals, subgoal 1 (ID 24924)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↑ (S v) ↑ 1 # n = AA ↑ (1 + S v)
subgoal 2 (ID 24921) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
rewrite liftP3; trivial. 19 subgoals, subgoal 1 (ID 24926)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
0 <= n
subgoal 2 (ID 24927) is:
n <= 0 + S v
subgoal 3 (ID 24921) is:
AA ↓ S v ∈ Δ'
subgoal 4 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 5 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 6 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 8 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 10 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 11 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 12 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 13 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 16 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 17 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 18 (ID 24477) is:
Γ' ⊣e
subgoal 19 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
intuition. 18 subgoals, subgoal 1 (ID 24927)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
n <= 0 + S v
subgoal 2 (ID 24921) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
simpl; constructor; trivial. 17 subgoals, subgoal 1 (ID 24921)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↓ S v ∈ Δ'
subgoal 2 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using ,)
eapply ins_item_ge.19 subgoals, subgoal 1 (ID 24953)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
ins_in_env ?24951 ?24949 ?24950 ?24952 Δ'
subgoal 2 (ID 24954) is:
?24950 <= v
subgoal 3 (ID 24955) is:
AA ↓ v ∈ ?24952
subgoal 4 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 5 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 6 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 8 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 10 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 11 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 12 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 13 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 16 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 17 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 18 (ID 24477) is:
Γ' ⊣e
subgoal 19 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 open, ?24950 open, ?24951 open, ?24952 open,)
apply H0. 18 subgoals, subgoal 1 (ID 24954)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
n <= v
subgoal 2 (ID 24955) is:
AA ↓ v ∈ Γ
subgoal 3 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using ,)
trivial. 17 subgoals, subgoal 1 (ID 24955)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 24891) is:
Δ' ⊢e #v : A ↑ 1 # n
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using ,)
trivial. 16 subgoals, subgoal 1 (ID 24891)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
Δ' ⊢e #v : A ↑ 1 # n
subgoal 2 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using ,)
constructor. 17 subgoals, subgoal 1 (ID 24958)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
Δ' ⊣e
subgoal 2 (ID 24959) is:
A ↑ 1 # n ↓ v ⊂ Δ'
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using ,)
eapply H; eauto. 16 subgoals, subgoal 1 (ID 24959)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
A ↑ 1 # n ↓ v ⊂ Δ'
subgoal 2 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using ,)
eapply ins_item_lift_lt. 18 subgoals, subgoal 1 (ID 24973)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
ins_in_env ?24971 ?24970 n ?24972 Δ'
subgoal 2 (ID 24974) is:
n > v
subgoal 3 (ID 24975) is:
A ↓ v ⊂ ?24972
subgoal 4 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 5 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 7 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 9 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 10 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 11 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 12 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 15 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 16 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 17 (ID 24477) is:
Γ' ⊣e
subgoal 18 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 open, ?24971 open, ?24972 open,)
apply H0. 17 subgoals, subgoal 1 (ID 24974)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
n > v
subgoal 2 (ID 24975) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using ,)
trivial. 16 subgoals, subgoal 1 (ID 24975)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 24260) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using ,)
trivial.15 subgoals, subgoal 1 (ID 24260)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) : !u
subgoal 2 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 4 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 6 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 7 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 8 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 9 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 13 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24477) is:
Γ' ⊣e
subgoal 15 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using ,)
econstructor. 17 subgoals, subgoal 1 (ID 24981)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Rel ?24979 ?24980 u
subgoal 2 (ID 24982) is:
Δ' ⊢e A ↑ 1 # n : !?24979
subgoal 3 (ID 24983) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !?24980
subgoal 4 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 open, ?24980 open,)
apply r. 16 subgoals, subgoal 1 (ID 24982)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e A ↑ 1 # n : !s
subgoal 2 (ID 24983) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !t
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using ,)
eapply H; eauto. 15 subgoals, subgoal 1 (ID 24983)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !t
subgoal 2 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 4 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 6 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 7 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 8 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 9 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 13 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24477) is:
Γ' ⊣e
subgoal 15 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using ,)
eapply H0. 16 subgoals, subgoal 1 (ID 24996)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
ins_in_env ?24993 ?24994 (S n) (A :: Γ) (A ↑ 1 # n :: Δ')
subgoal 2 (ID 24997) is:
?24993 ⊢e ?24994 : !?24995
subgoal 3 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 open, ?24994 open, ?24995 open,)
constructor; apply H1. 15 subgoals, subgoal 1 (ID 24997)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Γ0 ⊢e A0 : !?24995
subgoal 2 (ID 24281) is:
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 4 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 6 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 7 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 8 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 9 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 13 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24477) is:
Γ' ⊣e
subgoal 15 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 open,)
apply H2.14 subgoals, subgoal 1 (ID 24281)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s -> Δ' ⊢e A ↑ 1 # n : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : B ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e λ [A ↑ 1 # n], b ↑ 1 # (S n) : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 2 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 3 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 4 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 5 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 6 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 7 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 8 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 12 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24477) is:
Γ' ⊣e
subgoal 14 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using ,)
econstructor. 17 subgoals, subgoal 1 (ID 25008)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s -> Δ' ⊢e A ↑ 1 # n : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : B ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s
============================
Rel ?25005 ?25006 ?25007
subgoal 2 (ID 25009) is:
Δ' ⊢e A ↑ 1 # n : !?25005
subgoal 3 (ID 25010) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !?25006
subgoal 4 (ID 25011) is:
A ↑ 1 # n :: Δ' ⊢e b ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 5 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 6 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 8 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 9 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 10 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 11 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 14 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 15 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 16 (ID 24477) is:
Γ' ⊣e
subgoal 17 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 open, ?25006 open, ?25007 open,)
apply r. 16 subgoals, subgoal 1 (ID 25009)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s -> Δ' ⊢e A ↑ 1 # n : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : B ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e A ↑ 1 # n : !s1
subgoal 2 (ID 25010) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !s2
subgoal 3 (ID 25011) is:
A ↑ 1 # n :: Δ' ⊢e b ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 4 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 5 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 7 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 8 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 9 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 10 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 13 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 14 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 15 (ID 24477) is:
Γ' ⊣e
subgoal 16 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using ,)
eapply H; eauto. 15 subgoals, subgoal 1 (ID 25010)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s -> Δ' ⊢e A ↑ 1 # n : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : B ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s
============================
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !s2
subgoal 2 (ID 25011) is:
A ↑ 1 # n :: Δ' ⊢e b ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 3 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 4 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 6 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 7 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 8 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 9 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 12 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 13 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 14 (ID 24477) is:
Γ' ⊣e
subgoal 15 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using ,)
eapply H0; eauto. 14 subgoals, subgoal 1 (ID 25011)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s -> Δ' ⊢e A ↑ 1 # n : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : B ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s
============================
A ↑ 1 # n :: Δ' ⊢e b ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 2 (ID 24297) is:
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 3 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 4 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 5 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 6 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 7 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 8 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 12 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24477) is:
Γ' ⊣e
subgoal 14 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using ,)
eapply H1; eauto.13 subgoals, subgoal 1 (ID 24297)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : B [ ← b] ↑ 1 # n
subgoal 2 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using ,)
change n with (0+n). 13 subgoals, subgoal 1 (ID 25042)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e a ↑ 1 # (0 + n) · b ↑ 1 # (0 + n) : B [ ← b] ↑ 1 # (0 + n)
subgoal 2 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using ,)
rewrite substP1. 13 subgoals, subgoal 1 (ID 25043)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e a ↑ 1 # (0 + n) · b ↑ 1 # (0 + n)
: (B ↑ 1 # (S (0 + n))) [ ← b ↑ 1 # n]
subgoal 2 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using ,)
simpl.13 subgoals, subgoal 1 (ID 25044)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e a ↑ 1 # n · b ↑ 1 # n : (B ↑ 1 # (S n)) [ ← b ↑ 1 # n]
subgoal 2 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using ,)
econstructor. 14 subgoals, subgoal 1 (ID 25051)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e a ↑ 1 # n : Π (?25050), B ↑ 1 # (S n)
subgoal 2 (ID 25052) is:
Δ' ⊢e b ↑ 1 # n : ?25050
subgoal 3 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 4 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 5 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 6 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 7 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 8 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 11 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 12 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 13 (ID 24477) is:
Γ' ⊣e
subgoal 14 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 open,)
eapply H; eauto. 13 subgoals, subgoal 1 (ID 25052)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e b : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e b ↑ 1 # n : A ↑ 1 # n
subgoal 2 (ID 24313) is:
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using ,)
eapply H0; eauto.12 subgoals, subgoal 1 (ID 24313)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = B ↑ 1 # n : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e a ↑ 1 # n : B ↑ 1 # n
subgoal 2 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 3 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using ,)
apply Cnv with (A↑ 1 # n) s; intuition.13 subgoals, subgoal 1 (ID 25071)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = B ↑ 1 # n : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e A ↑ 1 # n = B ↑ 1 # n : !s
subgoal 2 (ID 25072) is:
Δ' ⊢e a ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 4 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using ,)
eapply H; eauto. 12 subgoals, subgoal 1 (ID 25072)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = B ↑ 1 # n : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e a ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e a ↑ 1 # n : A ↑ 1 # n
subgoal 2 (ID 24326) is:
Δ' ⊢e !s = !s : !t
subgoal 3 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using ,)
eapply H0; eauto.11 subgoals, subgoal 1 (ID 24326)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
Γ0 : Env
A : Term
s0 : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A n Γ Δ'
H1 : Γ0 ⊢e A : !s0
============================
Δ' ⊢e !s = !s : !t
subgoal 2 (ID 24339) is:
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using ,)
eauto.10 subgoals, subgoal 1 (ID 24339)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e (if le_gt_dec n v then #(S v) else #v) =
(if le_gt_dec n v then #(S v) else #v) : A ↑ 1 # n
subgoal 2 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 3 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using ,)
destruct le_gt_dec.11 subgoals, subgoal 1 (ID 25387)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
Δ' ⊢e #(S v) = #(S v) : A ↑ 1 # n
subgoal 2 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using ,)
constructor. 12 subgoals, subgoal 1 (ID 25391)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
Δ' ⊣e
subgoal 2 (ID 25392) is:
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using ,)
eapply H; eauto. 11 subgoals, subgoal 1 (ID 25392)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 2 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
destruct i as (AA & ?& ?).11 subgoals, subgoal 1 (ID 25413)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n ↓ S v ⊂ Δ'
subgoal 2 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
exists AA; split. 12 subgoals, subgoal 1 (ID 25417)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
A ↑ 1 # n = AA ↑ (S (S v))
subgoal 2 (ID 25418) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
rewrite H2.12 subgoals, subgoal 1 (ID 25419)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↑ (S v) ↑ 1 # n = AA ↑ (S (S v))
subgoal 2 (ID 25418) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
change (S (S v)) with (1+ S v). 12 subgoals, subgoal 1 (ID 25421)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↑ (S v) ↑ 1 # n = AA ↑ (1 + S v)
subgoal 2 (ID 25418) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
rewrite liftP3; trivial.13 subgoals, subgoal 1 (ID 25423)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
0 <= n
subgoal 2 (ID 25424) is:
n <= 0 + S v
subgoal 3 (ID 25418) is:
AA ↓ S v ∈ Δ'
subgoal 4 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
intuition. 12 subgoals, subgoal 1 (ID 25424)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
n <= 0 + S v
subgoal 2 (ID 25418) is:
AA ↓ S v ∈ Δ'
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
simpl; constructor; trivial. 11 subgoals, subgoal 1 (ID 25418)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↓ S v ∈ Δ'
subgoal 2 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using ,)
eapply ins_item_ge.13 subgoals, subgoal 1 (ID 25450)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
ins_in_env ?25448 ?25446 ?25447 ?25449 Δ'
subgoal 2 (ID 25451) is:
?25447 <= v
subgoal 3 (ID 25452) is:
AA ↓ v ∈ ?25449
subgoal 4 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 5 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 6 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 7 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 10 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 11 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 12 (ID 24477) is:
Γ' ⊣e
subgoal 13 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 open, ?25447 open, ?25448 open, ?25449 open,)
apply H0. 12 subgoals, subgoal 1 (ID 25451)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
n <= v
subgoal 2 (ID 25452) is:
AA ↓ v ∈ Γ
subgoal 3 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using ,)
trivial. 11 subgoals, subgoal 1 (ID 25452)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
l : n <= v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 25388) is:
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using ,)
trivial. 10 subgoals, subgoal 1 (ID 25388)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
Δ' ⊢e #v = #v : A ↑ 1 # n
subgoal 2 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 3 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using ,)
constructor. 11 subgoals, subgoal 1 (ID 25455)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
Δ' ⊣e
subgoal 2 (ID 25456) is:
A ↑ 1 # n ↓ v ⊂ Δ'
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using ,)
eapply H; eauto.10 subgoals, subgoal 1 (ID 25456)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
A ↑ 1 # n ↓ v ⊂ Δ'
subgoal 2 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 3 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using ,)
eapply ins_item_lift_lt. 12 subgoals, subgoal 1 (ID 25470)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
ins_in_env ?25468 ?25467 n ?25469 Δ'
subgoal 2 (ID 25471) is:
n > v
subgoal 3 (ID 25472) is:
A ↓ v ⊂ ?25469
subgoal 4 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 5 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 6 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 9 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 10 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 11 (ID 24477) is:
Γ' ⊣e
subgoal 12 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 open, ?25468 open, ?25469 open,)
apply H0. 11 subgoals, subgoal 1 (ID 25471)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
n > v
subgoal 2 (ID 25472) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using ,)
trivial. 10 subgoals, subgoal 1 (ID 25472)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ Γ' : Env) (n : nat) (A : Term),
ins_in_env Δ A n Γ Γ' -> forall s : Sorts, Δ ⊢e A : !s -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
g : n > v
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 24359) is:
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 3 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using ,)
trivial.9 subgoals, subgoal 1 (ID 24359)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n = B' ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e Π (A ↑ 1 # n), B ↑ 1 # (S n) = Π (A' ↑ 1 # n), B' ↑ 1 # (S n) : !u
subgoal 2 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 4 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24477) is:
Γ' ⊣e
subgoal 9 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using ,)
apply cPi_eq with s t. 11 subgoals, subgoal 1 (ID 25473)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n = B' ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Rel s t u
subgoal 2 (ID 25474) is:
Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
subgoal 3 (ID 25475) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) = B' ↑ 1 # (S n) : !t
subgoal 4 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 5 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 8 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 9 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 10 (ID 24477) is:
Γ' ⊣e
subgoal 11 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using ,)
trivial. 10 subgoals, subgoal 1 (ID 25474)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n = B' ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
subgoal 2 (ID 25475) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) = B' ↑ 1 # (S n) : !t
subgoal 3 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using ,)
eapply H; eauto. 9 subgoals, subgoal 1 (ID 25475)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n = B' ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) = B' ↑ 1 # (S n) : !t
subgoal 2 (ID 24382) is:
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 3 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 4 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24477) is:
Γ' ⊣e
subgoal 9 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using ,)
eapply H0; eauto.8 subgoals, subgoal 1 (ID 24382)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e λ [A ↑ 1 # n], M ↑ 1 # (S n) = λ [A' ↑ 1 # n], M' ↑ 1 # (S n)
: Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 2 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 3 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24477) is:
Γ' ⊣e
subgoal 8 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using ,)
apply cLa_eq with s t u; trivial. 10 subgoals, subgoal 1 (ID 25496)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
subgoal 2 (ID 25497) is:
A ↑ 1 # n :: Δ' ⊢e M ↑ 1 # (S n) = M' ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 3 (ID 25498) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !t
subgoal 4 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 7 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 8 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 9 (ID 24477) is:
Γ' ⊣e
subgoal 10 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using ,)
eapply H; eauto. 9 subgoals, subgoal 1 (ID 25497)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s0
============================
A ↑ 1 # n :: Δ' ⊢e M ↑ 1 # (S n) = M' ↑ 1 # (S n) : B ↑ 1 # (S n)
subgoal 2 (ID 25498) is:
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !t
subgoal 3 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 4 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 6 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 7 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 8 (ID 24477) is:
Γ' ⊣e
subgoal 9 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using ,)
eapply H0; eauto. 8 subgoals, subgoal 1 (ID 25498)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = A' ↑ 1 # n : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : B ↑ 1 # n
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H2 : ins_in_env Γ0 A0 n Γ Δ'
H3 : Γ0 ⊢e A0 : !s0
============================
A ↑ 1 # n :: Δ' ⊢e B ↑ 1 # (S n) : !t
subgoal 2 (ID 24400) is:
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 3 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24477) is:
Γ' ⊣e
subgoal 8 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using ,)
eapply H1; eauto.7 subgoals, subgoal 1 (ID 24400)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 2 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24477) is:
Γ' ⊣e
subgoal 7 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using ,)
change n with (0+n). 7 subgoals, subgoal 1 (ID 25529)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # (0 + n) · N ↑ 1 # (0 + n) =
M' ↑ 1 # (0 + n) · N' ↑ 1 # (0 + n) : B [ ← N] ↑ 1 # (0 + n)
subgoal 2 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24477) is:
Γ' ⊣e
subgoal 7 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using ,)
rewrite substP1. 7 subgoals, subgoal 1 (ID 25530)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # (0 + n) · N ↑ 1 # (0 + n) =
M' ↑ 1 # (0 + n) · N' ↑ 1 # (0 + n) : (B ↑ 1 # (S (0 + n))) [ ← N ↑ 1 # n]
subgoal 2 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24477) is:
Γ' ⊣e
subgoal 7 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using ,)
simpl.7 subgoals, subgoal 1 (ID 25531)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # n · N ↑ 1 # n = M' ↑ 1 # n · N' ↑ 1 # n
: (B ↑ 1 # (S n)) [ ← N ↑ 1 # n]
subgoal 2 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24477) is:
Γ' ⊣e
subgoal 7 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using ,)
apply cApp_eq with (A↑ 1 # n). 8 subgoals, subgoal 1 (ID 25532)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
subgoal 2 (ID 25533) is:
Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 5 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 6 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 7 (ID 24477) is:
Γ' ⊣e
subgoal 8 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using ,)
eapply H; eauto. 7 subgoals, subgoal 1 (ID 25533)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s ->
Δ' ⊢e M ↑ 1 # n = M' ↑ 1 # n : Π (A ↑ 1 # n), B ↑ 1 # (S n)
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e N ↑ 1 # n = N' ↑ 1 # n : A ↑ 1 # n
subgoal 2 (ID 24413) is:
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 4 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 5 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 6 (ID 24477) is:
Γ' ⊣e
subgoal 7 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using ,)
eapply H0; eauto.6 subgoals, subgoal 1 (ID 24413)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H0 : ins_in_env Γ0 A0 n Γ Δ'
H1 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e N ↑ 1 # n = M ↑ 1 # n : A ↑ 1 # n
subgoal 2 (ID 24429) is:
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 3 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 4 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 5 (ID 24477) is:
Γ' ⊣e
subgoal 6 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using ,)
econstructor; eauto.5 subgoals, subgoal 1 (ID 24429)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : A ↑ 1 # n
t0 : Γ ⊢e N = P : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s
============================
Δ' ⊢e M ↑ 1 # n = P ↑ 1 # n : A ↑ 1 # n
subgoal 2 (ID 24446) is:
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 3 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 4 (ID 24477) is:
Γ' ⊣e
subgoal 5 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using ,)
econstructor; eauto. 4 subgoals, subgoal 1 (ID 24446)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n = B ↑ 1 # n : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H1 : ins_in_env Γ0 A0 n Γ Δ'
H2 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e M ↑ 1 # n = N ↑ 1 # n : B ↑ 1 # n
subgoal 2 (ID 24470) is:
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 3 (ID 24477) is:
Γ' ⊣e
subgoal 4 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using ,)
econstructor; eauto.3 subgoals, subgoal 1 (ID 24470)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n : B ↑ 1 # n
t3 : Γ ⊢e N : A
H2 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H3 : ins_in_env Γ0 A0 n Γ Δ'
H4 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
M [ ← N] ↑ 1 # n : B [ ← N] ↑ 1 # n
subgoal 2 (ID 24477) is:
Γ' ⊣e
subgoal 3 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using ,)
change n with (0+n). 3 subgoals, subgoal 1 (ID 26319)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n : B ↑ 1 # n
t3 : Γ ⊢e N : A
H2 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H3 : ins_in_env Γ0 A0 n Γ Δ'
H4 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e (λ [A ↑ 1 # (0 + n)], M ↑ 1 # (S (0 + n))) · N ↑ 1 # (0 + n) =
M [ ← N] ↑ 1 # (0 + n) : B [ ← N] ↑ 1 # (0 + n)
subgoal 2 (ID 24477) is:
Γ' ⊣e
subgoal 3 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using ,)
rewrite 2! substP1. 3 subgoals, subgoal 1 (ID 26321)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n : B ↑ 1 # n
t3 : Γ ⊢e N : A
H2 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H3 : ins_in_env Γ0 A0 n Γ Δ'
H4 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e (λ [A ↑ 1 # (0 + n)], M ↑ 1 # (S (0 + n))) · N ↑ 1 # (0 + n) =
(M ↑ 1 # (S (0 + n))) [ ← N ↑ 1 # n]
: (B ↑ 1 # (S (0 + n))) [ ← N ↑ 1 # n]
subgoal 2 (ID 24477) is:
Γ' ⊣e
subgoal 3 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using ,)
simpl.3 subgoals, subgoal 1 (ID 26322)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e B ↑ 1 # n : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n (A :: Γ) Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e M ↑ 1 # n : B ↑ 1 # n
t3 : Γ ⊢e N : A
H2 : forall (Γ0 : Env) (A0 : Term) (s : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' ->
Γ0 ⊢e A0 : !s -> Δ' ⊢e N ↑ 1 # n : A ↑ 1 # n
Γ0 : Env
A0 : Term
s0 : Sorts
n : nat
Δ' : Env
H3 : ins_in_env Γ0 A0 n Γ Δ'
H4 : Γ0 ⊢e A0 : !s0
============================
Δ' ⊢e (λ [A ↑ 1 # n], M ↑ 1 # (S n)) · N ↑ 1 # n =
(M ↑ 1 # (S n)) [ ← N ↑ 1 # n] : (B ↑ 1 # (S n)) [ ← N ↑ 1 # n]
subgoal 2 (ID 24477) is:
Γ' ⊣e
subgoal 3 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using ,)
apply cBeta with s t u; eauto.2 subgoals, subgoal 1 (ID 24477)
Δ : Env
Γ' : Env
n : nat
A : Term
H : ins_in_env Δ A n nil Γ'
s : Sorts
H0 : Δ ⊢e A : !s
============================
Γ' ⊣e
subgoal 2 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using ,)
inversion H; subst; clear H. 2 subgoals, subgoal 1 (ID 26442)
A : Term
s : Sorts
H0 : nil ⊢e A : !s
============================
A :: nil ⊣e
subgoal 2 (ID 24489) is:
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using ,)
eauto.1 subgoals, subgoal 1 (ID 24489)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
Γ' : Env
n : nat
A0 : Term
H0 : ins_in_env Δ A0 n (A :: Γ) Γ'
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
============================
Γ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using ,)
inversion H0; subst; clear H0.2 subgoals, subgoal 1 (ID 26548)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
A0 : Term
s0 : Sorts
H1 : A :: Γ ⊢e A0 : !s0
============================
A0 :: A :: Γ ⊣e
subgoal 2 (ID 26549) is:
A ↑ 1 # n0 :: Δ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using ,)
eauto.1 subgoals, subgoal 1 (ID 26549)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
n0 : nat
Δ' : Env
H6 : ins_in_env Δ A0 n0 Γ Δ'
============================
A ↑ 1 # n0 :: Δ' ⊣e
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using ,)
apply wfe_cons with s; trivial. 1 subgoals, subgoal 1 (ID 26563)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
n0 : nat
Δ' : Env
H6 : ins_in_env Δ A0 n0 Γ Δ'
============================
Δ' ⊢e A ↑ 1 # n0 : !s
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using ,)
change !s with !s ↑ 1 # n0.1 subgoals, subgoal 1 (ID 26565)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
n0 : nat
Δ' : Env
H6 : ins_in_env Δ A0 n0 Γ Δ'
============================
Δ' ⊢e A ↑ 1 # n0 : !s ↑ 1 # n0
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using ,)
eapply H. 2 subgoals, subgoal 1 (ID 26569)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
n0 : nat
Δ' : Env
H6 : ins_in_env Δ A0 n0 Γ Δ'
============================
ins_in_env ?26566 ?26567 n0 Γ Δ'
subgoal 2 (ID 26570) is:
?26566 ⊢e ?26567 : !?26568
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using , ?26566 open, ?26567 open, ?26568 open,)
apply H6. 1 subgoals, subgoal 1 (ID 26570)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ0 : Env) (A0 : Term) (s0 : Sorts) (n : nat) (Δ' : Env),
ins_in_env Γ0 A0 n Γ Δ' -> Γ0 ⊢e A0 : !s0 -> Δ' ⊢e A ↑ 1 # n : !s
Δ : Env
A0 : Term
s0 : Sorts
H1 : Δ ⊢e A0 : !s0
n0 : nat
Δ' : Env
H6 : ins_in_env Δ A0 n0 Γ Δ'
============================
Δ ⊢e A0 : !?26568
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using , ?26566 using , ?26567 using , ?26568 open,)
apply H1.No more subgoals.
(dependent evars: ?24502 using ?24513 , ?24503 using ?24512 , ?24512 using , ?24513 using , ?24721 using , ?24722 using , ?24723 using , ?24724 using , ?24896 using , ?24897 using , ?24898 using , ?24899 using , ?24949 using , ?24950 using , ?24951 using , ?24952 using , ?24960 using , ?24961 using , ?24962 using , ?24963 using , ?24970 using , ?24971 using , ?24972 using , ?24979 using , ?24980 using , ?24984 using , ?24985 using , ?24986 using , ?24993 using , ?24994 using , ?24995 using , ?25005 using , ?25006 using , ?25007 using , ?25012 using , ?25013 using , ?25014 using , ?25021 using , ?25022 using , ?25023 using , ?25031 using , ?25032 using , ?25033 using , ?25050 using , ?25053 using , ?25054 using , ?25055 using , ?25062 using , ?25063 using , ?25064 using , ?25117 using , ?25118 using , ?25119 using , ?25126 using , ?25127 using , ?25128 using , ?25218 using , ?25219 using , ?25220 using , ?25221 using , ?25393 using , ?25394 using , ?25395 using , ?25396 using , ?25446 using , ?25447 using , ?25448 using , ?25449 using , ?25457 using , ?25458 using , ?25459 using , ?25460 using , ?25467 using , ?25468 using , ?25469 using , ?25476 using , ?25477 using , ?25478 using , ?25485 using , ?25486 using , ?25487 using , ?25499 using , ?25500 using , ?25501 using , ?25508 using , ?25509 using , ?25510 using , ?25518 using , ?25519 using , ?25520 using , ?25534 using , ?25535 using , ?25536 using , ?25543 using , ?25544 using , ?25545 using , ?25580 using , ?25581 using , ?25582 using , ?25650 using , ?25792 using , ?25793 using , ?25794 using , ?25859 using , ?25860 using , ?25861 using , ?25903 using , ?25904 using , ?26237 using , ?26238 using , ?26239 using , ?26293 using , ?26294 using , ?26295 using , ?26328 using , ?26329 using , ?26330 using , ?26341 using , ?26342 using , ?26343 using , ?26355 using , ?26356 using , ?26357 using , ?26369 using , ?26370 using , ?26371 using , ?26443 using , ?26550 using , ?26566 using , ?26567 using , ?26568 using ,)
Qed.
Theorem thinning :
forall Γ M T A s,
Γ ⊢e M : T ->
Γ ⊢e A : !s ->
A::Γ ⊢e M ↑ 1 : T ↑ 1.1 subgoals, subgoal 1 (ID 26577)
============================
forall (Γ : Env) (M T A : Term) (s : Sorts),
Γ ⊢e M : T -> Γ ⊢e A : !s -> A :: Γ ⊢e M ↑ 1 : T ↑ 1
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 26584)
Γ : Env
M : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M : T
H0 : Γ ⊢e A : !s
============================
A :: Γ ⊢e M ↑ 1 : T ↑ 1
(dependent evars:)
eapply weakening. 3 subgoals, subgoal 1 (ID 26601)
Γ : Env
M : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M : T
H0 : Γ ⊢e A : !s
============================
?26600 ⊢e M : T
subgoal 2 (ID 26604) is:
ins_in_env ?26602 ?26603 0 ?26600 (A :: Γ)
subgoal 3 (ID 26606) is:
?26602 ⊢e ?26603 : !?26605
(dependent evars: ?26593 using ?26600 , ?26594 using ?26602 , ?26595 using ?26603 , ?26596 using ?26605 , ?26600 open, ?26602 open, ?26603 open, ?26605 open,)
apply H. 2 subgoals, subgoal 1 (ID 26604)
Γ : Env
M : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M : T
H0 : Γ ⊢e A : !s
============================
ins_in_env ?26602 ?26603 0 Γ (A :: Γ)
subgoal 2 (ID 26606) is:
?26602 ⊢e ?26603 : !?26605
(dependent evars: ?26593 using ?26600 , ?26594 using ?26602 , ?26595 using ?26603 , ?26596 using ?26605 , ?26600 using , ?26602 open, ?26603 open, ?26605 open,)
constructor. 1 subgoals, subgoal 1 (ID 26606)
Γ : Env
M : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M : T
H0 : Γ ⊢e A : !s
============================
Γ ⊢e A : !?26605
(dependent evars: ?26593 using ?26600 , ?26594 using ?26602 , ?26595 using ?26603 , ?26596 using ?26605 , ?26600 using , ?26602 using , ?26603 using , ?26605 open,)
apply H0.No more subgoals.
(dependent evars: ?26593 using ?26600 , ?26594 using ?26602 , ?26595 using ?26603 , ?26596 using ?26605 , ?26600 using , ?26602 using , ?26603 using , ?26605 using ,)
Qed.
Theorem thinning_n : forall n Δ Δ',
trunc n Δ Δ' ->
forall M T , Δ' ⊢e M : T -> Δ ⊣e ->
Δ ⊢e M ↑ n : T ↑ n.1 subgoals, subgoal 1 (ID 26615)
============================
forall (n : nat) (Δ Δ' : list Term),
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
(dependent evars:)
intro n; induction n; intros.2 subgoals, subgoal 1 (ID 26629)
Δ : list Term
Δ' : list Term
H : trunc 0 Δ Δ'
M : Term
T : Term
H0 : Δ' ⊢e M : T
H1 : Δ ⊣e
============================
Δ ⊢e M ↑ 0 : T ↑ 0
subgoal 2 (ID 26636) is:
Δ ⊢e M ↑ (S n) : T ↑ (S n)
(dependent evars:)
inversion H; subst; clear H.2 subgoals, subgoal 1 (ID 26696)
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
H1 : Δ' ⊣e
============================
Δ' ⊢e M ↑ 0 : T ↑ 0
subgoal 2 (ID 26636) is:
Δ ⊢e M ↑ (S n) : T ↑ (S n)
(dependent evars:)
rewrite ! lift0; trivial.1 subgoals, subgoal 1 (ID 26636)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ : list Term
Δ' : list Term
H : trunc (S n) Δ Δ'
M : Term
T : Term
H0 : Δ' ⊢e M : T
H1 : Δ ⊣e
============================
Δ ⊢e M ↑ (S n) : T ↑ (S n)
(dependent evars:)
inversion H; subst; clear H.1 subgoals, subgoal 1 (ID 26763)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ (S n) : T ↑ (S n)
(dependent evars:)
change (S n) with (1+n).1 subgoals, subgoal 1 (ID 26765)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ (1 + n) : T ↑ (1 + n)
(dependent evars:)
replace (M ↑ (1+n)) with ((M ↑ n )↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 26769)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ n ↑ 1 : T ↑ (1 + n)
(dependent evars:)
replace (T ↑ (1+n)) with ((T ↑ n) ↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 26774)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
inversion H1; subst; clear H1.1 subgoals, subgoal 1 (ID 26824)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
x :: Γ ⊢e M ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
apply thinning with s; trivial.1 subgoals, subgoal 1 (ID 26825)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Γ ⊢e M ↑ n : T ↑ n
(dependent evars:)
eapply IHn. 3 subgoals, subgoal 1 (ID 26828)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
trunc n Γ ?26827
subgoal 2 (ID 26829) is:
?26827 ⊢e M : T
subgoal 3 (ID 26830) is:
Γ ⊣e
(dependent evars: ?26827 open,)
apply H3. 2 subgoals, subgoal 1 (ID 26829)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Δ' ⊢e M : T
subgoal 2 (ID 26830) is:
Γ ⊣e
(dependent evars: ?26827 using ,)
trivial. 1 subgoals, subgoal 1 (ID 26830)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M T : Term, Δ' ⊢e M : T -> Δ ⊣e -> Δ ⊢e M ↑ n : T ↑ n
Δ' : list Term
M : Term
T : Term
H0 : Δ' ⊢e M : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Γ ⊣e
(dependent evars: ?26827 using ,)
apply wf_typ in H2; trivial.No more subgoals.
(dependent evars: ?26827 using ,)
Qed.
Theorem thinning_eq :
forall Γ M N T A s,
Γ ⊢e M = N : T ->
Γ ⊢e A : !s ->
A::Γ ⊢e M ↑ 1 = N ↑ 1 : T ↑ 1.1 subgoals, subgoal 1 (ID 26840)
============================
forall (Γ : Env) (M N T A : Term) (s : Sorts),
Γ ⊢e M = N : T -> Γ ⊢e A : !s -> A :: Γ ⊢e M ↑ 1 = N ↑ 1 : T ↑ 1
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 26848)
Γ : Env
M : Term
N : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M = N : T
H0 : Γ ⊢e A : !s
============================
A :: Γ ⊢e M ↑ 1 = N ↑ 1 : T ↑ 1
(dependent evars:)
eapply weakening. 3 subgoals, subgoal 1 (ID 26870)
Γ : Env
M : Term
N : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M = N : T
H0 : Γ ⊢e A : !s
============================
?26869 ⊢e M = N : T
subgoal 2 (ID 26873) is:
ins_in_env ?26871 ?26872 0 ?26869 (A :: Γ)
subgoal 3 (ID 26875) is:
?26871 ⊢e ?26872 : !?26874
(dependent evars: ?26855 using ?26862 , ?26856 using ?26864 , ?26857 using ?26865 , ?26858 using ?26867 , ?26862 using ?26869 , ?26864 using ?26871 , ?26865 using ?26872 , ?26867 using ?26874 , ?26869 open, ?26871 open, ?26872 open, ?26874 open,)
apply H. 2 subgoals, subgoal 1 (ID 26873)
Γ : Env
M : Term
N : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M = N : T
H0 : Γ ⊢e A : !s
============================
ins_in_env ?26871 ?26872 0 Γ (A :: Γ)
subgoal 2 (ID 26875) is:
?26871 ⊢e ?26872 : !?26874
(dependent evars: ?26855 using ?26862 , ?26856 using ?26864 , ?26857 using ?26865 , ?26858 using ?26867 , ?26862 using ?26869 , ?26864 using ?26871 , ?26865 using ?26872 , ?26867 using ?26874 , ?26869 using , ?26871 open, ?26872 open, ?26874 open,)
constructor. 1 subgoals, subgoal 1 (ID 26875)
Γ : Env
M : Term
N : Term
T : Term
A : Term
s : Sorts
H : Γ ⊢e M = N : T
H0 : Γ ⊢e A : !s
============================
Γ ⊢e A : !?26874
(dependent evars: ?26855 using ?26862 , ?26856 using ?26864 , ?26857 using ?26865 , ?26858 using ?26867 , ?26862 using ?26869 , ?26864 using ?26871 , ?26865 using ?26872 , ?26867 using ?26874 , ?26869 using , ?26871 using , ?26872 using , ?26874 open,)
apply H0.No more subgoals.
(dependent evars: ?26855 using ?26862 , ?26856 using ?26864 , ?26857 using ?26865 , ?26858 using ?26867 , ?26862 using ?26869 , ?26864 using ?26871 , ?26865 using ?26872 , ?26867 using ?26874 , ?26869 using , ?26871 using , ?26872 using , ?26874 using ,)
Qed.
Theorem thinning_eq_n : forall n Δ Δ',
trunc n Δ Δ' ->
forall M N T , Δ' ⊢e M = N : T -> Δ ⊣e ->
Δ ⊢e M ↑ n = N ↑ n: T ↑ n.1 subgoals, subgoal 1 (ID 26885)
============================
forall (n : nat) (Δ Δ' : list Term),
trunc n Δ Δ' ->
forall M N T : Term, Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
(dependent evars:)
intro n; induction n; intros.2 subgoals, subgoal 1 (ID 26900)
Δ : list Term
Δ' : list Term
H : trunc 0 Δ Δ'
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
H1 : Δ ⊣e
============================
Δ ⊢e M ↑ 0 = N ↑ 0 : T ↑ 0
subgoal 2 (ID 26908) is:
Δ ⊢e M ↑ (S n) = N ↑ (S n) : T ↑ (S n)
(dependent evars:)
inversion H; subst; clear H.2 subgoals, subgoal 1 (ID 26968)
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
H1 : Δ' ⊣e
============================
Δ' ⊢e M ↑ 0 = N ↑ 0 : T ↑ 0
subgoal 2 (ID 26908) is:
Δ ⊢e M ↑ (S n) = N ↑ (S n) : T ↑ (S n)
(dependent evars:)
rewrite 3! lift0; trivial.1 subgoals, subgoal 1 (ID 26908)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ : list Term
Δ' : list Term
H : trunc (S n) Δ Δ'
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
H1 : Δ ⊣e
============================
Δ ⊢e M ↑ (S n) = N ↑ (S n) : T ↑ (S n)
(dependent evars:)
inversion H; subst; clear H.1 subgoals, subgoal 1 (ID 27036)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ (S n) = N ↑ (S n) : T ↑ (S n)
(dependent evars:)
change (S n) with (1+n).1 subgoals, subgoal 1 (ID 27038)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ (1 + n) = N ↑ (1 + n) : T ↑ (1 + n)
(dependent evars:)
replace (M ↑ (1+n)) with ((M ↑ n )↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 27042)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ n ↑ 1 = N ↑ (1 + n) : T ↑ (1 + n)
(dependent evars:)
replace (N ↑ (1+n)) with ((N ↑ n )↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 27047)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ n ↑ 1 = N ↑ n ↑ 1 : T ↑ (1 + n)
(dependent evars:)
replace (T ↑ (1+n)) with ((T ↑ n) ↑ 1) by (apply lift_lift).1 subgoals, subgoal 1 (ID 27052)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
H1 : x :: Γ ⊣e
============================
x :: Γ ⊢e M ↑ n ↑ 1 = N ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
inversion H1; subst; clear H1.1 subgoals, subgoal 1 (ID 27102)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
x :: Γ ⊢e M ↑ n ↑ 1 = N ↑ n ↑ 1 : T ↑ n ↑ 1
(dependent evars:)
apply thinning_eq with s; trivial.1 subgoals, subgoal 1 (ID 27103)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Γ ⊢e M ↑ n = N ↑ n : T ↑ n
(dependent evars:)
eapply IHn. 3 subgoals, subgoal 1 (ID 27106)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
trunc n Γ ?27105
subgoal 2 (ID 27107) is:
?27105 ⊢e M = N : T
subgoal 3 (ID 27108) is:
Γ ⊣e
(dependent evars: ?27105 open,)
apply H3. 2 subgoals, subgoal 1 (ID 27107)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Δ' ⊢e M = N : T
subgoal 2 (ID 27108) is:
Γ ⊣e
(dependent evars: ?27105 using ,)
trivial. 1 subgoals, subgoal 1 (ID 27108)
n : nat
IHn : forall Δ Δ' : list Term,
trunc n Δ Δ' ->
forall M N T : Term,
Δ' ⊢e M = N : T -> Δ ⊣e -> Δ ⊢e M ↑ n = N ↑ n : T ↑ n
Δ' : list Term
M : Term
N : Term
T : Term
H0 : Δ' ⊢e M = N : T
Γ : list Term
x : Term
H3 : trunc n Γ Δ'
s : Sorts
H2 : Γ ⊢e x : !s
============================
Γ ⊣e
(dependent evars: ?27105 using ,)
apply wf_typ in H2; trivial.No more subgoals.
(dependent evars: ?27105 using ,)
Qed.
Lemma conv_in_env_var : forall C n Γ, C ↓ n ∈ Γ ->
forall Γ1 Γ2 A B s, Γ = Γ2++(A::Γ1) -> Γ1 ⊢e A = B : !s -> n < List.length Γ2 ->
C ↓ n ∈ Γ2++(B::Γ1).1 subgoals, subgoal 1 (ID 27131)
============================
forall (C : Term) (n : nat) (Γ : list Term),
C ↓ n ∈ Γ ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> n < length Γ2 -> C ↓ n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
induction 1; intros.2 subgoals, subgoal 1 (ID 27157)
C : Term
Γ : list Term
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H : C :: Γ = Γ2 ++ A :: Γ1
H0 : Γ1 ⊢e A = B : !s
H1 : 0 < length Γ2
============================
C ↓ 0 ∈ Γ2 ++ B :: Γ1
subgoal 2 (ID 27165) is:
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
destruct Γ2; simpl in *. 3 subgoals, subgoal 1 (ID 27191)
C : Term
Γ : list Term
Γ1 : list Term
A : Term
B : Term
s : Sorts
H : C :: Γ = A :: Γ1
H0 : Γ1 ⊢e A = B : !s
H1 : 0 < 0
============================
C ↓ 0 ∈ B :: Γ1
subgoal 2 (ID 27203) is:
C ↓ 0 ∈ t :: Γ2 ++ B :: Γ1
subgoal 3 (ID 27165) is:
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
apply lt_n_O in H1; elim H1.2 subgoals, subgoal 1 (ID 27203)
C : Term
Γ : list Term
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H : C :: Γ = t :: Γ2 ++ A :: Γ1
H0 : Γ1 ⊢e A = B : !s
H1 : 0 < S (length Γ2)
============================
C ↓ 0 ∈ t :: Γ2 ++ B :: Γ1
subgoal 2 (ID 27165) is:
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
injection H; intros; subst; clear H.2 subgoals, subgoal 1 (ID 27226)
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : Γ1 ⊢e A = B : !s
H1 : 0 < S (length Γ2)
============================
t ↓ 0 ∈ t :: Γ2 ++ B :: Γ1
subgoal 2 (ID 27165) is:
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
constructor.1 subgoals, subgoal 1 (ID 27165)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> n < length Γ2 -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : S n < length Γ2
============================
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
destruct Γ2; simpl in *. 2 subgoals, subgoal 1 (ID 27257)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> n < length Γ2 -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : S n < 0
============================
C ↓ S n ∈ B :: Γ1
subgoal 2 (ID 27273) is:
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
apply lt_n_O in H2; elim H2.1 subgoals, subgoal 1 (ID 27273)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> n < length Γ2 -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = t :: Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : S n < S (length Γ2)
============================
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
injection H0; intros; subst; clear H0.1 subgoals, subgoal 1 (ID 27298)
C : Term
n : nat
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S n < S (length Γ2)
H : C ↓ n ∈ Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> n < length Γ4 -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
constructor. 1 subgoals, subgoal 1 (ID 27301)
C : Term
n : nat
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S n < S (length Γ2)
H : C ↓ n ∈ Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> n < length Γ4 -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
C ↓ n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
apply IHitem with A s; trivial.1 subgoals, subgoal 1 (ID 27304)
C : Term
n : nat
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S n < S (length Γ2)
H : C ↓ n ∈ Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> n < length Γ4 -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
n < length Γ2
(dependent evars:)
intuition.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var is defined
Lemma conv_in_env_var2 : forall C n Γ, C ↓ n ∈ Γ ->
forall Γ1 Γ2 A B s , Γ = Γ2++(A::Γ1) -> Γ1 ⊢e A = B : !s ->
List.length Γ2 < n ->
C ↓ n ∈ Γ2++(B::Γ1).1 subgoals, subgoal 1 (ID 27340)
============================
forall (C : Term) (n : nat) (Γ : list Term),
C ↓ n ∈ Γ ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
induction 1; intros.2 subgoals, subgoal 1 (ID 27366)
C : Term
Γ : list Term
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H : C :: Γ = Γ2 ++ A :: Γ1
H0 : Γ1 ⊢e A = B : !s
H1 : length Γ2 < 0
============================
C ↓ 0 ∈ Γ2 ++ B :: Γ1
subgoal 2 (ID 27374) is:
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
apply lt_n_O in H1; elim H1.1 subgoals, subgoal 1 (ID 27374)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : length Γ2 < S n
============================
C ↓ S n ∈ Γ2 ++ B :: Γ1
(dependent evars:)
destruct Γ2; simpl in *.2 subgoals, subgoal 1 (ID 27406)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : 0 < S n
============================
C ↓ S n ∈ B :: Γ1
subgoal 2 (ID 27422) is:
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
injection H0; intros; subst; clear H0.2 subgoals, subgoal 1 (ID 27445)
C : Term
n : nat
Γ1 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : 0 < S n
H : C ↓ n ∈ Γ1
IHitem : forall (Γ2 Γ3 : list Term) (A B : Term) (s : Sorts),
Γ1 = Γ3 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> length Γ3 < n -> C ↓ n ∈ Γ3 ++ B :: Γ2
============================
C ↓ S n ∈ B :: Γ1
subgoal 2 (ID 27422) is:
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
constructor. 2 subgoals, subgoal 1 (ID 27448)
C : Term
n : nat
Γ1 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : 0 < S n
H : C ↓ n ∈ Γ1
IHitem : forall (Γ2 Γ3 : list Term) (A B : Term) (s : Sorts),
Γ1 = Γ3 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> length Γ3 < n -> C ↓ n ∈ Γ3 ++ B :: Γ2
============================
C ↓ n ∈ Γ1
subgoal 2 (ID 27422) is:
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
trivial.1 subgoals, subgoal 1 (ID 27422)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
t : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = t :: Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : S (length Γ2) < S n
============================
C ↓ S n ∈ t :: Γ2 ++ B :: Γ1
(dependent evars:)
destruct Γ2; simpl in *.2 subgoals, subgoal 1 (ID 27479)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = t :: A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : 1 < S n
============================
C ↓ S n ∈ t :: B :: Γ1
subgoal 2 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
constructor. 2 subgoals, subgoal 1 (ID 27499)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = t :: A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : 1 < S n
============================
C ↓ n ∈ B :: Γ1
subgoal 2 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
injection H0; intros; subst; clear H0.2 subgoals, subgoal 1 (ID 27522)
C : Term
n : nat
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : 1 < S n
H : C ↓ n ∈ A :: Γ1
IHitem : forall (Γ2 Γ3 : list Term) (A0 B : Term) (s : Sorts),
A :: Γ1 = Γ3 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> length Γ3 < n -> C ↓ n ∈ Γ3 ++ B :: Γ2
============================
C ↓ n ∈ B :: Γ1
subgoal 2 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
inversion H; subst; clear H. 3 subgoals, subgoal 1 (ID 27611)
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : 1 < 1
IHitem : forall (Γ2 Γ3 : list Term) (A0 B : Term) (s : Sorts),
A :: Γ1 = Γ3 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> length Γ3 < 0 -> A ↓ 0 ∈ Γ3 ++ B :: Γ2
============================
A ↓ 0 ∈ B :: Γ1
subgoal 2 (ID 27612) is:
C ↓ S n0 ∈ B :: Γ1
subgoal 3 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
apply lt_irrefl in H2; elim H2.2 subgoals, subgoal 1 (ID 27612)
C : Term
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
n0 : nat
H5 : C ↓ n0 ∈ Γ1
H2 : 1 < S (S n0)
IHitem : forall (Γ2 Γ3 : list Term) (A0 B : Term) (s : Sorts),
A :: Γ1 = Γ3 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> length Γ3 < S n0 -> C ↓ S n0 ∈ Γ3 ++ B :: Γ2
============================
C ↓ S n0 ∈ B :: Γ1
subgoal 2 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
constructor. 2 subgoals, subgoal 1 (ID 27617)
C : Term
Γ1 : list Term
t : Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
n0 : nat
H5 : C ↓ n0 ∈ Γ1
H2 : 1 < S (S n0)
IHitem : forall (Γ2 Γ3 : list Term) (A0 B : Term) (s : Sorts),
A :: Γ1 = Γ3 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> length Γ3 < S n0 -> C ↓ S n0 ∈ Γ3 ++ B :: Γ2
============================
C ↓ n0 ∈ Γ1
subgoal 2 (ID 27496) is:
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
trivial.1 subgoals, subgoal 1 (ID 27496)
C : Term
Γ : list Term
n : nat
y : Term
H : C ↓ n ∈ Γ
IHitem : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ∈ Γ2 ++ B :: Γ1
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : y :: Γ = t :: t0 :: Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
============================
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
injection H0; intros; subst; clear H0.1 subgoals, subgoal 1 (ID 27640)
C : Term
n : nat
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
H : C ↓ n ∈ t0 :: Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
t0 :: Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> length Γ4 < n -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
C ↓ S n ∈ t :: t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
constructor. 1 subgoals, subgoal 1 (ID 27643)
C : Term
n : nat
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
H : C ↓ n ∈ t0 :: Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
t0 :: Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> length Γ4 < n -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
C ↓ n ∈ t0 :: Γ2 ++ B :: Γ1
(dependent evars:)
rewrite app_comm_cons. 1 subgoals, subgoal 1 (ID 27644)
C : Term
n : nat
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
H : C ↓ n ∈ t0 :: Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
t0 :: Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> length Γ4 < n -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
C ↓ n ∈ (t0 :: Γ2) ++ B :: Γ1
(dependent evars:)
apply IHitem with A s; trivial.1 subgoals, subgoal 1 (ID 27647)
C : Term
n : nat
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
H : C ↓ n ∈ t0 :: Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
t0 :: Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> length Γ4 < n -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
length (t0 :: Γ2) < n
(dependent evars:)
simpl. 1 subgoals, subgoal 1 (ID 27648)
C : Term
n : nat
Γ1 : list Term
t : Term
t0 : Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H1 : Γ1 ⊢e A = B : !s
H2 : S (S (length Γ2)) < S n
H : C ↓ n ∈ t0 :: Γ2 ++ A :: Γ1
IHitem : forall (Γ3 Γ4 : list Term) (A0 B : Term) (s : Sorts),
t0 :: Γ2 ++ A :: Γ1 = Γ4 ++ A0 :: Γ3 ->
Γ3 ⊢e A0 = B : !s -> length Γ4 < n -> C ↓ n ∈ Γ4 ++ B :: Γ3
============================
S (length Γ2) < n
(dependent evars:)
intuition.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var2 is defined
Lemma conv_in_env_var3 : forall Γ1 (B:Term) Γ2 , B ↓ (List.length Γ1) ∈ Γ1++(B::Γ2).1 subgoals, subgoal 1 (ID 27672)
============================
forall (Γ1 : list Term) (B : Term) (Γ2 : list Term),
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
(dependent evars:)
induction Γ1; intros.2 subgoals, subgoal 1 (ID 27682)
B : Term
Γ2 : list Term
============================
B ↓ length nil ∈ nil ++ B :: Γ2
subgoal 2 (ID 27684) is:
B ↓ length (a :: Γ1) ∈ (a :: Γ1) ++ B :: Γ2
(dependent evars:)
simpl. 2 subgoals, subgoal 1 (ID 27685)
B : Term
Γ2 : list Term
============================
B ↓ 0 ∈ B :: Γ2
subgoal 2 (ID 27684) is:
B ↓ length (a :: Γ1) ∈ (a :: Γ1) ++ B :: Γ2
(dependent evars:)
constructor.1 subgoals, subgoal 1 (ID 27684)
a : Term
Γ1 : list Term
IHΓ1 : forall (B : Term) (Γ2 : list Term), B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
B : Term
Γ2 : list Term
============================
B ↓ length (a :: Γ1) ∈ (a :: Γ1) ++ B :: Γ2
(dependent evars:)
simpl. 1 subgoals, subgoal 1 (ID 27687)
a : Term
Γ1 : list Term
IHΓ1 : forall (B : Term) (Γ2 : list Term), B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
B : Term
Γ2 : list Term
============================
B ↓ S (length Γ1) ∈ a :: Γ1 ++ B :: Γ2
(dependent evars:)
constructor. 1 subgoals, subgoal 1 (ID 27690)
a : Term
Γ1 : list Term
IHΓ1 : forall (B : Term) (Γ2 : list Term), B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
B : Term
Γ2 : list Term
============================
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
(dependent evars:)
apply IHΓ1.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var3 is defined
Lemma conv_in_env_var_lift : forall C n Γ, C ↓ n ⊂ Γ ->
forall Γ1 Γ2 A B s, Γ = Γ2 ++(A::Γ1) -> Γ1 ⊢e A = B : !s -> n < List.length Γ2 ->
C ↓ n ⊂ Γ2++(B::Γ1).1 subgoals, subgoal 1 (ID 27707)
============================
forall (C : Term) (n : nat) (Γ : Env),
C ↓ n ⊂ Γ ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> n < length Γ2 -> C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 27719)
C : Term
n : nat
Γ : Env
H : C ↓ n ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : n < length Γ2
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
destruct H as (u & h1 & h2).1 subgoals, subgoal 1 (ID 27730)
C : Term
n : nat
Γ : Env
u : Term
h1 : C = u ↑ (S n)
h2 : u ↓ n ∈ Γ
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : n < length Γ2
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
apply (conv_in_env_var u n Γ) with Γ1 Γ2 A B s in h2; trivial.1 subgoals, subgoal 1 (ID 27732)
C : Term
n : nat
Γ : Env
u : Term
h1 : C = u ↑ (S n)
Γ1 : list Term
Γ2 : list Term
B : Term
h2 : u ↓ n ∈ Γ2 ++ B :: Γ1
A : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : n < length Γ2
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
exists u; intuition.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var_lift is defined
Lemma conv_in_env_var_lift2 : forall C n Γ, C ↓ n ⊂ Γ ->
forall Γ1 Γ2 A B s, Γ = Γ2++(A::Γ1) -> Γ1 ⊢e A = B : !s ->
List.length Γ2 < n -> C ↓ n ⊂ Γ2++(B::Γ1).1 subgoals, subgoal 1 (ID 27758)
============================
forall (C : Term) (n : nat) (Γ : Env),
C ↓ n ⊂ Γ ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ2 ++ A :: Γ1 ->
Γ1 ⊢e A = B : !s -> length Γ2 < n -> C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 27770)
C : Term
n : nat
Γ : Env
H : C ↓ n ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : length Γ2 < n
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
destruct H as (u & h1 & h2).1 subgoals, subgoal 1 (ID 27781)
C : Term
n : nat
Γ : Env
u : Term
h1 : C = u ↑ (S n)
h2 : u ↓ n ∈ Γ
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : length Γ2 < n
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
apply (conv_in_env_var2 u n Γ) with Γ1 Γ2 A B s in h2; trivial.1 subgoals, subgoal 1 (ID 27783)
C : Term
n : nat
Γ : Env
u : Term
h1 : C = u ↑ (S n)
Γ1 : list Term
Γ2 : list Term
B : Term
h2 : u ↓ n ∈ Γ2 ++ B :: Γ1
A : Term
s : Sorts
H0 : Γ = Γ2 ++ A :: Γ1
H1 : Γ1 ⊢e A = B : !s
H2 : length Γ2 < n
============================
C ↓ n ⊂ Γ2 ++ B :: Γ1
(dependent evars:)
exists u; intuition.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var_lift2 is defined
Lemma conv_in_env_var_lift3 : forall Γ1 (A:Term) Γ2 ,
(A ↑ (S (List.length Γ1))) ↓ (List.length Γ1) ⊂ Γ1++(A::Γ2).1 subgoals, subgoal 1 (ID 27800)
============================
forall (Γ1 : list Term) (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
(dependent evars:)
induction Γ1; intros.2 subgoals, subgoal 1 (ID 27810)
A : Term
Γ2 : list Term
============================
A ↑ (S (length nil)) ↓ length nil ⊂ nil ++ A :: Γ2
subgoal 2 (ID 27812) is:
A ↑ (S (length (a :: Γ1))) ↓ length (a :: Γ1) ⊂ (a :: Γ1) ++ A :: Γ2
(dependent evars:)
simpl. 2 subgoals, subgoal 1 (ID 27813)
A : Term
Γ2 : list Term
============================
A ↑ 1 ↓ 0 ⊂ A :: Γ2
subgoal 2 (ID 27812) is:
A ↑ (S (length (a :: Γ1))) ↓ length (a :: Γ1) ⊂ (a :: Γ1) ++ A :: Γ2
(dependent evars:)
exists A; intuition.1 subgoals, subgoal 1 (ID 27812)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
A : Term
Γ2 : list Term
============================
A ↑ (S (length (a :: Γ1))) ↓ length (a :: Γ1) ⊂ (a :: Γ1) ++ A :: Γ2
(dependent evars:)
simpl.1 subgoals, subgoal 1 (ID 27823)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
A : Term
Γ2 : list Term
============================
A ↑ (S (S (length Γ1))) ↓ S (length Γ1) ⊂ a :: Γ1 ++ A :: Γ2
(dependent evars:)
assert( H := IHΓ1 A Γ2).1 subgoals, subgoal 1 (ID 27825)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
A : Term
Γ2 : list Term
H : A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
============================
A ↑ (S (S (length Γ1))) ↓ S (length Γ1) ⊂ a :: Γ1 ++ A :: Γ2
(dependent evars:)
destruct H as ( ?& ?& ?).1 subgoals, subgoal 1 (ID 27833)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
A : Term
Γ2 : list Term
x : Term
H : A ↑ (S (length Γ1)) = x ↑ (S (length Γ1))
H0 : x ↓ length Γ1 ∈ Γ1 ++ A :: Γ2
============================
A ↑ (S (S (length Γ1))) ↓ S (length Γ1) ⊂ a :: Γ1 ++ A :: Γ2
(dependent evars:)
apply inv_lift in H. 1 subgoals, subgoal 1 (ID 27835)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
A : Term
Γ2 : list Term
x : Term
H : A = x
H0 : x ↓ length Γ1 ∈ Γ1 ++ A :: Γ2
============================
A ↑ (S (S (length Γ1))) ↓ S (length Γ1) ⊂ a :: Γ1 ++ A :: Γ2
(dependent evars:)
subst.1 subgoals, subgoal 1 (ID 27840)
a : Term
Γ1 : list Term
IHΓ1 : forall (A : Term) (Γ2 : list Term),
A ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ A :: Γ2
Γ2 : list Term
x : Term
H0 : x ↓ length Γ1 ∈ Γ1 ++ x :: Γ2
============================
x ↑ (S (S (length Γ1))) ↓ S (length Γ1) ⊂ a :: Γ1 ++ x :: Γ2
(dependent evars:)
exists x; intuition.No more subgoals.
(dependent evars:)
Qed.conv_in_env_var_lift3 is defined
Lemma conv_in_env_aux_trunc : forall A (Γ1 Γ2:list A) B ,
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2.1 subgoals, subgoal 1 (ID 27861)
============================
forall (A : Type) (Γ1 Γ2 : list A) (B : A),
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
(dependent evars:)
induction Γ1; simpl; intros.2 subgoals, subgoal 1 (ID 27874)
A : Type
Γ2 : list A
B : A
============================
trunc 1 (B :: Γ2) Γ2
subgoal 2 (ID 27876) is:
trunc (S (S (length Γ1))) (a :: Γ1 ++ B :: Γ2) Γ2
(dependent evars:)
constructor; constructor.1 subgoals, subgoal 1 (ID 27876)
A : Type
a : A
Γ1 : list A
IHΓ1 : forall (Γ2 : list A) (B : A),
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
Γ2 : list A
B : A
============================
trunc (S (S (length Γ1))) (a :: Γ1 ++ B :: Γ2) Γ2
(dependent evars:)
constructor.1 subgoals, subgoal 1 (ID 27883)
A : Type
a : A
Γ1 : list A
IHΓ1 : forall (Γ2 : list A) (B : A),
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
Γ2 : list A
B : A
============================
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
(dependent evars:)
apply IHΓ1.No more subgoals.
(dependent evars:)
Qed.conv_in_env_aux_trunc is defined
Conversion is the context is here provable without SR since every reduction
step is checked valid.
Theorem conv_in_env : (forall Γ M T, Γ ⊢e M : T-> forall Γ1 Γ2 A B s, Γ = Γ1++(A::Γ2) -> Γ2 ⊢e A = B : !s ->
Γ2 ⊢e B : !s -> (Γ1++(B::Γ2)) ⊢e M : T) /\
(forall Γ M N T, Γ ⊢e M = N : T-> forall Γ1 Γ2 A B s, Γ = Γ1++(A::Γ2) -> Γ2 ⊢e A = B : !s ->
Γ2 ⊢e B : !s -> (Γ1++(B::Γ2)) ⊢e M = N : T ) /\
(forall Γ, Γ ⊣e -> forall Γ1 Γ2 A B s, Γ = Γ1++(A::Γ2) -> Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1++(B::Γ2) ⊣e).1 subgoals, subgoal 1 (ID 27931)
============================
(forall (Γ : Env) (M T : Term),
Γ ⊢e M : T ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M : T) /\
(forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : T) /\
(forall Γ : Env,
Γ ⊣e ->
forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 -> Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e)
(dependent evars:)
apply typ_induc; intros; simpl in *.17 subgoals, subgoal 1 (ID 28253)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Γ1 ++ B :: Γ2 ⊢e !s : !t
subgoal 2 (ID 28268) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
constructor. 18 subgoals, subgoal 1 (ID 28547)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Ax s t
subgoal 2 (ID 28548) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 28268) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
trivial. 17 subgoals, subgoal 1 (ID 28548)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28268) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
apply H with A s0; trivial.16 subgoals, subgoal 1 (ID 28268)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 2 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
destruct (lt_eq_lt_dec v (List.length Γ1)) as [ [] | ].18 subgoals, subgoal 1 (ID 28566)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 2 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
econstructor. 19 subgoals, subgoal 1 (ID 28571)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28572) is:
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
apply H with A0 s; trivial. 18 subgoals, subgoal 1 (ID 28572)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars:)
eapply conv_in_env_var_lift. 21 subgoals, subgoal 1 (ID 28579)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
A ↓ v ⊂ ?28576
subgoal 2 (ID 28580) is:
?28576 = Γ1 ++ ?28577 :: Γ2
subgoal 3 (ID 28581) is:
Γ2 ⊢e ?28577 = B : !?28578
subgoal 4 (ID 28582) is:
v < length Γ1
subgoal 5 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 6 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 7 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 8 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 9 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 10 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 11 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 12 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 13 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 14 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 15 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 16 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 17 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 18 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 19 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 20 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 21 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 open, ?28577 open, ?28578 open,)
apply i. 20 subgoals, subgoal 1 (ID 28580)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ = Γ1 ++ ?28577 :: Γ2
subgoal 2 (ID 28581) is:
Γ2 ⊢e ?28577 = B : !?28578
subgoal 3 (ID 28582) is:
v < length Γ1
subgoal 4 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 6 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 7 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 8 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 9 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 10 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 11 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 12 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 13 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 14 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 15 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 16 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 17 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 18 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 19 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 20 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 open, ?28578 open,)
apply H0. 19 subgoals, subgoal 1 (ID 28581)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ2 ⊢e A0 = B : !?28578
subgoal 2 (ID 28582) is:
v < length Γ1
subgoal 3 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 open,)
apply H1. 18 subgoals, subgoal 1 (ID 28582)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
v < length Γ1
subgoal 2 (ID 28567) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
trivial.17 subgoals, subgoal 1 (ID 28567)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
e : v = length Γ1
============================
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
subst. 17 subgoals, subgoal 1 (ID 28594)
A : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
i : A ↓ length Γ1 ⊂ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : A
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
destruct i as (a & ?& ?). 17 subgoals, subgoal 1 (ID 28602)
A : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H0 : A = a ↑ (S (length Γ1))
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : A
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
subst. 17 subgoals, subgoal 1 (ID 28605)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : a ↑ (S (length Γ1))
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
replace a with A0 in *. 18 subgoals, subgoal 1 (ID 28611)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : A0 ↑ (S (length Γ1))
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
apply Cnv with (B↑ (S (length Γ1))) s.19 subgoals, subgoal 1 (ID 28614)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e B ↑ (S (length Γ1)) = A0 ↑ (S (length Γ1)) : !s
subgoal 2 (ID 28615) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28606) is:
A0 = a
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
change !s with (!s↑ (S (length Γ1))). 19 subgoals, subgoal 1 (ID 28618)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e B ↑ (S (length Γ1)) = A0 ↑ (S (length Γ1))
: !s ↑ (S (length Γ1))
subgoal 2 (ID 28615) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28606) is:
A0 = a
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
apply thinning_eq_n with Γ2. 21 subgoals, subgoal 1 (ID 28619)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
subgoal 2 (ID 28620) is:
Γ2 ⊢e B = A0 : !s
subgoal 3 (ID 28621) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28615) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 5 (ID 28606) is:
A0 = a
subgoal 6 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 7 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 8 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 9 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 10 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 11 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 12 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 13 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 14 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 15 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 16 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 17 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 18 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 19 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 20 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 21 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
apply conv_in_env_aux_trunc. 20 subgoals, subgoal 1 (ID 28620)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ2 ⊢e B = A0 : !s
subgoal 2 (ID 28621) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 28615) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 4 (ID 28606) is:
A0 = a
subgoal 5 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 6 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 7 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 8 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 9 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 10 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 11 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 12 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 13 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 14 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 15 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 16 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 17 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 18 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 19 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 20 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
intuition.19 subgoals, subgoal 1 (ID 28621)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28615) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28606) is:
A0 = a
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
apply H with A0 s; trivial. 18 subgoals, subgoal 1 (ID 28615)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) : B ↑ (S (length Γ1))
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
constructor. 19 subgoals, subgoal 1 (ID 28640)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28641) is:
B ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28606) is:
A0 = a
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
apply H with A0 s; trivial. 18 subgoals, subgoal 1 (ID 28641)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
B ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
exists B; intuition.18 subgoals, subgoal 1 (ID 28649)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
clear. 18 subgoals, subgoal 1 (ID 28663)
Γ1 : list Term
Γ2 : list Term
B : Term
============================
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
induction Γ1; simpl in *. 19 subgoals, subgoal 1 (ID 28675)
Γ2 : list Term
B : Term
============================
B ↓ 0 ∈ B :: Γ2
subgoal 2 (ID 28681) is:
B ↓ S (length Γ1) ∈ a :: Γ1 ++ B :: Γ2
subgoal 3 (ID 28606) is:
A0 = a
subgoal 4 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
constructor. 18 subgoals, subgoal 1 (ID 28681)
a : Term
Γ1 : list Term
Γ2 : list Term
B : Term
IHΓ1 : B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
============================
B ↓ S (length Γ1) ∈ a :: Γ1 ++ B :: Γ2
subgoal 2 (ID 28606) is:
A0 = a
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
constructor; intuition.17 subgoals, subgoal 1 (ID 28606)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
A0 = a
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
generalize H3; clear. 17 subgoals, subgoal 1 (ID 28687)
Γ1 : list Term
Γ2 : list Term
A0 : Term
a : Term
============================
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
revert Γ2 A0 a. 17 subgoals, subgoal 1 (ID 28689)
Γ1 : list Term
============================
forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
induction Γ1; intros; simpl in *. 18 subgoals, subgoal 1 (ID 28709)
Γ2 : list Term
A0 : Term
a : Term
H3 : a ↓ 0 ∈ A0 :: Γ2
============================
A0 = a
subgoal 2 (ID 28717) is:
A0 = a0
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
inversion H3;subst; clear H3. 18 subgoals, subgoal 1 (ID 28787)
Γ2 : list Term
A0 : Term
============================
A0 = A0
subgoal 2 (ID 28717) is:
A0 = a0
subgoal 3 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
trivial.17 subgoals, subgoal 1 (ID 28717)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H3 : a0 ↓ S (length Γ1) ∈ a :: Γ1 ++ A0 :: Γ2
============================
A0 = a0
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
inversion H3; subst; clear H3. 17 subgoals, subgoal 1 (ID 28865)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H0 : a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
A0 = a0
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using ,)
eapply IHΓ1. 17 subgoals, subgoal 1 (ID 28867)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H0 : a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: ?28866
subgoal 2 (ID 28568) is:
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 open,)
apply H0.16 subgoals, subgoal 1 (ID 28568)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ1 ++ B :: Γ2 ⊢e #v : A
subgoal 2 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using ,)
econstructor. 17 subgoals, subgoal 1 (ID 28870)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28871) is:
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using ,)
apply H with A0 s; trivial. 16 subgoals, subgoal 1 (ID 28871)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using ,)
eapply conv_in_env_var_lift2. 19 subgoals, subgoal 1 (ID 28878)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
A ↓ v ⊂ ?28875
subgoal 2 (ID 28879) is:
?28875 = Γ1 ++ ?28876 :: Γ2
subgoal 3 (ID 28880) is:
Γ2 ⊢e ?28876 = B : !?28877
subgoal 4 (ID 28881) is:
length Γ1 < v
subgoal 5 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 6 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 7 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 8 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 9 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 10 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 11 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 12 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 13 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 14 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 15 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 16 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 17 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 18 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 19 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 open, ?28876 open, ?28877 open,)
apply i. 18 subgoals, subgoal 1 (ID 28879)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ = Γ1 ++ ?28876 :: Γ2
subgoal 2 (ID 28880) is:
Γ2 ⊢e ?28876 = B : !?28877
subgoal 3 (ID 28881) is:
length Γ1 < v
subgoal 4 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 5 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 6 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 7 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 8 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 9 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 10 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 11 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 12 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 13 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 14 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 15 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 16 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 17 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 18 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 open, ?28877 open,)
apply H0. 17 subgoals, subgoal 1 (ID 28880)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ2 ⊢e A0 = B : !?28877
subgoal 2 (ID 28881) is:
length Γ1 < v
subgoal 3 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 open,)
apply H1. 16 subgoals, subgoal 1 (ID 28881)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
length Γ1 < v
subgoal 2 (ID 28288) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using ,)
trivial.15 subgoals, subgoal 1 (ID 28288)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B : !u
subgoal 2 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using ,)
apply cPi with s t;trivial. 16 subgoals, subgoal 1 (ID 28883)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A : !s
subgoal 2 (ID 28884) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using ,)
apply H with A0 s0; trivial.15 subgoals, subgoal 1 (ID 28884)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using ,)
rewrite app_comm_cons. 15 subgoals, subgoal 1 (ID 28888)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using ,)
eapply H0. 17 subgoals, subgoal 1 (ID 28891)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?28889 :: Γ2
subgoal 2 (ID 28892) is:
Γ2 ⊢e ?28889 = B0 : !?28890
subgoal 3 (ID 28893) is:
Γ2 ⊢e B0 : !?28890
subgoal 4 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 open, ?28890 open,)
rewrite H1; simpl; reflexivity. 16 subgoals, subgoal 1 (ID 28892)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?28890
subgoal 2 (ID 28893) is:
Γ2 ⊢e B0 : !?28890
subgoal 3 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 open,)
apply H2. 15 subgoals, subgoal 1 (ID 28893)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 28311) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using ,)
trivial.14 subgoals, subgoal 1 (ID 28311)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e λ [A], b : Π (A), B
subgoal 2 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 3 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 4 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 5 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using ,)
apply cLa with s1 s2 s3;trivial. 16 subgoals, subgoal 1 (ID 28898)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e A : !s1
subgoal 2 (ID 28899) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !s2
subgoal 3 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using ,)
apply H with A0 s; trivial.15 subgoals, subgoal 1 (ID 28899)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !s2
subgoal 2 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using ,)
rewrite app_comm_cons. 15 subgoals, subgoal 1 (ID 28904)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e B : !s2
subgoal 2 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using ,)
eapply H0. 17 subgoals, subgoal 1 (ID 28907)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
A :: Γ = (A :: Γ1) ++ ?28905 :: Γ2
subgoal 2 (ID 28908) is:
Γ2 ⊢e ?28905 = B0 : !?28906
subgoal 3 (ID 28909) is:
Γ2 ⊢e B0 : !?28906
subgoal 4 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 5 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 6 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 7 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 8 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 9 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 10 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 11 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 12 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 13 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 14 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 15 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 16 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 17 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 open, ?28906 open,)
rewrite H2; simpl; reflexivity. 16 subgoals, subgoal 1 (ID 28908)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ2 ⊢e A0 = B0 : !?28906
subgoal 2 (ID 28909) is:
Γ2 ⊢e B0 : !?28906
subgoal 3 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 open,)
apply H3. 15 subgoals, subgoal 1 (ID 28909)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ2 ⊢e B0 : !s
subgoal 2 (ID 28900) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using ,)
trivial.14 subgoals, subgoal 1 (ID 28900)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e b : B
subgoal 2 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 3 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 4 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 5 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using ,)
rewrite app_comm_cons. 14 subgoals, subgoal 1 (ID 28913)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e b : B
subgoal 2 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 3 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 4 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 5 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using ,)
eapply H1. 16 subgoals, subgoal 1 (ID 28916)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
A :: Γ = (A :: Γ1) ++ ?28914 :: Γ2
subgoal 2 (ID 28917) is:
Γ2 ⊢e ?28914 = B0 : !?28915
subgoal 3 (ID 28918) is:
Γ2 ⊢e B0 : !?28915
subgoal 4 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 5 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 6 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 7 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 8 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 9 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 10 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 11 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 12 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 13 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 14 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 15 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 16 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 open, ?28915 open,)
rewrite H2; simpl; reflexivity. 15 subgoals, subgoal 1 (ID 28917)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ2 ⊢e A0 = B0 : !?28915
subgoal 2 (ID 28918) is:
Γ2 ⊢e B0 : !?28915
subgoal 3 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 4 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 5 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 6 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 open,)
apply H3. 14 subgoals, subgoal 1 (ID 28918)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e A : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e b : B
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s
H4 : Γ2 ⊢e B0 : !s
============================
Γ2 ⊢e B0 : !s
subgoal 2 (ID 28329) is:
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 3 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 4 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 5 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
trivial.13 subgoals, subgoal 1 (ID 28329)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e a : Π (A), B
t0 : Γ ⊢e b : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e b : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e a · b : B [ ← b]
subgoal 2 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 3 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 4 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply cApp with A. 14 subgoals, subgoal 1 (ID 28922)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e a : Π (A), B
t0 : Γ ⊢e b : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e b : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e a : Π (A), B
subgoal 2 (ID 28923) is:
Γ1 ++ B0 :: Γ2 ⊢e b : A
subgoal 3 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 4 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 5 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H with A0 s; trivial. 13 subgoals, subgoal 1 (ID 28923)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e a : Π (A), B
t0 : Γ ⊢e b : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e b : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e b : A
subgoal 2 (ID 28347) is:
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 3 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 4 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H0 with A0 s; trivial.12 subgoals, subgoal 1 (ID 28347)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e a : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e a : B
subgoal 2 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 3 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply Cnv with A s; trivial. 13 subgoals, subgoal 1 (ID 28930)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e a : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
subgoal 2 (ID 28931) is:
Γ1 ++ B0 :: Γ2 ⊢e a : A
subgoal 3 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 4 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H with A0 s0; trivial. 12 subgoals, subgoal 1 (ID 28931)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e a : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e a : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e a : A
subgoal 2 (ID 28362) is:
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 3 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H0 with A0 s0; trivial.11 subgoals, subgoal 1 (ID 28362)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Γ1 ++ B :: Γ2 ⊢e !s = !s : !t
subgoal 2 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
constructor. 12 subgoals, subgoal 1 (ID 28939)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Ax s t
subgoal 2 (ID 28940) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
trivial. 11 subgoals, subgoal 1 (ID 28940)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s0 : Sorts
H0 : Γ = Γ1 ++ A :: Γ2
H1 : Γ2 ⊢e A = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28377) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H with A s0; trivial.10 subgoals, subgoal 1 (ID 28377)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 2 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
destruct (lt_eq_lt_dec v (List.length Γ1)) as [ [] | ].12 subgoals, subgoal 1 (ID 28958)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 2 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
econstructor. 13 subgoals, subgoal 1 (ID 28963)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28964) is:
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
apply H with A0 s; trivial. 12 subgoals, subgoal 1 (ID 28964)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using ,)
eapply conv_in_env_var_lift.15 subgoals, subgoal 1 (ID 28971)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
A ↓ v ⊂ ?28968
subgoal 2 (ID 28972) is:
?28968 = Γ1 ++ ?28969 :: Γ2
subgoal 3 (ID 28973) is:
Γ2 ⊢e ?28969 = B : !?28970
subgoal 4 (ID 28974) is:
v < length Γ1
subgoal 5 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 open, ?28969 open, ?28970 open,)
apply i. 14 subgoals, subgoal 1 (ID 28972)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ = Γ1 ++ ?28969 :: Γ2
subgoal 2 (ID 28973) is:
Γ2 ⊢e ?28969 = B : !?28970
subgoal 3 (ID 28974) is:
v < length Γ1
subgoal 4 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 open, ?28970 open,)
apply H0. 13 subgoals, subgoal 1 (ID 28973)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
Γ2 ⊢e A0 = B : !?28970
subgoal 2 (ID 28974) is:
v < length Γ1
subgoal 3 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 open,)
apply H1. 12 subgoals, subgoal 1 (ID 28974)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : v < length Γ1
============================
v < length Γ1
subgoal 2 (ID 28959) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
trivial.11 subgoals, subgoal 1 (ID 28959)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
e : v = length Γ1
============================
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
subst. 11 subgoals, subgoal 1 (ID 28986)
A : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
i : A ↓ length Γ1 ⊂ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : A
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
destruct i as (a & ?& ?). 11 subgoals, subgoal 1 (ID 28994)
A : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H0 : A = a ↑ (S (length Γ1))
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : A
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
subst.11 subgoals, subgoal 1 (ID 28997)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : a ↑ (S (length Γ1))
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
replace a with A0 in *. 12 subgoals, subgoal 1 (ID 29003)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : A0 ↑ (S (length Γ1))
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
apply Cnv_eq with (B↑ (S (length Γ1))) s.13 subgoals, subgoal 1 (ID 29006)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e B ↑ (S (length Γ1)) = A0 ↑ (S (length Γ1)) : !s
subgoal 2 (ID 29007) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28998) is:
A0 = a
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
change !s with (!s↑ (S (length Γ1))). 13 subgoals, subgoal 1 (ID 29010)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e B ↑ (S (length Γ1)) = A0 ↑ (S (length Γ1))
: !s ↑ (S (length Γ1))
subgoal 2 (ID 29007) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28998) is:
A0 = a
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
apply thinning_eq_n with Γ2.15 subgoals, subgoal 1 (ID 29011)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
trunc (S (length Γ1)) (Γ1 ++ B :: Γ2) Γ2
subgoal 2 (ID 29012) is:
Γ2 ⊢e B = A0 : !s
subgoal 3 (ID 29013) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 29007) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 5 (ID 28998) is:
A0 = a
subgoal 6 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 7 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 8 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 9 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 10 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 11 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 12 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 13 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 14 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 15 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
apply conv_in_env_aux_trunc. 14 subgoals, subgoal 1 (ID 29012)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ2 ⊢e B = A0 : !s
subgoal 2 (ID 29013) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 29007) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 4 (ID 28998) is:
A0 = a
subgoal 5 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 6 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 7 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 8 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 9 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 10 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 11 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 12 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 13 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 14 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
intuition.13 subgoals, subgoal 1 (ID 29013)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 29007) is:
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 3 (ID 28998) is:
A0 = a
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
apply H with A0 s; trivial. 12 subgoals, subgoal 1 (ID 29007)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊢e #(length Γ1) = #(length Γ1) : B ↑ (S (length Γ1))
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
constructor. 13 subgoals, subgoal 1 (ID 29032)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 29033) is:
B ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28998) is:
A0 = a
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
apply H with A0 s; trivial.12 subgoals, subgoal 1 (ID 29033)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
B ↑ (S (length Γ1)) ↓ length Γ1 ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
exists B; intuition.12 subgoals, subgoal 1 (ID 29041)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : A0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
clear. 12 subgoals, subgoal 1 (ID 29055)
Γ1 : list Term
Γ2 : list Term
B : Term
============================
B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
induction Γ1; simpl in *. 13 subgoals, subgoal 1 (ID 29067)
Γ2 : list Term
B : Term
============================
B ↓ 0 ∈ B :: Γ2
subgoal 2 (ID 29073) is:
B ↓ S (length Γ1) ∈ a :: Γ1 ++ B :: Γ2
subgoal 3 (ID 28998) is:
A0 = a
subgoal 4 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
constructor. 12 subgoals, subgoal 1 (ID 29073)
a : Term
Γ1 : list Term
Γ2 : list Term
B : Term
IHΓ1 : B ↓ length Γ1 ∈ Γ1 ++ B :: Γ2
============================
B ↓ S (length Γ1) ∈ a :: Γ1 ++ B :: Γ2
subgoal 2 (ID 28998) is:
A0 = a
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
constructor; intuition.11 subgoals, subgoal 1 (ID 28998)
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
w : Γ1 ++ A0 :: Γ2 ⊣e
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s -> Γ4 ⊢e B : !s -> Γ3 ++ B :: Γ4 ⊣e
a : Term
H3 : a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
A0 = a
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
generalize H3; clear. 11 subgoals, subgoal 1 (ID 29079)
Γ1 : list Term
Γ2 : list Term
A0 : Term
a : Term
============================
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
revert Γ2 A0 a. 11 subgoals, subgoal 1 (ID 29081)
Γ1 : list Term
============================
forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
induction Γ1; intros; simpl in *.12 subgoals, subgoal 1 (ID 29101)
Γ2 : list Term
A0 : Term
a : Term
H3 : a ↓ 0 ∈ A0 :: Γ2
============================
A0 = a
subgoal 2 (ID 29109) is:
A0 = a0
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
inversion H3;subst; clear H3. 12 subgoals, subgoal 1 (ID 29179)
Γ2 : list Term
A0 : Term
============================
A0 = A0
subgoal 2 (ID 29109) is:
A0 = a0
subgoal 3 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
trivial.11 subgoals, subgoal 1 (ID 29109)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H3 : a0 ↓ S (length Γ1) ∈ a :: Γ1 ++ A0 :: Γ2
============================
A0 = a0
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
inversion H3; subst; clear H3. 11 subgoals, subgoal 1 (ID 29257)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H0 : a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
A0 = a0
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using ,)
eapply IHΓ1. 11 subgoals, subgoal 1 (ID 29259)
a : Term
Γ1 : list Term
IHΓ1 : forall (Γ2 : list Term) (A0 a : Term),
a ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2 -> A0 = a
Γ2 : list Term
A0 : Term
a0 : Term
H0 : a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: Γ2
============================
a0 ↓ length Γ1 ∈ Γ1 ++ A0 :: ?29258
subgoal 2 (ID 28960) is:
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 open,)
apply H0.10 subgoals, subgoal 1 (ID 28960)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ1 ++ B :: Γ2 ⊢e #v = #v : A
subgoal 2 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using ,)
econstructor. 11 subgoals, subgoal 1 (ID 29262)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 29263) is:
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using ,)
apply H with A0 s; trivial. 10 subgoals, subgoal 1 (ID 29263)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
A ↓ v ⊂ Γ1 ++ B :: Γ2
subgoal 2 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using ,)
eapply conv_in_env_var_lift2.13 subgoals, subgoal 1 (ID 29270)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
A ↓ v ⊂ ?29267
subgoal 2 (ID 29271) is:
?29267 = Γ1 ++ ?29268 :: Γ2
subgoal 3 (ID 29272) is:
Γ2 ⊢e ?29268 = B : !?29269
subgoal 4 (ID 29273) is:
length Γ1 < v
subgoal 5 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 6 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 7 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 8 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 9 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 10 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 11 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 12 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 13 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 open, ?29268 open, ?29269 open,)
apply i. 12 subgoals, subgoal 1 (ID 29271)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ = Γ1 ++ ?29268 :: Γ2
subgoal 2 (ID 29272) is:
Γ2 ⊢e ?29268 = B : !?29269
subgoal 3 (ID 29273) is:
length Γ1 < v
subgoal 4 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 5 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 6 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 7 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 8 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 9 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 10 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 11 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 12 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 open, ?29269 open,)
apply H0. 11 subgoals, subgoal 1 (ID 29272)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
Γ2 ⊢e A0 = B : !?29269
subgoal 2 (ID 29273) is:
length Γ1 < v
subgoal 3 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 open,)
apply H1. 10 subgoals, subgoal 1 (ID 29273)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Γ1 Γ2 : list Term) (A B : Term) (s : Sorts),
Γ = Γ1 ++ A :: Γ2 ->
Γ2 ⊢e A = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊣e
i : A ↓ v ⊂ Γ
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
l : length Γ1 < v
============================
length Γ1 < v
subgoal 2 (ID 28399) is:
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using ,)
trivial.9 subgoals, subgoal 1 (ID 28399)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e Π (A), B = Π (A'), B' : !u
subgoal 2 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using ,)
apply cPi_eq with s t;trivial. 10 subgoals, subgoal 1 (ID 29275)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A = A' : !s
subgoal 2 (ID 29276) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using ,)
apply H with A0 s0; trivial.9 subgoals, subgoal 1 (ID 29276)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
subgoal 2 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using ,)
rewrite app_comm_cons. 9 subgoals, subgoal 1 (ID 29280)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e B = B' : !t
subgoal 2 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using ,)
eapply H0. 11 subgoals, subgoal 1 (ID 29283)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?29281 :: Γ2
subgoal 2 (ID 29284) is:
Γ2 ⊢e ?29281 = B0 : !?29282
subgoal 3 (ID 29285) is:
Γ2 ⊢e B0 : !?29282
subgoal 4 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 open, ?29282 open,)
rewrite H1; simpl; reflexivity. 10 subgoals, subgoal 1 (ID 29284)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?29282
subgoal 2 (ID 29285) is:
Γ2 ⊢e B0 : !?29282
subgoal 3 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 open,)
apply H2. 9 subgoals, subgoal 1 (ID 29285)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B = B' : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 28424) is:
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using ,)
trivial.8 subgoals, subgoal 1 (ID 28424)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e λ [A], M = λ [A'], M' : Π (A), B
subgoal 2 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 3 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 4 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 5 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 6 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 7 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 8 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using ,)
apply cLa_eq with s t u;trivial. 10 subgoals, subgoal 1 (ID 29290)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A = A' : !s
subgoal 2 (ID 29291) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
subgoal 3 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using ,)
apply H with A0 s0; trivial.9 subgoals, subgoal 1 (ID 29291)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
subgoal 2 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using ,)
rewrite app_comm_cons. 9 subgoals, subgoal 1 (ID 29296)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e M = M' : B
subgoal 2 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using ,)
eapply H0. 11 subgoals, subgoal 1 (ID 29299)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?29297 :: Γ2
subgoal 2 (ID 29300) is:
Γ2 ⊢e ?29297 = B0 : !?29298
subgoal 3 (ID 29301) is:
Γ2 ⊢e B0 : !?29298
subgoal 4 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 5 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 6 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 7 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 8 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 9 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 10 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 11 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 open, ?29298 open,)
rewrite H2; simpl; reflexivity. 10 subgoals, subgoal 1 (ID 29300)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?29298
subgoal 2 (ID 29301) is:
Γ2 ⊢e B0 : !?29298
subgoal 3 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 open,)
apply H3. 9 subgoals, subgoal 1 (ID 29301)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 29292) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using ,)
trivial.8 subgoals, subgoal 1 (ID 29292)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 3 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 4 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 5 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 6 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 7 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 8 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using ,)
rewrite app_comm_cons. 8 subgoals, subgoal 1 (ID 29305)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 3 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 4 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 5 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 6 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 7 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 8 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using ,)
eapply H1. 10 subgoals, subgoal 1 (ID 29308)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?29306 :: Γ2
subgoal 2 (ID 29309) is:
Γ2 ⊢e ?29306 = B0 : !?29307
subgoal 3 (ID 29310) is:
Γ2 ⊢e B0 : !?29307
subgoal 4 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 5 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 6 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 7 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 8 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 9 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 10 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 open, ?29307 open,)
rewrite H2; simpl; reflexivity. 9 subgoals, subgoal 1 (ID 29309)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?29307
subgoal 2 (ID 29310) is:
Γ2 ⊢e B0 : !?29307
subgoal 3 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 4 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 5 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 6 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 7 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 8 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 9 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 open,)
apply H3. 8 subgoals, subgoal 1 (ID 29310)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A = A' : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : B
t2 : A :: Γ ⊢e B : !t
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H2 : Γ = Γ1 ++ A0 :: Γ2
H3 : Γ2 ⊢e A0 = B0 : !s0
H4 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 28444) is:
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 3 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 4 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 5 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 6 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 7 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 8 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
trivial.7 subgoals, subgoal 1 (ID 28444)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s ->
Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : Π (A), B
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = N' : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e M · N = M' · N' : B [ ← N]
subgoal 2 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 3 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 4 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 5 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 6 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 7 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply cApp_eq with A. 8 subgoals, subgoal 1 (ID 29314)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s ->
Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : Π (A), B
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = N' : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e M = M' : Π (A), B
subgoal 2 (ID 29315) is:
Γ1 ++ B0 :: Γ2 ⊢e N = N' : A
subgoal 3 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 4 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 5 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 6 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 7 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 8 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H with A0 s; trivial. 7 subgoals, subgoal 1 (ID 29315)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s ->
Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M = M' : Π (A), B
t0 : Γ ⊢e N = N' : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = N' : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s
H3 : Γ2 ⊢e B0 : !s
============================
Γ1 ++ B0 :: Γ2 ⊢e N = N' : A
subgoal 2 (ID 28459) is:
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 3 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 4 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 5 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 6 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 7 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H0 with A0 s; trivial.6 subgoals, subgoal 1 (ID 28459)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e N = M : A
subgoal 2 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 3 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 4 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply cSym. 6 subgoals, subgoal 1 (ID 29322)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H0 : Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s
H2 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e M = N : A
subgoal 2 (ID 28477) is:
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 3 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 4 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H with A0 s; trivial.5 subgoals, subgoal 1 (ID 28477)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
t0 : Γ ⊢e N = P : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = P : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B : !s
H3 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e M = P : A
subgoal 2 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 3 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply cTrans with N. 6 subgoals, subgoal 1 (ID 29326)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
t0 : Γ ⊢e N = P : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = P : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B : !s
H3 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e M = N : A
subgoal 2 (ID 29327) is:
Γ1 ++ B :: Γ2 ⊢e N = P : A
subgoal 3 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 4 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H with A0 s; trivial. 5 subgoals, subgoal 1 (ID 29327)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
t0 : Γ ⊢e N = P : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N = P : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B : !s
H3 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊢e N = P : A
subgoal 2 (ID 28496) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 3 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H0 with A0 s; trivial.4 subgoals, subgoal 1 (ID 28496)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e M = N : B
subgoal 2 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 3 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply Cnv_eq with A s; trivial. 5 subgoals, subgoal 1 (ID 29334)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
subgoal 2 (ID 29335) is:
Γ1 ++ B0 :: Γ2 ⊢e M = N : A
subgoal 3 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H with A0 s0; trivial. 4 subgoals, subgoal 1 (ID 29335)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s0 -> Γ2 ⊢e B0 : !s0 -> Γ1 ++ B0 :: Γ2 ⊢e A = B : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e M = N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H1 : Γ = Γ1 ++ A0 :: Γ2
H2 : Γ2 ⊢e A0 = B0 : !s0
H3 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e M = N : A
subgoal 2 (ID 28522) is:
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 3 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H0 with A0 s0; trivial.3 subgoals, subgoal 1 (ID 28522)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e (λ [A], M) · N = M [ ← N] : B [ ← N]
subgoal 2 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply cBeta with s t u; trivial. 6 subgoals, subgoal 1 (ID 29343)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e A : !s
subgoal 2 (ID 29344) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 3 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 4 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
apply H with A0 s0; trivial.5 subgoals, subgoal 1 (ID 29344)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 3 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
rewrite app_comm_cons. 5 subgoals, subgoal 1 (ID 29350)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e B : !t
subgoal 2 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 3 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using ,)
eapply H0. 7 subgoals, subgoal 1 (ID 29353)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?29351 :: Γ2
subgoal 2 (ID 29354) is:
Γ2 ⊢e ?29351 = B0 : !?29352
subgoal 3 (ID 29355) is:
Γ2 ⊢e B0 : !?29352
subgoal 4 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 5 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 6 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 7 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 open, ?29352 open,)
rewrite H3; simpl; reflexivity. 6 subgoals, subgoal 1 (ID 29354)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?29352
subgoal 2 (ID 29355) is:
Γ2 ⊢e B0 : !?29352
subgoal 3 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 4 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 open,)
apply H4. 5 subgoals, subgoal 1 (ID 29355)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 29345) is:
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 3 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using ,)
trivial.4 subgoals, subgoal 1 (ID 29345)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
A :: Γ1 ++ B0 :: Γ2 ⊢e M : B
subgoal 2 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 3 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using ,)
rewrite app_comm_cons. 4 subgoals, subgoal 1 (ID 29359)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
(A :: Γ1) ++ B0 :: Γ2 ⊢e M : B
subgoal 2 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 3 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using ,)
eapply H1. 6 subgoals, subgoal 1 (ID 29362)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
A :: Γ = (A :: Γ1) ++ ?29360 :: Γ2
subgoal 2 (ID 29363) is:
Γ2 ⊢e ?29360 = B0 : !?29361
subgoal 3 (ID 29364) is:
Γ2 ⊢e B0 : !?29361
subgoal 4 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 5 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 6 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 open, ?29361 open,)
rewrite H3; simpl; reflexivity. 5 subgoals, subgoal 1 (ID 29363)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e A0 = B0 : !?29361
subgoal 2 (ID 29364) is:
Γ2 ⊢e B0 : !?29361
subgoal 3 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 4 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 5 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 open,)
apply H4. 4 subgoals, subgoal 1 (ID 29364)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ2 ⊢e B0 : !s0
subgoal 2 (ID 29346) is:
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 3 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 4 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
trivial.3 subgoals, subgoal 1 (ID 29346)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e B : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Γ1 Γ2 : list Term) (A0 B0 : Term) (s : Sorts),
A :: Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B0 : !s -> Γ2 ⊢e B0 : !s -> Γ1 ++ B0 :: Γ2 ⊢e M : B
t3 : Γ ⊢e N : A
H2 : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s -> Γ2 ⊢e B : !s -> Γ1 ++ B :: Γ2 ⊢e N : A
Γ1 : list Term
Γ2 : list Term
A0 : Term
B0 : Term
s0 : Sorts
H3 : Γ = Γ1 ++ A0 :: Γ2
H4 : Γ2 ⊢e A0 = B0 : !s0
H5 : Γ2 ⊢e B0 : !s0
============================
Γ1 ++ B0 :: Γ2 ⊢e N : A
subgoal 2 (ID 28531) is:
Γ1 ++ B :: Γ2 ⊣e
subgoal 3 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
apply H2 with A0 s0; trivial.2 subgoals, subgoal 1 (ID 28531)
Γ1 : list Term
Γ2 : list Term
A : Term
B : Term
s : Sorts
H : nil = Γ1 ++ A :: Γ2
H0 : Γ2 ⊢e A = B : !s
H1 : Γ2 ⊢e B : !s
============================
Γ1 ++ B :: Γ2 ⊣e
subgoal 2 (ID 28545) is:
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
destruct Γ1; simpl in *; discriminate.1 subgoals, subgoal 1 (ID 28545)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H0 : A :: Γ = Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
destruct Γ1; simpl in *. 2 subgoals, subgoal 1 (ID 29439)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H0 : A :: Γ = A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
B :: Γ2 ⊣e
subgoal 2 (ID 29454) is:
t0 :: Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
injection H0;intros; subst; clear H0. 2 subgoals, subgoal 1 (ID 29479)
s : Sorts
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
t : Γ2 ⊢e A0 : !s
H : forall (Γ1 Γ3 : list Term) (A B : Term) (s0 : Sorts),
Γ2 = Γ1 ++ A :: Γ3 ->
Γ3 ⊢e A = B : !s0 -> Γ3 ⊢e B : !s0 -> Γ1 ++ B :: Γ3 ⊢e A0 : !s
============================
B :: Γ2 ⊣e
subgoal 2 (ID 29454) is:
t0 :: Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using ,)
eauto.1 subgoals, subgoal 1 (ID 29454)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Γ1 Γ2 : list Term) (A0 B : Term) (s0 : Sorts),
Γ = Γ1 ++ A0 :: Γ2 ->
Γ2 ⊢e A0 = B : !s0 -> Γ2 ⊢e B : !s0 -> Γ1 ++ B :: Γ2 ⊢e A : !s
t0 : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H0 : A :: Γ = t0 :: Γ1 ++ A0 :: Γ2
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
============================
t0 :: Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using , ?29480 using ,)
injection H0; intros; subst; clear H0.1 subgoals, subgoal 1 (ID 29517)
s : Sorts
t0 : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
t : Γ1 ++ A0 :: Γ2 ⊢e t0 : !s
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s0 : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s0 -> Γ4 ⊢e B : !s0 -> Γ3 ++ B :: Γ4 ⊢e t0 : !s
============================
t0 :: Γ1 ++ B :: Γ2 ⊣e
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using , ?29480 using ,)
econstructor. 1 subgoals, subgoal 1 (ID 29521)
s : Sorts
t0 : Term
Γ1 : list Term
Γ2 : list Term
A0 : Term
B : Term
s0 : Sorts
H1 : Γ2 ⊢e A0 = B : !s0
H2 : Γ2 ⊢e B : !s0
t : Γ1 ++ A0 :: Γ2 ⊢e t0 : !s
H : forall (Γ3 Γ4 : list Term) (A B : Term) (s0 : Sorts),
Γ1 ++ A0 :: Γ2 = Γ3 ++ A :: Γ4 ->
Γ4 ⊢e A = B : !s0 -> Γ4 ⊢e B : !s0 -> Γ3 ++ B :: Γ4 ⊢e t0 : !s
============================
Γ1 ++ B :: Γ2 ⊢e t0 : !?29520
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using , ?29480 using , ?29520 open,)
apply H with A0 s0; trivial.No more subgoals.
(dependent evars: ?28576 using , ?28577 using , ?28578 using , ?28866 using , ?28875 using , ?28876 using , ?28877 using , ?28889 using , ?28890 using , ?28905 using , ?28906 using , ?28914 using , ?28915 using , ?28968 using , ?28969 using , ?28970 using , ?29258 using , ?29267 using , ?29268 using , ?29269 using , ?29281 using , ?29282 using , ?29297 using , ?29298 using , ?29306 using , ?29307 using , ?29351 using , ?29352 using , ?29360 using , ?29361 using , ?29480 using , ?29520 using ,)
Qed.
Lemma substitution : (forall Γ t T , Γ ⊢e t : T -> forall Δ P A, Δ ⊢e P : A ->
forall Γ' n , sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e t [ n ←P ] : T [ n ←P ]) /\
(forall Γ M N T , Γ ⊢e M = N : T -> forall Δ P A, Δ ⊢e P : A ->
forall Γ' n , sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e M [ n ←P ] = N [ n ←P ] : T [ n ←P ]) /\
(forall Γ , Γ ⊣e -> forall Δ P A n Γ' , Δ ⊢e P : A ->
sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e) .1 subgoals, subgoal 1 (ID 29548)
============================
(forall (Γ : Env) (t T : Term),
Γ ⊢e t : T ->
forall (Δ : Env) (P A : Term),
Δ ⊢e P : A ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e t [n ← P] : T [n ← P]) /\
(forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T ->
forall (Δ : Env) (P A : Term),
Δ ⊢e P : A ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : T [n ← P]) /\
(forall Γ : Env,
Γ ⊣e ->
forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e)
(dependent evars:)
apply typ_induc; simpl; intros.17 subgoals, subgoal 1 (ID 29595)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e !s : !t
subgoal 2 (ID 29608) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars:)
constructor. 18 subgoals, subgoal 1 (ID 29857)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Ax s t
subgoal 2 (ID 29858) is:
Γ' ⊣e
subgoal 3 (ID 29608) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars:)
trivial. 17 subgoals, subgoal 1 (ID 29858)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊣e
subgoal 2 (ID 29608) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars:)
eapply H. 18 subgoals, subgoal 1 (ID 29863)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
?29859 ⊢e ?29860 : ?29861
subgoal 2 (ID 29864) is:
sub_in_env ?29859 ?29860 ?29861 ?29862 Γ Γ'
subgoal 3 (ID 29608) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 open, ?29860 open, ?29861 open, ?29862 open,)
apply H0. 17 subgoals, subgoal 1 (ID 29864)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
sub_in_env Δ P A ?29862 Γ Γ'
subgoal 2 (ID 29608) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 open,)
apply H1.16 subgoals, subgoal 1 (ID 29608)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using ,)
destruct lt_eq_lt_dec as [ [] | ].18 subgoals, subgoal 1 (ID 29878)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊢e #v : A [n ← P]
subgoal 2 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using ,)
constructor. 19 subgoals, subgoal 1 (ID 29883)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊣e
subgoal 2 (ID 29884) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 3 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 4 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using ,)
eapply H; eauto. 18 subgoals, subgoal 1 (ID 29884)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A [n ← P] ↓ v ⊂ Γ'
subgoal 2 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using ,)
eapply nth_sub_item_inf. 20 subgoals, subgoal 1 (ID 29944)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
sub_in_env ?29942 P ?29941 n ?29943 Γ'
subgoal 2 (ID 29945) is:
n > v
subgoal 3 (ID 29946) is:
A ↓ v ⊂ ?29943
subgoal 4 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 5 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 open, ?29942 open, ?29943 open,)
apply H1. 19 subgoals, subgoal 1 (ID 29945)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
n > v
subgoal 2 (ID 29946) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 4 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
intuition. 18 subgoals, subgoal 1 (ID 29946)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 29879) is:
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
trivial.17 subgoals, subgoal 1 (ID 29879)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 2 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
destruct i as (AA & ?& ?). 17 subgoals, subgoal 1 (ID 29957)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n : A [n ← P]
subgoal 2 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
subst. 17 subgoals, subgoal 1 (ID 29966)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n : AA ↑ (S n) [n ← P]
subgoal 2 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
rewrite substP3; trivial.18 subgoals, subgoal 1 (ID 29967)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n : AA ↑ n
subgoal 2 (ID 29968) is:
0 <= n
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
rewrite <- (nth_sub_eq H1 H3).18 subgoals, subgoal 1 (ID 29977)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n : A0 ↑ n
subgoal 2 (ID 29968) is:
0 <= n
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using ,)
eapply thinning_n. 20 subgoals, subgoal 1 (ID 29979)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
trunc n Γ' ?29978
subgoal 2 (ID 29980) is:
?29978 ⊢e P : A0
subgoal 3 (ID 29981) is:
Γ' ⊣e
subgoal 4 (ID 29968) is:
0 <= n
subgoal 5 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 open,)
eapply sub_trunc. 20 subgoals, subgoal 1 (ID 29985)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
sub_in_env ?29978 ?29982 ?29983 n ?29984 Γ'
subgoal 2 (ID 29980) is:
?29978 ⊢e P : A0
subgoal 3 (ID 29981) is:
Γ' ⊣e
subgoal 4 (ID 29968) is:
0 <= n
subgoal 5 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 open, ?29982 open, ?29983 open, ?29984 open,)
apply H1. 19 subgoals, subgoal 1 (ID 29980)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Δ ⊢e P : A0
subgoal 2 (ID 29981) is:
Γ' ⊣e
subgoal 3 (ID 29968) is:
0 <= n
subgoal 4 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using ,)
trivial. 18 subgoals, subgoal 1 (ID 29981)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊣e
subgoal 2 (ID 29968) is:
0 <= n
subgoal 3 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using ,)
eapply H; eauto. 17 subgoals, subgoal 1 (ID 29968)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
0 <= n
subgoal 2 (ID 29880) is:
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using ,)
intuition.16 subgoals, subgoal 1 (ID 29880)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊢e #(v - 1) : A [n ← P]
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using ,)
constructor. 17 subgoals, subgoal 1 (ID 30057)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊣e
subgoal 2 (ID 30058) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using ,)
eapply H; eauto. 16 subgoals, subgoal 1 (ID 30058)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
destruct i as (AA & ? &?). 16 subgoals, subgoal 1 (ID 30125)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
subst. 16 subgoals, subgoal 1 (ID 30128)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ (S v) [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
rewrite substP3; trivial.18 subgoals, subgoal 1 (ID 30129)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 30130) is:
0 <= n
subgoal 3 (ID 30131) is:
n <= 0 + v
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
exists AA; split. 19 subgoals, subgoal 1 (ID 30135)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ (S (v - 1))
subgoal 2 (ID 30136) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
replace (S (v-1)) with v. 20 subgoals, subgoal 1 (ID 30140)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ v
subgoal 2 (ID 30137) is:
v = S (v - 1)
subgoal 3 (ID 30136) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 30130) is:
0 <= n
subgoal 5 (ID 30131) is:
n <= 0 + v
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
trivial. 19 subgoals, subgoal 1 (ID 30137)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 30136) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
rewrite <- pred_of_minus. 19 subgoals, subgoal 1 (ID 30142)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 30136) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
rewrite <- (S_pred v n l); trivial.18 subgoals, subgoal 1 (ID 30136)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v - 1 ∈ Γ'
subgoal 2 (ID 30130) is:
0 <= n
subgoal 3 (ID 30131) is:
n <= 0 + v
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using ,)
eapply nth_sub_sup. 20 subgoals, subgoal 1 (ID 30149)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
sub_in_env ?30145 ?30147 ?30148 ?30144 ?30146 Γ'
subgoal 2 (ID 30150) is:
?30144 <= v - 1
subgoal 3 (ID 30151) is:
AA ↓ S (v - 1) ∈ ?30146
subgoal 4 (ID 30130) is:
0 <= n
subgoal 5 (ID 30131) is:
n <= 0 + v
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 open, ?30145 open, ?30146 open, ?30147 open, ?30148 open,)
apply H1. 19 subgoals, subgoal 1 (ID 30150)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= v - 1
subgoal 2 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
destruct v. 20 subgoals, subgoal 1 (ID 30160)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ 0 ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < 0
============================
n <= 0 - 1
subgoal 2 (ID 30165) is:
n <= S v - 1
subgoal 3 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 30130) is:
0 <= n
subgoal 5 (ID 30131) is:
n <= 0 + v
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
apply lt_n_O in l; elim l. 19 subgoals, subgoal 1 (ID 30165)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= S v - 1
subgoal 2 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
replace (S v - 1 ) with v. 20 subgoals, subgoal 1 (ID 30171)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= v
subgoal 2 (ID 30168) is:
v = S v - 1
subgoal 3 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 30130) is:
0 <= n
subgoal 5 (ID 30131) is:
n <= 0 + v
subgoal 6 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 7 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 9 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 10 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 11 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 12 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 13 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 14 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 16 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 17 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 18 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 19 (ID 29843) is:
Γ' ⊣e
subgoal 20 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
intuition.19 subgoals, subgoal 1 (ID 30168)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = S v - 1
subgoal 2 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
rewrite <- pred_of_minus. 19 subgoals, subgoal 1 (ID 30189)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = pred (S v)
subgoal 2 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
simpl. 19 subgoals, subgoal 1 (ID 30190)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = v
subgoal 2 (ID 30151) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
trivial. 18 subgoals, subgoal 1 (ID 30151)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ S (v - 1) ∈ Γ
subgoal 2 (ID 30130) is:
0 <= n
subgoal 3 (ID 30131) is:
n <= 0 + v
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
replace (S (v-1)) with v. 19 subgoals, subgoal 1 (ID 30194)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 30191) is:
v = S (v - 1)
subgoal 3 (ID 30130) is:
0 <= n
subgoal 4 (ID 30131) is:
n <= 0 + v
subgoal 5 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 6 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 8 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 9 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 10 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 11 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 12 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 13 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 15 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 16 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 17 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 18 (ID 29843) is:
Γ' ⊣e
subgoal 19 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
trivial. 18 subgoals, subgoal 1 (ID 30191)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 30130) is:
0 <= n
subgoal 3 (ID 30131) is:
n <= 0 + v
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
rewrite <- pred_of_minus. 18 subgoals, subgoal 1 (ID 30196)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 30130) is:
0 <= n
subgoal 3 (ID 30131) is:
n <= 0 + v
subgoal 4 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 5 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 7 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 8 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 9 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 10 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 11 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 12 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 14 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 15 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 16 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 17 (ID 29843) is:
Γ' ⊣e
subgoal 18 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
rewrite <- (S_pred v n l); trivial.17 subgoals, subgoal 1 (ID 30130)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
0 <= n
subgoal 2 (ID 30131) is:
n <= 0 + v
subgoal 3 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
intuition. 16 subgoals, subgoal 1 (ID 30131)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= 0 + v
subgoal 2 (ID 29626) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
simpl; intuition.15 subgoals, subgoal 1 (ID 29626)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] : !u
subgoal 2 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 4 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 5 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 6 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 7 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 8 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 9 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 11 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 12 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 13 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29843) is:
Γ' ⊣e
subgoal 15 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using ,)
econstructor. 17 subgoals, subgoal 1 (ID 30236)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Rel ?30234 ?30235 u
subgoal 2 (ID 30237) is:
Γ' ⊢e A [n ← P] : !?30234
subgoal 3 (ID 30238) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !?30235
subgoal 4 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 open, ?30235 open,)
apply r. 16 subgoals, subgoal 1 (ID 30237)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] : !s
subgoal 2 (ID 30238) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using ,)
eapply H; eauto. 15 subgoals, subgoal 1 (ID 30238)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 2 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 4 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 5 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 6 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 7 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 8 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 9 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 11 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 12 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 13 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29843) is:
Γ' ⊣e
subgoal 15 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using ,)
eapply H0. 16 subgoals, subgoal 1 (ID 30249)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?30247 ⊢e P : ?30248
subgoal 2 (ID 30250) is:
sub_in_env ?30247 P ?30248 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 open, ?30248 open,)
apply H1. 15 subgoals, subgoal 1 (ID 30250)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 29647) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 4 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 5 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 6 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 7 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 8 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 9 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 11 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 12 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 13 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29843) is:
Γ' ⊣e
subgoal 15 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using ,)
constructor; apply H2. 14 subgoals, subgoal 1 (ID 29647)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 3 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using ,)
eauto.14 subgoals, subgoal 1 (ID 29647)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] : Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 3 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using ,)
econstructor. 17 subgoals, subgoal 1 (ID 32062)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Rel ?32059 ?32060 ?32061
subgoal 2 (ID 32063) is:
Γ' ⊢e A [n ← P] : !?32059
subgoal 3 (ID 32064) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !?32060
subgoal 4 (ID 32065) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] : B [(S n) ← P]
subgoal 5 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 6 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 7 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 8 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 9 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 10 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 11 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 13 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 14 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 15 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 16 (ID 29843) is:
Γ' ⊣e
subgoal 17 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 open, ?32060 open, ?32061 open,)
apply r. 16 subgoals, subgoal 1 (ID 32063)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] : !s1
subgoal 2 (ID 32064) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 3 (ID 32065) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 5 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 6 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 7 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 8 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 9 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 10 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 12 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 13 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 14 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 15 (ID 29843) is:
Γ' ⊣e
subgoal 16 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using ,)
eapply H; eauto. 15 subgoals, subgoal 1 (ID 32064)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 2 (ID 32065) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] : B [(S n) ← P]
subgoal 3 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 4 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 5 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 6 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 7 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 8 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 9 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 11 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 12 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 13 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 14 (ID 29843) is:
Γ' ⊣e
subgoal 15 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using ,)
eapply H0; eauto. 14 subgoals, subgoal 1 (ID 32065)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s1
t0 : A :: Γ ⊢e B : !s2
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !s2
t1 : A :: Γ ⊢e b : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e b [n ← P] : B [n ← P]
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e b [(S n) ← P] : B [(S n) ← P]
subgoal 2 (ID 29663) is:
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 3 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using ,)
eapply H1; eauto.13 subgoals, subgoal 1 (ID 29663)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] · b [n ← P] : B [ ← b] [n ← P]
subgoal 2 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using ,)
rewrite subst_travers. 13 subgoals, subgoal 1 (ID 32092)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] · b [n ← P] : (B [(n + 1) ← P]) [ ← b [n ← P]]
subgoal 2 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using ,)
econstructor.14 subgoals, subgoal 1 (ID 32099)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] : Π (?32098), B [(n + 1) ← P]
subgoal 2 (ID 32100) is:
Γ' ⊢e b [n ← P] : ?32098
subgoal 3 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 open,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial). 14 subgoals, subgoal 1 (ID 32104)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] : Π (?32098), B [(S n) ← P]
subgoal 2 (ID 32100) is:
Γ' ⊢e b [n ← P] : ?32098
subgoal 3 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 open,)
eapply H; eauto.13 subgoals, subgoal 1 (ID 32100)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e b [n ← P] : A [n ← P]
subgoal 2 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using ,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial). 13 subgoals, subgoal 1 (ID 32117)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e b : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e b [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e b [n ← P] : A [n ← P]
subgoal 2 (ID 29679) is:
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using ,)
eapply H0; eauto.12 subgoals, subgoal 1 (ID 29679)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] : B [n ← P]
subgoal 2 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 3 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using ,)
econstructor. 13 subgoals, subgoal 1 (ID 32136)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e ?32134 = B [n ← P] : !?32135
subgoal 2 (ID 32137) is:
Γ' ⊢e a [n ← P] : ?32134
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 open, ?32135 open,)
eapply H. 14 subgoals, subgoal 1 (ID 32140)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32138 ⊢e P : ?32139
subgoal 2 (ID 32141) is:
sub_in_env ?32138 P ?32139 n Γ Γ'
subgoal 3 (ID 32137) is:
Γ' ⊢e a [n ← P] : A [n ← P]
subgoal 4 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 5 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 open, ?32139 open,)
apply H1. 13 subgoals, subgoal 1 (ID 32141)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32137) is:
Γ' ⊢e a [n ← P] : A [n ← P]
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using ,)
trivial. 12 subgoals, subgoal 1 (ID 32137)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] : A [n ← P]
subgoal 2 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 3 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using ,)
eapply H0. 13 subgoals, subgoal 1 (ID 32144)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32142 ⊢e P : ?32143
subgoal 2 (ID 32145) is:
sub_in_env ?32142 P ?32143 n Γ Γ'
subgoal 3 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 4 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 open, ?32143 open,)
apply H1. 12 subgoals, subgoal 1 (ID 32145)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e a : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e a [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 29692) is:
Γ' ⊢e !s = !s : !t
subgoal 3 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using ,)
trivial.11 subgoals, subgoal 1 (ID 29692)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e !s = !s : !t
subgoal 2 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using ,)
constructor. 12 subgoals, subgoal 1 (ID 32147)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Ax s t
subgoal 2 (ID 32148) is:
Γ' ⊣e
subgoal 3 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using ,)
trivial. 11 subgoals, subgoal 1 (ID 32148)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊣e
subgoal 2 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using ,)
eapply H. 12 subgoals, subgoal 1 (ID 32153)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
?32149 ⊢e ?32150 : ?32151
subgoal 2 (ID 32154) is:
sub_in_env ?32149 ?32150 ?32151 ?32152 Γ Γ'
subgoal 3 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 open, ?32150 open, ?32151 open, ?32152 open,)
apply H0. 11 subgoals, subgoal 1 (ID 32154)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
Δ : Env
P : Term
A : Term
H0 : Δ ⊢e P : A
Γ' : Env
n : nat
H1 : sub_in_env Δ P A n Γ Γ'
============================
sub_in_env Δ P A ?32152 Γ Γ'
subgoal 2 (ID 29705) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 open,)
apply H1.10 subgoals, subgoal 1 (ID 29705)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using ,)
destruct lt_eq_lt_dec as [ [] | ].12 subgoals, subgoal 1 (ID 32168)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊢e #v = #v : A [n ← P]
subgoal 2 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using ,)
constructor. 13 subgoals, subgoal 1 (ID 32173)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊣e
subgoal 2 (ID 32174) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 3 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 4 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using ,)
eapply H; eauto. 12 subgoals, subgoal 1 (ID 32174)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A [n ← P] ↓ v ⊂ Γ'
subgoal 2 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using ,)
eapply nth_sub_item_inf. 14 subgoals, subgoal 1 (ID 32234)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
sub_in_env ?32232 P ?32231 n ?32233 Γ'
subgoal 2 (ID 32235) is:
n > v
subgoal 3 (ID 32236) is:
A ↓ v ⊂ ?32233
subgoal 4 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 5 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 open, ?32232 open, ?32233 open,)
apply H1.13 subgoals, subgoal 1 (ID 32235)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
n > v
subgoal 2 (ID 32236) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 4 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
intuition. 12 subgoals, subgoal 1 (ID 32236)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 32169) is:
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
trivial.11 subgoals, subgoal 1 (ID 32169)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 2 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
destruct i as (AA & ?& ?). 11 subgoals, subgoal 1 (ID 32247)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n = P ↑ n : A [n ← P]
subgoal 2 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
subst. 11 subgoals, subgoal 1 (ID 32256)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P ↑ n : AA ↑ (S n) [n ← P]
subgoal 2 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
rewrite substP3; trivial.12 subgoals, subgoal 1 (ID 32257)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P ↑ n : AA ↑ n
subgoal 2 (ID 32258) is:
0 <= n
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
rewrite <- (nth_sub_eq H1 H3).12 subgoals, subgoal 1 (ID 32267)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P ↑ n : A0 ↑ n
subgoal 2 (ID 32258) is:
0 <= n
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using ,)
eapply thinning_eq_n. 14 subgoals, subgoal 1 (ID 32269)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
trunc n Γ' ?32268
subgoal 2 (ID 32270) is:
?32268 ⊢e P = P : A0
subgoal 3 (ID 32271) is:
Γ' ⊣e
subgoal 4 (ID 32258) is:
0 <= n
subgoal 5 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 open,)
eapply sub_trunc. 14 subgoals, subgoal 1 (ID 32275)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
sub_in_env ?32268 ?32272 ?32273 n ?32274 Γ'
subgoal 2 (ID 32270) is:
?32268 ⊢e P = P : A0
subgoal 3 (ID 32271) is:
Γ' ⊣e
subgoal 4 (ID 32258) is:
0 <= n
subgoal 5 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 open, ?32272 open, ?32273 open, ?32274 open,)
apply H1. 13 subgoals, subgoal 1 (ID 32270)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Δ ⊢e P = P : A0
subgoal 2 (ID 32271) is:
Γ' ⊣e
subgoal 3 (ID 32258) is:
0 <= n
subgoal 4 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using ,)
apply cRefl; trivial.12 subgoals, subgoal 1 (ID 32271)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
Γ' ⊣e
subgoal 2 (ID 32258) is:
0 <= n
subgoal 3 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using ,)
eapply H; eauto. 11 subgoals, subgoal 1 (ID 32258)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
H3 : AA ↓ n ∈ Γ
============================
0 <= n
subgoal 2 (ID 32170) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using ,)
intuition.10 subgoals, subgoal 1 (ID 32170)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using ,)
constructor. 11 subgoals, subgoal 1 (ID 32348)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊣e
subgoal 2 (ID 32349) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using ,)
eapply H; eauto. 10 subgoals, subgoal 1 (ID 32349)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
i : A ↓ v ⊂ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
destruct i as (AA & ? &?). 10 subgoals, subgoal 1 (ID 32416)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H2 : A = AA ↑ (S v)
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
subst.10 subgoals, subgoal 1 (ID 32419)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ (S v) [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
rewrite substP3; trivial.12 subgoals, subgoal 1 (ID 32420)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 32421) is:
0 <= n
subgoal 3 (ID 32422) is:
n <= 0 + v
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
exists AA; split. 13 subgoals, subgoal 1 (ID 32426)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ (S (v - 1))
subgoal 2 (ID 32427) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
replace (S (v-1)) with v. 14 subgoals, subgoal 1 (ID 32431)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ v
subgoal 2 (ID 32428) is:
v = S (v - 1)
subgoal 3 (ID 32427) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 32421) is:
0 <= n
subgoal 5 (ID 32422) is:
n <= 0 + v
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
trivial.13 subgoals, subgoal 1 (ID 32428)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 32427) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
rewrite <- pred_of_minus. 13 subgoals, subgoal 1 (ID 32433)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 32427) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
rewrite <- (S_pred v n l); trivial.12 subgoals, subgoal 1 (ID 32427)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v - 1 ∈ Γ'
subgoal 2 (ID 32421) is:
0 <= n
subgoal 3 (ID 32422) is:
n <= 0 + v
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using ,)
eapply nth_sub_sup. 14 subgoals, subgoal 1 (ID 32440)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
sub_in_env ?32436 ?32438 ?32439 ?32435 ?32437 Γ'
subgoal 2 (ID 32441) is:
?32435 <= v - 1
subgoal 3 (ID 32442) is:
AA ↓ S (v - 1) ∈ ?32437
subgoal 4 (ID 32421) is:
0 <= n
subgoal 5 (ID 32422) is:
n <= 0 + v
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 open, ?32436 open, ?32437 open, ?32438 open, ?32439 open,)
apply H1. 13 subgoals, subgoal 1 (ID 32441)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= v - 1
subgoal 2 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
destruct v. 14 subgoals, subgoal 1 (ID 32451)
Γ : Env
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ 0 ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < 0
============================
n <= 0 - 1
subgoal 2 (ID 32456) is:
n <= S v - 1
subgoal 3 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 32421) is:
0 <= n
subgoal 5 (ID 32422) is:
n <= 0 + v
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
apply lt_n_O in l; elim l.13 subgoals, subgoal 1 (ID 32456)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= S v - 1
subgoal 2 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
replace (S v - 1 ) with v. 14 subgoals, subgoal 1 (ID 32462)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= v
subgoal 2 (ID 32459) is:
v = S v - 1
subgoal 3 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 32421) is:
0 <= n
subgoal 5 (ID 32422) is:
n <= 0 + v
subgoal 6 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 7 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 10 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 11 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 12 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 13 (ID 29843) is:
Γ' ⊣e
subgoal 14 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
intuition.13 subgoals, subgoal 1 (ID 32459)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = S v - 1
subgoal 2 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
rewrite <- pred_of_minus. 13 subgoals, subgoal 1 (ID 32480)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = pred (S v)
subgoal 2 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
simpl. 13 subgoals, subgoal 1 (ID 32481)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
v = v
subgoal 2 (ID 32442) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
trivial. 12 subgoals, subgoal 1 (ID 32442)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ S (v - 1) ∈ Γ
subgoal 2 (ID 32421) is:
0 <= n
subgoal 3 (ID 32422) is:
n <= 0 + v
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
replace (S (v-1)) with v.13 subgoals, subgoal 1 (ID 32485)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 32482) is:
v = S (v - 1)
subgoal 3 (ID 32421) is:
0 <= n
subgoal 4 (ID 32422) is:
n <= 0 + v
subgoal 5 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 6 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 9 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 10 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 11 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 12 (ID 29843) is:
Γ' ⊣e
subgoal 13 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
trivial. 12 subgoals, subgoal 1 (ID 32482)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 32421) is:
0 <= n
subgoal 3 (ID 32422) is:
n <= 0 + v
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
rewrite <- pred_of_minus. 12 subgoals, subgoal 1 (ID 32487)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 32421) is:
0 <= n
subgoal 3 (ID 32422) is:
n <= 0 + v
subgoal 4 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 5 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 8 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 9 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 10 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 11 (ID 29843) is:
Γ' ⊣e
subgoal 12 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
rewrite <- (S_pred v n l); trivial.11 subgoals, subgoal 1 (ID 32421)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
0 <= n
subgoal 2 (ID 32422) is:
n <= 0 + v
subgoal 3 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
intuition. 10 subgoals, subgoal 1 (ID 32422)
Γ : Env
v : nat
w : Γ ⊣e
H : forall (Δ : Env) (P A : Term) (n : nat) (Γ' : Env),
Δ ⊢e P : A -> sub_in_env Δ P A n Γ Γ' -> Γ' ⊣e
AA : Term
H3 : AA ↓ v ∈ Γ
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= 0 + v
subgoal 2 (ID 29725) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
simpl; intuition.9 subgoals, subgoal 1 (ID 29725)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A' [n ← P]), B' [(S n) ← P] : !u
subgoal 2 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
apply cPi_eq with s t. 11 subgoals, subgoal 1 (ID 32522)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Rel s t u
subgoal 2 (ID 32523) is:
Γ' ⊢e A [n ← P] = A' [n ← P] : !s
subgoal 3 (ID 32524) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B' [(S n) ← P] : !t
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
trivial. 10 subgoals, subgoal 1 (ID 32523)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = A' [n ← P] : !s
subgoal 2 (ID 32524) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B' [(S n) ← P] : !t
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using ,)
eapply H. 11 subgoals, subgoal 1 (ID 32527)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32525 ⊢e P : ?32526
subgoal 2 (ID 32528) is:
sub_in_env ?32525 P ?32526 n Γ Γ'
subgoal 3 (ID 32524) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B' [(S n) ← P] : !t
subgoal 4 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 open, ?32526 open,)
apply H1. 10 subgoals, subgoal 1 (ID 32528)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32524) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B' [(S n) ← P] : !t
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using ,)
trivial. 9 subgoals, subgoal 1 (ID 32524)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B' [(S n) ← P] : !t
subgoal 2 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using ,)
eapply H0. 10 subgoals, subgoal 1 (ID 32531)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32529 ⊢e P : ?32530
subgoal 2 (ID 32532) is:
sub_in_env ?32529 P ?32530 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 open, ?32530 open,)
apply H1. 9 subgoals, subgoal 1 (ID 32532)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e B = B' : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] = B' [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 29748) is:
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using ,)
constructor; trivial.8 subgoals, subgoal 1 (ID 29748)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e λ [A [n ← P]], M [(S n) ← P] = λ [A' [n ← P]], M' [(S n) ← P]
: Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using ,)
apply cLa_eq with s t u. 11 subgoals, subgoal 1 (ID 32536)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Rel s t u
subgoal 2 (ID 32537) is:
Γ' ⊢e A [n ← P] = A' [n ← P] : !s
subgoal 3 (ID 32538) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] = M' [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using ,)
trivial. 10 subgoals, subgoal 1 (ID 32537)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = A' [n ← P] : !s
subgoal 2 (ID 32538) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] = M' [(S n) ← P] : B [(S n) ← P]
subgoal 3 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using ,)
eapply H. 11 subgoals, subgoal 1 (ID 32542)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?32540 ⊢e P : ?32541
subgoal 2 (ID 32543) is:
sub_in_env ?32540 P ?32541 n Γ Γ'
subgoal 3 (ID 32538) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] = M' [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 5 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 7 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 8 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 9 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 10 (ID 29843) is:
Γ' ⊣e
subgoal 11 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 open, ?32541 open,)
apply H2. 10 subgoals, subgoal 1 (ID 32543)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32538) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] = M' [(S n) ← P] : B [(S n) ← P]
subgoal 3 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using ,)
trivial. 9 subgoals, subgoal 1 (ID 32538)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e M [(S n) ← P] = M' [(S n) ← P] : B [(S n) ← P]
subgoal 2 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using ,)
eapply H0. 10 subgoals, subgoal 1 (ID 32546)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?32544 ⊢e P : ?32545
subgoal 2 (ID 32547) is:
sub_in_env ?32544 P ?32545 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 4 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 open, ?32545 open,)
apply H2. 9 subgoals, subgoal 1 (ID 32547)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 32539) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using ,)
constructor; trivial.8 subgoals, subgoal 1 (ID 32539)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 2 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using ,)
eapply H1. 9 subgoals, subgoal 1 (ID 32553)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?32551 ⊢e P : ?32552
subgoal 2 (ID 32554) is:
sub_in_env ?32551 P ?32552 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 open, ?32552 open,)
apply H2. 8 subgoals, subgoal 1 (ID 32554)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A' [n ← P] : !s
t1 : A :: Γ ⊢e M = M' : B
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : B [n ← P]
t2 : A :: Γ ⊢e B : !t
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
Δ : Env
P : Term
A0 : Term
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 29766) is:
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using ,)
constructor; trivial.7 subgoals, subgoal 1 (ID 29766)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P] : B [ ← N] [n ← P]
subgoal 2 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 3 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 4 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 5 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using ,)
rewrite subst_travers. 7 subgoals, subgoal 1 (ID 32558)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] · N [n ← P] = M' [n ← P] · N' [n ← P]
: (B [(n + 1) ← P]) [ ← N [n ← P]]
subgoal 2 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 3 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 4 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 5 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using ,)
apply cApp_eq with (A[n ← P]). 8 subgoals, subgoal 1 (ID 32559)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(n + 1) ← P]
subgoal 2 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using ,)
replace (Π (A [n ← P]), B [(n + 1) ← P]) with (Π(A),B)[n← P].9 subgoals, subgoal 1 (ID 32564)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] = M' [n ← P] : (Π (A), B) [n ← P]
subgoal 2 (ID 32561) is:
(Π (A), B) [n ← P] = Π (A [n ← P]), B [(n + 1) ← P]
subgoal 3 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using ,)
eapply H. 10 subgoals, subgoal 1 (ID 32568)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32566 ⊢e P : ?32567
subgoal 2 (ID 32569) is:
sub_in_env ?32566 P ?32567 n Γ Γ'
subgoal 3 (ID 32561) is:
(Π (A), B) [n ← P] = Π (A [n ← P]), B [(n + 1) ← P]
subgoal 4 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 5 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 6 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 7 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 8 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 9 (ID 29843) is:
Γ' ⊣e
subgoal 10 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 open, ?32567 open,)
apply H1. 9 subgoals, subgoal 1 (ID 32569)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32561) is:
(Π (A), B) [n ← P] = Π (A [n ← P]), B [(n + 1) ← P]
subgoal 3 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using ,)
trivial. 8 subgoals, subgoal 1 (ID 32561)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
(Π (A), B) [n ← P] = Π (A [n ← P]), B [(n + 1) ← P]
subgoal 2 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using ,)
simpl; replace (n+1) with (S n). 9 subgoals, subgoal 1 (ID 32574)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 32571) is:
S n = n + 1
subgoal 3 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 4 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 5 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 6 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 7 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 8 (ID 29843) is:
Γ' ⊣e
subgoal 9 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using ,)
trivial. 8 subgoals, subgoal 1 (ID 32571)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
S n = n + 1
subgoal 2 (ID 32560) is:
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using ,)
rewrite plus_comm; trivial.7 subgoals, subgoal 1 (ID 32560)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
subgoal 2 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 3 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 4 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 5 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using ,)
eapply H0. 8 subgoals, subgoal 1 (ID 32579)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32577 ⊢e P : ?32578
subgoal 2 (ID 32580) is:
sub_in_env ?32577 P ?32578 n Γ Γ'
subgoal 3 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 4 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 5 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 6 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 7 (ID 29843) is:
Γ' ⊣e
subgoal 8 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 open, ?32578 open,)
apply H1. 7 subgoals, subgoal 1 (ID 32580)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e M [n ← P] = M' [n ← P] : Π (A [n ← P]), B [(S n) ← P]
t0 : Γ ⊢e N = N' : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] = N' [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 29779) is:
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 3 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 4 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 5 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using ,)
trivial.6 subgoals, subgoal 1 (ID 29779)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e N [n ← P] = M [n ← P] : A [n ← P]
subgoal 2 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 3 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 4 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using ,)
constructor. 6 subgoals, subgoal 1 (ID 32587)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
subgoal 2 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 3 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 4 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using ,)
eapply H. 7 subgoals, subgoal 1 (ID 32590)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
?32588 ⊢e P : ?32589
subgoal 2 (ID 32591) is:
sub_in_env ?32588 P ?32589 n Γ Γ'
subgoal 3 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 4 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 5 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 open, ?32589 open,)
apply H0. 6 subgoals, subgoal 1 (ID 32591)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Γ' : Env
n : nat
H1 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 29795) is:
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 3 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 4 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using ,)
trivial.5 subgoals, subgoal 1 (ID 29795)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
t0 : Γ ⊢e N = P : A
H0 : forall (Δ : Env) (P0 A0 : Term),
Δ ⊢e P0 : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P0 A0 n Γ Γ' ->
Γ' ⊢e N [n ← P0] = P [n ← P0] : A [n ← P0]
Δ : Env
P0 : Term
A0 : Term
H1 : Δ ⊢e P0 : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P0 A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 2 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 3 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using ,)
apply cTrans with (N[n← P0]). 6 subgoals, subgoal 1 (ID 32592)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
t0 : Γ ⊢e N = P : A
H0 : forall (Δ : Env) (P0 A0 : Term),
Δ ⊢e P0 : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P0 A0 n Γ Γ' ->
Γ' ⊢e N [n ← P0] = P [n ← P0] : A [n ← P0]
Δ : Env
P0 : Term
A0 : Term
H1 : Δ ⊢e P0 : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P0 A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P0] = N [n ← P0] : A [n ← P0]
subgoal 2 (ID 32593) is:
Γ' ⊢e N [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 3 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 4 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using ,)
eauto. 5 subgoals, subgoal 1 (ID 32593)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
t0 : Γ ⊢e N = P : A
H0 : forall (Δ : Env) (P0 A0 : Term),
Δ ⊢e P0 : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P0 A0 n Γ Γ' ->
Γ' ⊢e N [n ← P0] = P [n ← P0] : A [n ← P0]
Δ : Env
P0 : Term
A0 : Term
H1 : Δ ⊢e P0 : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P0 A0 n Γ Γ'
============================
Γ' ⊢e N [n ← P0] = P [n ← P0] : A [n ← P0]
subgoal 2 (ID 29812) is:
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 3 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using ,)
eauto.4 subgoals, subgoal 1 (ID 29812)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] = N [n ← P] : B [n ← P]
subgoal 2 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using ,)
apply Cnv_eq with (A[n ← P]) s. 5 subgoals, subgoal 1 (ID 32742)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = B [n ← P] : !s
subgoal 2 (ID 32743) is:
Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
subgoal 3 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using ,)
eapply H. 6 subgoals, subgoal 1 (ID 32746)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32744 ⊢e P : ?32745
subgoal 2 (ID 32747) is:
sub_in_env ?32744 P ?32745 n Γ Γ'
subgoal 3 (ID 32743) is:
Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
subgoal 4 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 open, ?32745 open,)
apply H1. 5 subgoals, subgoal 1 (ID 32747)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32743) is:
Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
subgoal 3 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using ,)
trivial. 4 subgoals, subgoal 1 (ID 32743)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
subgoal 2 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using ,)
eapply H0. 5 subgoals, subgoal 1 (ID 32750)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
?32748 ⊢e P : ?32749
subgoal 2 (ID 32751) is:
sub_in_env ?32748 P ?32749 n Γ Γ'
subgoal 3 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 open, ?32749 open,)
apply H1. 4 subgoals, subgoal 1 (ID 32751)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = B [n ← P] : !s
t0 : Γ ⊢e M = N : A
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H1 : Δ ⊢e P : A0
Γ' : Env
n : nat
H2 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 29836) is:
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
trivial.3 subgoals, subgoal 1 (ID 29836)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
M [ ← N] [n ← P] : B [ ← N] [n ← P]
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
rewrite 2! subst_travers. 3 subgoals, subgoal 1 (ID 32753)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
(M [(n + 1) ← P]) [ ← N [n ← P]] : (B [(n + 1) ← P]) [ ← N [n ← P]]
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
simpl in *. 3 subgoals, subgoal 1 (ID 32778)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
(M [(n + 1) ← P]) [ ← N [n ← P]] : (B [(n + 1) ← P]) [ ← N [n ← P]]
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial). 3 subgoals, subgoal 1 (ID 32782)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e (λ [A [n ← P]], M [(S n) ← P]) · N [n ← P] =
(M [(S n) ← P]) [ ← N [n ← P]] : (B [(S n) ← P]) [ ← N [n ← P]]
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
apply cBeta with s t u. 7 subgoals, subgoal 1 (ID 32785)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Rel s t u
subgoal 2 (ID 32786) is:
Γ' ⊢e A [n ← P] : !s
subgoal 3 (ID 32787) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 4 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 5 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
trivial.6 subgoals, subgoal 1 (ID 32786)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] : !s
subgoal 2 (ID 32787) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 3 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using ,)
eapply H. 7 subgoals, subgoal 1 (ID 32792)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?32790 ⊢e P : ?32791
subgoal 2 (ID 32793) is:
sub_in_env ?32790 P ?32791 n Γ Γ'
subgoal 3 (ID 32787) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 4 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 5 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 6 (ID 29843) is:
Γ' ⊣e
subgoal 7 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 open, ?32791 open,)
apply H3. 6 subgoals, subgoal 1 (ID 32793)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 32787) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 3 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using ,)
trivial. 5 subgoals, subgoal 1 (ID 32787)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !t
subgoal 2 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 3 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using ,)
eapply H0. 6 subgoals, subgoal 1 (ID 32796)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?32794 ⊢e P : ?32795
subgoal 2 (ID 32797) is:
sub_in_env ?32794 P ?32795 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 4 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 5 (ID 29843) is:
Γ' ⊣e
subgoal 6 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 open, ?32795 open,)
apply H3. 5 subgoals, subgoal 1 (ID 32797)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 32788) is:
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 3 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using ,)
constructor; trivial. 4 subgoals, subgoal 1 (ID 32788)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e M [(S n) ← P] : B [(S n) ← P]
subgoal 2 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using ,)
eapply H1. 5 subgoals, subgoal 1 (ID 32803)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?32801 ⊢e P : ?32802
subgoal 2 (ID 32804) is:
sub_in_env ?32801 P ?32802 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 4 (ID 29843) is:
Γ' ⊣e
subgoal 5 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 open, ?32802 open,)
apply H3. 4 subgoals, subgoal 1 (ID 32804)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 32789) is:
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using ,)
constructor; trivial.3 subgoals, subgoal 1 (ID 32789)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e N [n ← P] : A [n ← P]
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using ,)
eapply H2. 4 subgoals, subgoal 1 (ID 32810)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?32808 ⊢e P : ?32809
subgoal 2 (ID 32811) is:
sub_in_env ?32808 P ?32809 n Γ Γ'
subgoal 3 (ID 29843) is:
Γ' ⊣e
subgoal 4 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 open, ?32809 open,)
apply H3. 3 subgoals, subgoal 1 (ID 32811)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
t1 : A :: Γ ⊢e B : !t
H0 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e B [n ← P] : !t
t2 : A :: Γ ⊢e M : B
H1 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' -> Γ' ⊢e M [n ← P] : B [n ← P]
t3 : Γ ⊢e N : A
H2 : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e N [n ← P] : A [n ← P]
Δ : Env
P : Term
A0 : Term
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 29843) is:
Γ' ⊣e
subgoal 3 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using ,)
trivial.2 subgoals, subgoal 1 (ID 29843)
Δ : Env
P : Term
A : Term
n : nat
Γ' : Env
H : Δ ⊢e P : A
H0 : sub_in_env Δ P A n nil Γ'
============================
Γ' ⊣e
subgoal 2 (ID 29855) is:
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using ,)
inversion H0.1 subgoals, subgoal 1 (ID 29855)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
Δ : Env
P : Term
A0 : Term
n : nat
Γ' : Env
H0 : Δ ⊢e P : A0
H1 : sub_in_env Δ P A0 n (A :: Γ) Γ'
============================
Γ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using ,)
inversion H1; subst; clear H1. 2 subgoals, subgoal 1 (ID 32964)
A : Term
s : Sorts
P : Term
Γ' : Env
t : Γ' ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ'0 : Env) (n : nat),
sub_in_env Δ P A0 n Γ' Γ'0 -> Γ'0 ⊢e A [n ← P] : !s
H0 : Γ' ⊢e P : A
============================
Γ' ⊣e
subgoal 2 (ID 32965) is:
A [n0 ← P] :: Δ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using ,)
apply wf_typ in H0; trivial.1 subgoals, subgoal 1 (ID 32965)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ P A0 n0 Γ Δ'
============================
A [n0 ← P] :: Δ' ⊣e
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using ,)
econstructor. 1 subgoals, subgoal 1 (ID 32971)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ P A0 n0 Γ Δ'
============================
Δ' ⊢e A [n0 ← P] : !?32970
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using , ?32970 open,)
eapply H. 2 subgoals, subgoal 1 (ID 32974)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ P A0 n0 Γ Δ'
============================
?32972 ⊢e P : ?32973
subgoal 2 (ID 32975) is:
sub_in_env ?32972 P ?32973 n0 Γ Δ'
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using , ?32970 using , ?32972 open, ?32973 open,)
apply H0. 1 subgoals, subgoal 1 (ID 32975)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : forall (Δ : Env) (P A0 : Term),
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] : !s
Δ : Env
P : Term
A0 : Term
H0 : Δ ⊢e P : A0
Δ' : Env
n0 : nat
H6 : sub_in_env Δ P A0 n0 Γ Δ'
============================
sub_in_env Δ P A0 n0 Γ Δ'
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using , ?32970 using , ?32972 using , ?32973 using ,)
trivial.No more subgoals.
(dependent evars: ?29859 using , ?29860 using , ?29861 using , ?29862 using , ?29885 using , ?29886 using , ?29887 using , ?29888 using , ?29941 using , ?29942 using , ?29943 using , ?29978 using , ?29982 using , ?29983 using , ?29984 using , ?29986 using , ?29987 using , ?29988 using , ?29989 using , ?30059 using , ?30060 using , ?30061 using , ?30062 using , ?30144 using , ?30145 using , ?30146 using , ?30147 using , ?30148 using , ?30234 using , ?30235 using , ?30239 using , ?30240 using , ?30247 using , ?30248 using , ?32059 using , ?32060 using , ?32061 using , ?32066 using , ?32067 using , ?32074 using , ?32075 using , ?32083 using , ?32084 using , ?32098 using , ?32107 using , ?32108 using , ?32120 using , ?32121 using , ?32134 using , ?32135 using , ?32138 using , ?32139 using , ?32142 using , ?32143 using , ?32149 using , ?32150 using , ?32151 using , ?32152 using , ?32175 using , ?32176 using , ?32177 using , ?32178 using , ?32231 using , ?32232 using , ?32233 using , ?32268 using , ?32272 using , ?32273 using , ?32274 using , ?32277 using , ?32278 using , ?32279 using , ?32280 using , ?32350 using , ?32351 using , ?32352 using , ?32353 using , ?32435 using , ?32436 using , ?32437 using , ?32438 using , ?32439 using , ?32525 using , ?32526 using , ?32529 using , ?32530 using , ?32540 using , ?32541 using , ?32544 using , ?32545 using , ?32551 using , ?32552 using , ?32566 using , ?32567 using , ?32577 using , ?32578 using , ?32588 using , ?32589 using , ?32614 using , ?32615 using , ?32690 using , ?32691 using , ?32744 using , ?32745 using , ?32748 using , ?32749 using , ?32790 using , ?32791 using , ?32794 using , ?32795 using , ?32801 using , ?32802 using , ?32808 using , ?32809 using , ?32970 using , ?32972 using , ?32973 using ,)
Qed.
Lemma substitution2 : forall Γ t T , Γ ⊢e t : T -> forall Δ P P' A,
Δ ⊢e P = P': A -> Δ ⊢e P : A -> forall Γ' n,
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e t [ n ←P ] = t [ n ← P'] : T [ n ←P ].1 subgoals, subgoal 1 (ID 32985)
============================
forall (Γ : Env) (t T : Term),
Γ ⊢e t : T ->
forall (Δ : Env) (P P' A : Term),
Δ ⊢e P = P' : A ->
Δ ⊢e P : A ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e t [n ← P] = t [n ← P'] : T [n ← P]
(dependent evars:)
induction 1; intros; simpl in *.6 subgoals, subgoal 1 (ID 33144)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e !s = !s : !t
subgoal 2 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars:)
constructor. 7 subgoals, subgoal 1 (ID 33243)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
Ax s t
subgoal 2 (ID 33244) is:
Γ' ⊣e
subgoal 3 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars:)
trivial. 6 subgoals, subgoal 1 (ID 33244)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊣e
subgoal 2 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars:)
eapply substitution. 8 subgoals, subgoal 1 (ID 33266)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
?33265 ⊣e
subgoal 2 (ID 33270) is:
?33267 ⊢e ?33268 : ?33269
subgoal 3 (ID 33272) is:
sub_in_env ?33267 ?33268 ?33269 ?33271 ?33265 Γ'
subgoal 4 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 open, ?33267 open, ?33268 open, ?33269 open, ?33271 open,)
apply H0. 7 subgoals, subgoal 1 (ID 33270)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
?33267 ⊢e ?33268 : ?33269
subgoal 2 (ID 33272) is:
sub_in_env ?33267 ?33268 ?33269 ?33271 Γ Γ'
subgoal 3 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 open, ?33268 open, ?33269 open, ?33271 open,)
apply H2. 6 subgoals, subgoal 1 (ID 33272)
Γ : Env
s : Sorts
t : Sorts
H : Ax s t
H0 : Γ ⊣e
Δ : Env
P : Term
P' : Term
A : Term
H1 : Δ ⊢e P = P' : A
H2 : Δ ⊢e P : A
Γ' : Env
n : nat
H3 : sub_in_env Δ P A n Γ Γ'
============================
sub_in_env Δ P A ?33271 Γ Γ'
subgoal 2 (ID 33159) is:
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 open,)
apply H3.5 subgoals, subgoal 1 (ID 33159)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ'
⊢e match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P ↑ n
| inright _ => #(v - 1)
end =
match lt_eq_lt_dec v n with
| inleft (left _) => #v
| inleft (right _) => P' ↑ n
| inright _ => #(v - 1)
end : A [n ← P]
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using ,)
destruct lt_eq_lt_dec as [ [] | ].7 subgoals, subgoal 1 (ID 33286)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊢e #v = #v : A [n ← P]
subgoal 2 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 3 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using ,)
constructor. 8 subgoals, subgoal 1 (ID 33291)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
Γ' ⊣e
subgoal 2 (ID 33292) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 3 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using ,)
eapply substitution. 10 subgoals, subgoal 1 (ID 33314)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
?33313 ⊣e
subgoal 2 (ID 33318) is:
?33315 ⊢e ?33316 : ?33317
subgoal 3 (ID 33320) is:
sub_in_env ?33315 ?33316 ?33317 ?33319 ?33313 Γ'
subgoal 4 (ID 33292) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 5 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 6 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 7 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 8 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 9 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 10 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 open, ?33315 open, ?33316 open, ?33317 open, ?33319 open,)
apply H. 9 subgoals, subgoal 1 (ID 33318)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
?33315 ⊢e ?33316 : ?33317
subgoal 2 (ID 33320) is:
sub_in_env ?33315 ?33316 ?33317 ?33319 Γ Γ'
subgoal 3 (ID 33292) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 4 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 5 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 6 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 7 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 9 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 open, ?33316 open, ?33317 open, ?33319 open,)
apply H2. 8 subgoals, subgoal 1 (ID 33320)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
sub_in_env Δ P A0 ?33319 Γ Γ'
subgoal 2 (ID 33292) is:
A [n ← P] ↓ v ⊂ Γ'
subgoal 3 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 open,)
apply H3.7 subgoals, subgoal 1 (ID 33292)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A [n ← P] ↓ v ⊂ Γ'
subgoal 2 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 3 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using ,)
eapply nth_sub_item_inf. 9 subgoals, subgoal 1 (ID 33324)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
sub_in_env ?33322 P ?33321 n ?33323 Γ'
subgoal 2 (ID 33325) is:
n > v
subgoal 3 (ID 33326) is:
A ↓ v ⊂ ?33323
subgoal 4 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 5 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 6 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 7 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 8 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 9 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 open, ?33322 open, ?33323 open,)
apply H3. 8 subgoals, subgoal 1 (ID 33325)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
n > v
subgoal 2 (ID 33326) is:
A ↓ v ⊂ Γ
subgoal 3 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
intuition. 7 subgoals, subgoal 1 (ID 33326)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : v < n
============================
A ↓ v ⊂ Γ
subgoal 2 (ID 33287) is:
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 3 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
trivial.6 subgoals, subgoal 1 (ID 33287)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
destruct H0 as (AA & ?& ?).6 subgoals, subgoal 1 (ID 33337)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
AA : Term
H0 : A = AA ↑ (S v)
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
e : v = n
============================
Γ' ⊢e P ↑ n = P' ↑ n : A [n ← P]
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
subst. 6 subgoals, subgoal 1 (ID 33346)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P' ↑ n : AA ↑ (S n) [n ← P]
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
rewrite substP3; intuition.6 subgoals, subgoal 1 (ID 33347)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P' ↑ n : AA ↑ n
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
rewrite <- (nth_sub_eq H3 H4).6 subgoals, subgoal 1 (ID 33409)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊢e P ↑ n = P' ↑ n : A0 ↑ n
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using ,)
eapply thinning_eq_n. 8 subgoals, subgoal 1 (ID 33411)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
trunc n Γ' ?33410
subgoal 2 (ID 33412) is:
?33410 ⊢e P = P' : A0
subgoal 3 (ID 33413) is:
Γ' ⊣e
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 open,)
eapply sub_trunc. 8 subgoals, subgoal 1 (ID 33417)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
sub_in_env ?33410 ?33414 ?33415 n ?33416 Γ'
subgoal 2 (ID 33412) is:
?33410 ⊢e P = P' : A0
subgoal 3 (ID 33413) is:
Γ' ⊣e
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 open, ?33414 open, ?33415 open, ?33416 open,)
apply H3. 7 subgoals, subgoal 1 (ID 33412)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
Δ ⊢e P = P' : A0
subgoal 2 (ID 33413) is:
Γ' ⊣e
subgoal 3 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using ,)
trivial.6 subgoals, subgoal 1 (ID 33413)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
Γ' ⊣e
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using ,)
eapply substitution. 8 subgoals, subgoal 1 (ID 33439)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
?33438 ⊣e
subgoal 2 (ID 33443) is:
?33440 ⊢e ?33441 : ?33442
subgoal 3 (ID 33445) is:
sub_in_env ?33440 ?33441 ?33442 ?33444 ?33438 Γ'
subgoal 4 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 open, ?33440 open, ?33441 open, ?33442 open, ?33444 open,)
apply H. 7 subgoals, subgoal 1 (ID 33443)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
?33440 ⊢e ?33441 : ?33442
subgoal 2 (ID 33445) is:
sub_in_env ?33440 ?33441 ?33442 ?33444 Γ Γ'
subgoal 3 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 open, ?33441 open, ?33442 open, ?33444 open,)
apply H2. 6 subgoals, subgoal 1 (ID 33445)
Γ : Env
H : Γ ⊣e
AA : Term
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
H4 : AA ↓ n ∈ Γ
============================
sub_in_env Δ P A0 ?33444 Γ Γ'
subgoal 2 (ID 33288) is:
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 open,)
apply H3.5 subgoals, subgoal 1 (ID 33288)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊢e #(v - 1) = #(v - 1) : A [n ← P]
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using ,)
constructor. 6 subgoals, subgoal 1 (ID 33448)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
Γ' ⊣e
subgoal 2 (ID 33449) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using ,)
eapply substitution. 8 subgoals, subgoal 1 (ID 33471)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
?33470 ⊣e
subgoal 2 (ID 33475) is:
?33472 ⊢e ?33473 : ?33474
subgoal 3 (ID 33477) is:
sub_in_env ?33472 ?33473 ?33474 ?33476 ?33470 Γ'
subgoal 4 (ID 33449) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 5 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 6 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 7 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 8 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 open, ?33472 open, ?33473 open, ?33474 open, ?33476 open,)
apply H. 7 subgoals, subgoal 1 (ID 33475)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
?33472 ⊢e ?33473 : ?33474
subgoal 2 (ID 33477) is:
sub_in_env ?33472 ?33473 ?33474 ?33476 Γ Γ'
subgoal 3 (ID 33449) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 open, ?33473 open, ?33474 open, ?33476 open,)
apply H2. 6 subgoals, subgoal 1 (ID 33477)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
sub_in_env Δ P A0 ?33476 Γ Γ'
subgoal 2 (ID 33449) is:
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 open,)
apply H3.5 subgoals, subgoal 1 (ID 33449)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
H0 : A ↓ v ⊂ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
destruct H0 as (AA & ? &?). 5 subgoals, subgoal 1 (ID 33488)
Γ : Env
A : Term
v : nat
H : Γ ⊣e
AA : Term
H0 : A = AA ↑ (S v)
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
A [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
subst. 5 subgoals, subgoal 1 (ID 33491)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ (S v) [n ← P] ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
rewrite substP3; intuition.5 subgoals, subgoal 1 (ID 33492)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v ↓ v - 1 ⊂ Γ'
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
exists AA; split. 6 subgoals, subgoal 1 (ID 33556)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ (S (v - 1))
subgoal 2 (ID 33557) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
replace (S (v-1)) with v. 7 subgoals, subgoal 1 (ID 33561)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↑ v = AA ↑ v
subgoal 2 (ID 33558) is:
v = S (v - 1)
subgoal 3 (ID 33557) is:
AA ↓ v - 1 ∈ Γ'
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
trivial.6 subgoals, subgoal 1 (ID 33558)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 33557) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
rewrite <- pred_of_minus. 6 subgoals, subgoal 1 (ID 33563)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 33557) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
rewrite <- (S_pred v n l). 6 subgoals, subgoal 1 (ID 33564)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = v
subgoal 2 (ID 33557) is:
AA ↓ v - 1 ∈ Γ'
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
trivial.5 subgoals, subgoal 1 (ID 33557)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v - 1 ∈ Γ'
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using ,)
eapply nth_sub_sup. 7 subgoals, subgoal 1 (ID 33570)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
sub_in_env ?33566 ?33568 ?33569 ?33565 ?33567 Γ'
subgoal 2 (ID 33571) is:
?33565 <= v - 1
subgoal 3 (ID 33572) is:
AA ↓ S (v - 1) ∈ ?33567
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 open, ?33566 open, ?33567 open, ?33568 open, ?33569 open,)
apply H3. 6 subgoals, subgoal 1 (ID 33571)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= v - 1
subgoal 2 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
intuition. 6 subgoals, subgoal 1 (ID 33571)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
n <= v - 1
subgoal 2 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
destruct v.7 subgoals, subgoal 1 (ID 33607)
Γ : Env
H : Γ ⊣e
AA : Term
H4 : AA ↓ 0 ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < 0
============================
n <= 0 - 1
subgoal 2 (ID 33612) is:
n <= S v - 1
subgoal 3 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 4 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
apply lt_n_O in l; elim l. 6 subgoals, subgoal 1 (ID 33612)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= S v - 1
subgoal 2 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
rewrite <- pred_of_minus. 6 subgoals, subgoal 1 (ID 33615)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= pred (S v)
subgoal 2 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
simpl; trivial.6 subgoals, subgoal 1 (ID 33616)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ S v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < S v
============================
n <= v
subgoal 2 (ID 33572) is:
AA ↓ S (v - 1) ∈ Γ
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
intuition. 5 subgoals, subgoal 1 (ID 33572)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ S (v - 1) ∈ Γ
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
replace (S (v-1)) with v. 6 subgoals, subgoal 1 (ID 33637)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
AA ↓ v ∈ Γ
subgoal 2 (ID 33634) is:
v = S (v - 1)
subgoal 3 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
trivial. 5 subgoals, subgoal 1 (ID 33634)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (v - 1)
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
rewrite <- pred_of_minus.5 subgoals, subgoal 1 (ID 33639)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = S (pred v)
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
rewrite <- (S_pred v n l). 5 subgoals, subgoal 1 (ID 33640)
Γ : Env
v : nat
H : Γ ⊣e
AA : Term
H4 : AA ↓ v ∈ Γ
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
l : n < v
============================
v = v
subgoal 2 (ID 33180) is:
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
trivial.4 subgoals, subgoal 1 (ID 33180)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e Π (A [n ← P]), B [(S n) ← P] = Π (A [n ← P']), B [(S n) ← P'] : !u
subgoal 2 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
apply cPi_eq with s t; trivial. 5 subgoals, subgoal 1 (ID 33642)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = A [n ← P'] : !s
subgoal 2 (ID 33643) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B [(S n) ← P'] : !t
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using ,)
eapply IHtyp1. 7 subgoals, subgoal 1 (ID 33646)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?33644 ⊢e P = P' : ?33645
subgoal 2 (ID 33647) is:
?33644 ⊢e P : ?33645
subgoal 3 (ID 33648) is:
sub_in_env ?33644 P ?33645 n Γ Γ'
subgoal 4 (ID 33643) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B [(S n) ← P'] : !t
subgoal 5 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 open, ?33645 open,)
apply H2. 6 subgoals, subgoal 1 (ID 33647)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Δ ⊢e P : A0
subgoal 2 (ID 33648) is:
sub_in_env Δ P A0 n Γ Γ'
subgoal 3 (ID 33643) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B [(S n) ← P'] : !t
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using ,)
trivial. 5 subgoals, subgoal 1 (ID 33648)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 33643) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B [(S n) ← P'] : !t
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using ,)
trivial. 4 subgoals, subgoal 1 (ID 33643)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] = B [(S n) ← P'] : !t
subgoal 2 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using ,)
eapply IHtyp2. 6 subgoals, subgoal 1 (ID 33651)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
?33649 ⊢e P = P' : ?33650
subgoal 2 (ID 33652) is:
?33649 ⊢e P : ?33650
subgoal 3 (ID 33653) is:
sub_in_env ?33649 P ?33650 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 4 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 open, ?33650 open,)
apply H2. 5 subgoals, subgoal 1 (ID 33652)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
Δ ⊢e P : A0
subgoal 2 (ID 33653) is:
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using ,)
trivial. 4 subgoals, subgoal 1 (ID 33653)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !t
Δ : Env
P : Term
P' : Term
A0 : Term
H2 : Δ ⊢e P = P' : A0
H3 : Δ ⊢e P : A0
Γ' : Env
n : nat
H4 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 33204) is:
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using ,)
constructor; trivial.3 subgoals, subgoal 1 (ID 33204)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e λ [A [n ← P]], b [(S n) ← P] = λ [A [n ← P']], b [(S n) ← P']
: Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using ,)
apply cLa_eq with s1 s2 s3; trivial. 5 subgoals, subgoal 1 (ID 33658)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
subgoal 2 (ID 33659) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] = b [(S n) ← P'] : B [(S n) ← P]
subgoal 3 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using ,)
eapply IHtyp1. 7 subgoals, subgoal 1 (ID 33663)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
?33661 ⊢e P = P' : ?33662
subgoal 2 (ID 33664) is:
?33661 ⊢e P : ?33662
subgoal 3 (ID 33665) is:
sub_in_env ?33661 P ?33662 n Γ Γ'
subgoal 4 (ID 33659) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] = b [(S n) ← P'] : B [(S n) ← P]
subgoal 5 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 6 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 7 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 open, ?33662 open,)
apply H3. 6 subgoals, subgoal 1 (ID 33664)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
Δ ⊢e P : A0
subgoal 2 (ID 33665) is:
sub_in_env Δ P A0 n Γ Γ'
subgoal 3 (ID 33659) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] = b [(S n) ← P'] : B [(S n) ← P]
subgoal 4 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using ,)
trivial. 5 subgoals, subgoal 1 (ID 33665)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 33659) is:
A [n ← P] :: Γ' ⊢e b [(S n) ← P] = b [(S n) ← P'] : B [(S n) ← P]
subgoal 3 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using ,)
trivial. 4 subgoals, subgoal 1 (ID 33659)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e b [(S n) ← P] = b [(S n) ← P'] : B [(S n) ← P]
subgoal 2 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using ,)
eapply IHtyp3. 6 subgoals, subgoal 1 (ID 33668)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
?33666 ⊢e P = P' : ?33667
subgoal 2 (ID 33669) is:
?33666 ⊢e P : ?33667
subgoal 3 (ID 33670) is:
sub_in_env ?33666 P ?33667 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 4 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 5 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 6 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 open, ?33667 open,)
apply H3. 5 subgoals, subgoal 1 (ID 33669)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
Δ ⊢e P : A0
subgoal 2 (ID 33670) is:
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using ,)
trivial. 4 subgoals, subgoal 1 (ID 33670)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 33660) is:
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using ,)
constructor; trivial.3 subgoals, subgoal 1 (ID 33660)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2
subgoal 2 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using ,)
change !s2 with (!s2[(S n)← P]). 3 subgoals, subgoal 1 (ID 33675)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
A [n ← P] :: Γ' ⊢e B [(S n) ← P] : !s2 [(S n) ← P]
subgoal 2 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using ,)
eapply substitution. 5 subgoals, subgoal 1 (ID 33691)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
?33690 ⊢e B : !s2
subgoal 2 (ID 33694) is:
?33692 ⊢e P : ?33693
subgoal 3 (ID 33695) is:
sub_in_env ?33692 P ?33693 (S n) ?33690 (A [n ← P] :: Γ')
subgoal 4 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 5 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 open, ?33692 open, ?33693 open,)
apply H1. 4 subgoals, subgoal 1 (ID 33694)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
?33692 ⊢e P : ?33693
subgoal 2 (ID 33695) is:
sub_in_env ?33692 P ?33693 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 3 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 4 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 open, ?33693 open,)
apply H4. 3 subgoals, subgoal 1 (ID 33695)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H0 : Γ ⊢e A : !s1
H1 : A :: Γ ⊢e B : !s2
H2 : A :: Γ ⊢e b : B
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' -> Γ' ⊢e A [n ← P] = A [n ← P'] : !s1
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e B [n ← P] = B [n ← P'] : !s2
IHtyp3 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n (A :: Γ) Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : B [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H3 : Δ ⊢e P = P' : A0
H4 : Δ ⊢e P : A0
Γ' : Env
n : nat
H5 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 (S n) (A :: Γ) (A [n ← P] :: Γ')
subgoal 2 (ID 33223) is:
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using ,)
constructor; trivial.2 subgoals, subgoal 1 (ID 33223)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P'] : B [ ← b] [n ← P]
subgoal 2 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using ,)
rewrite subst_travers. 2 subgoals, subgoal 1 (ID 33699)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] · b [n ← P] = a [n ← P'] · b [n ← P']
: (B [(n + 1) ← P]) [ ← b [n ← P]]
subgoal 2 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using ,)
apply cApp_eq with (A[n← P]).3 subgoals, subgoal 1 (ID 33700)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(n + 1) ← P]
subgoal 2 (ID 33701) is:
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using ,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial). 3 subgoals, subgoal 1 (ID 33705)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
subgoal 2 (ID 33701) is:
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
subgoal 3 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using ,)
eapply IHtyp1; eauto.2 subgoals, subgoal 1 (ID 33701)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
subgoal 2 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using ,)
replace (n+1) with (S n) by (rewrite plus_comm; trivial). 2 subgoals, subgoal 1 (ID 33727)
Γ : Env
a : Term
b : Term
A : Term
B : Term
H : Γ ⊢e a : Π (A), B
H0 : Γ ⊢e b : A
IHtyp1 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : Π (A [n ← P]), B [(S n) ← P]
IHtyp2 : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e b [n ← P] = b [n ← P'] : A [n ← P]
subgoal 2 (ID 33241) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using ,)
eapply IHtyp2; eauto.1 subgoals, subgoal 1 (ID 33241)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] = a [n ← P'] : B [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using ,)
apply Cnv_eq with (A[n← P]) s. 2 subgoals, subgoal 1 (ID 33747)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = B [n ← P] : !s
subgoal 2 (ID 33748) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using ,)
change !s with (!s[n ← P]). 2 subgoals, subgoal 1 (ID 33750)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e A [n ← P] = B [n ← P] : !s [n ← P]
subgoal 2 (ID 33748) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using ,)
eapply substitution. 4 subgoals, subgoal 1 (ID 33770)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?33769 ⊢e A = B : !s
subgoal 2 (ID 33773) is:
?33771 ⊢e P : ?33772
subgoal 3 (ID 33774) is:
sub_in_env ?33771 P ?33772 n ?33769 Γ'
subgoal 4 (ID 33748) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 open, ?33771 open, ?33772 open,)
apply H. 3 subgoals, subgoal 1 (ID 33773)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?33771 ⊢e P : ?33772
subgoal 2 (ID 33774) is:
sub_in_env ?33771 P ?33772 n Γ Γ'
subgoal 3 (ID 33748) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 open, ?33772 open,)
apply H2. 2 subgoals, subgoal 1 (ID 33774)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
subgoal 2 (ID 33748) is:
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using ,)
trivial.1 subgoals, subgoal 1 (ID 33748)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using ,)
eapply IHtyp. 3 subgoals, subgoal 1 (ID 33777)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
?33775 ⊢e P = P' : ?33776
subgoal 2 (ID 33778) is:
?33775 ⊢e P : ?33776
subgoal 3 (ID 33779) is:
sub_in_env ?33775 P ?33776 n Γ Γ'
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using , ?33775 open, ?33776 open,)
apply H1. 2 subgoals, subgoal 1 (ID 33778)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
Δ ⊢e P : A0
subgoal 2 (ID 33779) is:
sub_in_env Δ P A0 n Γ Γ'
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using , ?33775 using , ?33776 using ,)
trivial. 1 subgoals, subgoal 1 (ID 33779)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
H0 : Γ ⊢e a : A
IHtyp : forall (Δ : Env) (P P' A0 : Term),
Δ ⊢e P = P' : A0 ->
Δ ⊢e P : A0 ->
forall (Γ' : Env) (n : nat),
sub_in_env Δ P A0 n Γ Γ' ->
Γ' ⊢e a [n ← P] = a [n ← P'] : A [n ← P]
Δ : Env
P : Term
P' : Term
A0 : Term
H1 : Δ ⊢e P = P' : A0
H2 : Δ ⊢e P : A0
Γ' : Env
n : nat
H3 : sub_in_env Δ P A0 n Γ Γ'
============================
sub_in_env Δ P A0 n Γ Γ'
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using , ?33775 using , ?33776 using ,)
trivial.No more subgoals.
(dependent evars: ?33249 using ?33257 , ?33250 using ?33259 , ?33251 using ?33260 , ?33252 using ?33261 , ?33253 using ?33263 , ?33257 using ?33265 , ?33259 using ?33267 , ?33260 using ?33268 , ?33261 using ?33269 , ?33263 using ?33271 , ?33265 using , ?33267 using , ?33268 using , ?33269 using , ?33271 using , ?33297 using ?33305 , ?33298 using ?33307 , ?33299 using ?33308 , ?33300 using ?33309 , ?33301 using ?33311 , ?33305 using ?33313 , ?33307 using ?33315 , ?33308 using ?33316 , ?33309 using ?33317 , ?33311 using ?33319 , ?33313 using , ?33315 using , ?33316 using , ?33317 using , ?33319 using , ?33321 using , ?33322 using , ?33323 using , ?33410 using , ?33414 using , ?33415 using , ?33416 using , ?33422 using ?33430 , ?33423 using ?33432 , ?33424 using ?33433 , ?33425 using ?33434 , ?33426 using ?33436 , ?33430 using ?33438 , ?33432 using ?33440 , ?33433 using ?33441 , ?33434 using ?33442 , ?33436 using ?33444 , ?33438 using , ?33440 using , ?33441 using , ?33442 using , ?33444 using , ?33454 using ?33462 , ?33455 using ?33464 , ?33456 using ?33465 , ?33457 using ?33466 , ?33458 using ?33468 , ?33462 using ?33470 , ?33464 using ?33472 , ?33465 using ?33473 , ?33466 using ?33474 , ?33468 using ?33476 , ?33470 using , ?33472 using , ?33473 using , ?33474 using , ?33476 using , ?33565 using , ?33566 using , ?33567 using , ?33568 using , ?33569 using , ?33644 using , ?33645 using , ?33649 using , ?33650 using , ?33661 using , ?33662 using , ?33666 using , ?33667 using , ?33684 using ?33690 , ?33685 using ?33692 , ?33686 using ?33693 , ?33690 using , ?33692 using , ?33693 using , ?33708 using , ?33709 using , ?33730 using , ?33731 using , ?33757 using ?33763 , ?33758 using ?33765 , ?33759 using ?33766 , ?33763 using ?33769 , ?33765 using ?33771 , ?33766 using ?33772 , ?33769 using , ?33771 using , ?33772 using , ?33775 using , ?33776 using ,)
Qed.
Lemma wf_item : forall Γ A n, A ↓ n ∈ Γ ->
forall Γ', Γ ⊣e -> trunc (S n) Γ Γ' -> exists s, Γ' ⊢e A : !s.1 subgoals, subgoal 1 (ID 33788)
============================
forall (Γ : list Term) (A : Term) (n : nat),
A ↓ n ∈ Γ ->
forall Γ' : list Term,
Γ ⊣e -> trunc (S n) Γ Γ' -> exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
induction 1; intros.2 subgoals, subgoal 1 (ID 33809)
A : Term
Γ : list Term
Γ' : list Term
H : A :: Γ ⊣e
H0 : trunc 1 (A :: Γ) Γ'
============================
exists s : Sorts, Γ' ⊢e A : !s
subgoal 2 (ID 33812) is:
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
inversion H0; subst; clear H0.2 subgoals, subgoal 1 (ID 33885)
A : Term
Γ : list Term
Γ' : list Term
H : A :: Γ ⊣e
H5 : trunc 0 Γ Γ'
============================
exists s : Sorts, Γ' ⊢e A : !s
subgoal 2 (ID 33812) is:
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
inversion H5; subst; clear H5.2 subgoals, subgoal 1 (ID 33941)
A : Term
Γ' : list Term
H : A :: Γ' ⊣e
============================
exists s : Sorts, Γ' ⊢e A : !s
subgoal 2 (ID 33812) is:
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
inversion H; subst.2 subgoals, subgoal 1 (ID 33989)
A : Term
Γ' : list Term
H : A :: Γ' ⊣e
s : Sorts
H1 : Γ' ⊢e A : !s
============================
exists s0 : Sorts, Γ' ⊢e A : !s0
subgoal 2 (ID 33812) is:
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
exists s; trivial.1 subgoals, subgoal 1 (ID 33812)
A : Term
Γ : list Term
n : nat
y : Term
H : A ↓ n ∈ Γ
IHitem : forall Γ' : list Term,
Γ ⊣e -> trunc (S n) Γ Γ' -> exists s : Sorts, Γ' ⊢e A : !s
Γ' : list Term
H0 : y :: Γ ⊣e
H1 : trunc (S (S n)) (y :: Γ) Γ'
============================
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
inversion H1; subst; clear H1.1 subgoals, subgoal 1 (ID 34064)
A : Term
Γ : list Term
n : nat
y : Term
H : A ↓ n ∈ Γ
IHitem : forall Γ' : list Term,
Γ ⊣e -> trunc (S n) Γ Γ' -> exists s : Sorts, Γ' ⊢e A : !s
Γ' : list Term
H0 : y :: Γ ⊣e
H6 : trunc (S n) Γ Γ'
============================
exists s : Sorts, Γ' ⊢e A : !s
(dependent evars:)
inversion H0; subst.1 subgoals, subgoal 1 (ID 34112)
A : Term
Γ : list Term
n : nat
y : Term
H : A ↓ n ∈ Γ
IHitem : forall Γ' : list Term,
Γ ⊣e -> trunc (S n) Γ Γ' -> exists s : Sorts, Γ' ⊢e A : !s
Γ' : list Term
H0 : y :: Γ ⊣e
H6 : trunc (S n) Γ Γ'
s : Sorts
H2 : Γ ⊢e y : !s
============================
exists s0 : Sorts, Γ' ⊢e A : !s0
(dependent evars:)
apply IHitem; trivial. 1 subgoals, subgoal 1 (ID 34113)
A : Term
Γ : list Term
n : nat
y : Term
H : A ↓ n ∈ Γ
IHitem : forall Γ' : list Term,
Γ ⊣e -> trunc (S n) Γ Γ' -> exists s : Sorts, Γ' ⊢e A : !s
Γ' : list Term
H0 : y :: Γ ⊣e
H6 : trunc (S n) Γ Γ'
s : Sorts
H2 : Γ ⊢e y : !s
============================
Γ ⊣e
(dependent evars:)
apply wf_typ in H2; trivial.No more subgoals.
(dependent evars:)
Qed.
Lemma wf_item_lift : forall Γ t n ,Γ ⊣e -> t ↓ n ⊂ Γ ->
exists s, Γ ⊢e t : !s.1 subgoals, subgoal 1 (ID 34121)
============================
forall (Γ : Env) (t : Term) (n : nat),
Γ ⊣e -> t ↓ n ⊂ Γ -> exists s : Sorts, Γ ⊢e t : !s
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 34126)
Γ : Env
t : Term
n : nat
H : Γ ⊣e
H0 : t ↓ n ⊂ Γ
============================
exists s : Sorts, Γ ⊢e t : !s
(dependent evars:)
destruct H0 as (u & ? & ?).1 subgoals, subgoal 1 (ID 34134)
Γ : Env
t : Term
n : nat
H : Γ ⊣e
u : Term
H0 : t = u ↑ (S n)
H1 : u ↓ n ∈ Γ
============================
exists s : Sorts, Γ ⊢e t : !s
(dependent evars:)
subst.1 subgoals, subgoal 1 (ID 34137)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
============================
exists s : Sorts, Γ ⊢e u ↑ (S n) : !s
(dependent evars:)
assert (exists Γ' , trunc (S n) Γ Γ') by (apply item_trunc with u; trivial).1 subgoals, subgoal 1 (ID 34141)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
H0 : exists Γ' : list Term, trunc (S n) Γ Γ'
============================
exists s : Sorts, Γ ⊢e u ↑ (S n) : !s
(dependent evars:)
destruct H0 as (Γ' & ?).1 subgoals, subgoal 1 (ID 34146)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
============================
exists s : Sorts, Γ ⊢e u ↑ (S n) : !s
(dependent evars:)
destruct (wf_item Γ u n H1 Γ' H H0) as (t & ?).1 subgoals, subgoal 1 (ID 34153)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
exists s : Sorts, Γ ⊢e u ↑ (S n) : !s
(dependent evars:)
exists t. 1 subgoals, subgoal 1 (ID 34155)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
Γ ⊢e u ↑ (S n) : !t
(dependent evars:)
change !t with (!t ↑(S n)).1 subgoals, subgoal 1 (ID 34157)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
Γ ⊢e u ↑ (S n) : !t ↑ (S n)
(dependent evars:)
eapply thinning_n. 3 subgoals, subgoal 1 (ID 34159)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
trunc (S n) Γ ?34158
subgoal 2 (ID 34160) is:
?34158 ⊢e u : !t
subgoal 3 (ID 34161) is:
Γ ⊣e
(dependent evars: ?34158 open,)
apply H0. 2 subgoals, subgoal 1 (ID 34160)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
Γ' ⊢e u : !t
subgoal 2 (ID 34161) is:
Γ ⊣e
(dependent evars: ?34158 using ,)
trivial. 1 subgoals, subgoal 1 (ID 34161)
Γ : Env
n : nat
H : Γ ⊣e
u : Term
H1 : u ↓ n ∈ Γ
Γ' : list Term
H0 : trunc (S n) Γ Γ'
t : Sorts
H2 : Γ' ⊢e u : !t
============================
Γ ⊣e
(dependent evars: ?34158 using ,)
trivial.No more subgoals.
(dependent evars: ?34158 using ,)
Qed.
Lemma wgen_pi : forall Γ A B T, Γ ⊢e Π(A),B : T -> exists s, exists t, exists u, Rel s t u /\
Γ ⊢e A : !s /\ (A::Γ) ⊢e B : !t.1 subgoals, subgoal 1 (ID 34170)
============================
forall (Γ : Env) (A B T : Term),
Γ ⊢e Π (A), B : T ->
exists s t u : Sorts, Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 34175)
Γ : Env
A : Term
B : Term
T : Term
H : Γ ⊢e Π (A), B : T
============================
exists s t u : Sorts, Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
(dependent evars:)
remember (Π(A),B) as P. 1 subgoals, subgoal 1 (ID 34182)
Γ : Env
A : Term
B : Term
T : Term
P : Term
HeqP : P = Π (A), B
H : Γ ⊢e P : T
============================
exists s t u : Sorts, Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
(dependent evars:)
revert A B HeqP. 1 subgoals, subgoal 1 (ID 34184)
Γ : Env
T : Term
P : Term
H : Γ ⊢e P : T
============================
forall A B : Term,
P = Π (A), B ->
exists s t u : Sorts, Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
(dependent evars:)
induction H; intros; subst; try discriminate.2 subgoals, subgoal 1 (ID 34279)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
H0 : Γ ⊢e A : !s
H1 : A :: Γ ⊢e B : !t
IHtyp1 : forall A0 B : Term,
A = Π (A0), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A0 : !s) /\ A0 :: Γ ⊢e B : !t
IHtyp2 : forall A0 B0 : Term,
B = Π (A0), B0 ->
exists s t u : Sorts,
Rel s t u /\ (A :: Γ ⊢e A0 : !s) /\ A0 :: A :: Γ ⊢e B0 : !t
A0 : Term
B0 : Term
HeqP : Π (A), B = Π (A0), B0
============================
exists s0 t0 u0 : Sorts,
Rel s0 t0 u0 /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t0
subgoal 2 (ID 34294) is:
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
injection HeqP; intros; subst; clear HeqP. 2 subgoals, subgoal 1 (ID 34341)
Γ : Env
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
A0 : Term
B0 : Term
H0 : Γ ⊢e A0 : !s
IHtyp1 : forall A B : Term,
A0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
H1 : A0 :: Γ ⊢e B0 : !t
IHtyp2 : forall A B : Term,
B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (A0 :: Γ ⊢e A : !s) /\ A :: A0 :: Γ ⊢e B : !t
============================
exists s0 t0 u0 : Sorts,
Rel s0 t0 u0 /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t0
subgoal 2 (ID 34294) is:
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
exists s; exists t; exists u; split.3 subgoals, subgoal 1 (ID 34349)
Γ : Env
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
A0 : Term
B0 : Term
H0 : Γ ⊢e A0 : !s
IHtyp1 : forall A B : Term,
A0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
H1 : A0 :: Γ ⊢e B0 : !t
IHtyp2 : forall A B : Term,
B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (A0 :: Γ ⊢e A : !s) /\ A :: A0 :: Γ ⊢e B : !t
============================
Rel s t u
subgoal 2 (ID 34350) is:
(Γ ⊢e A0 : !s) /\ A0 :: Γ ⊢e B0 : !t
subgoal 3 (ID 34294) is:
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
trivial. 2 subgoals, subgoal 1 (ID 34350)
Γ : Env
s : Sorts
t : Sorts
u : Sorts
H : Rel s t u
A0 : Term
B0 : Term
H0 : Γ ⊢e A0 : !s
IHtyp1 : forall A B : Term,
A0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
H1 : A0 :: Γ ⊢e B0 : !t
IHtyp2 : forall A B : Term,
B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (A0 :: Γ ⊢e A : !s) /\ A :: A0 :: Γ ⊢e B : !t
============================
(Γ ⊢e A0 : !s) /\ A0 :: Γ ⊢e B0 : !t
subgoal 2 (ID 34294) is:
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
split; trivial.1 subgoals, subgoal 1 (ID 34294)
Γ : Env
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
A0 : Term
B0 : Term
H0 : Γ ⊢e Π (A0), B0 : A
IHtyp : forall A B : Term,
Π (A0), B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
============================
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
destruct (IHtyp A0 B0) as (a & b& c & h); trivial. 1 subgoals, subgoal 1 (ID 34371)
Γ : Env
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
A0 : Term
B0 : Term
H0 : Γ ⊢e Π (A0), B0 : A
IHtyp : forall A B : Term,
Π (A0), B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
a : Sorts
b : Sorts
c : Sorts
h : Rel a b c /\ (Γ ⊢e A0 : !a) /\ A0 :: Γ ⊢e B0 : !b
============================
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
decompose [and] h; clear h.1 subgoals, subgoal 1 (ID 34385)
Γ : Env
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
A0 : Term
B0 : Term
H0 : Γ ⊢e Π (A0), B0 : A
IHtyp : forall A B : Term,
Π (A0), B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
a : Sorts
b : Sorts
c : Sorts
H1 : Rel a b c
H3 : Γ ⊢e A0 : !a
H4 : A0 :: Γ ⊢e B0 : !b
============================
exists s0 t u : Sorts, Rel s0 t u /\ (Γ ⊢e A0 : !s0) /\ A0 :: Γ ⊢e B0 : !t
(dependent evars:)
exists a; exists b; exists c; split; trivial. 1 subgoals, subgoal 1 (ID 34394)
Γ : Env
A : Term
B : Term
s : Sorts
H : Γ ⊢e A = B : !s
A0 : Term
B0 : Term
H0 : Γ ⊢e Π (A0), B0 : A
IHtyp : forall A B : Term,
Π (A0), B0 = Π (A), B ->
exists s t u : Sorts,
Rel s t u /\ (Γ ⊢e A : !s) /\ A :: Γ ⊢e B : !t
a : Sorts
b : Sorts
c : Sorts
H1 : Rel a b c
H3 : Γ ⊢e A0 : !a
H4 : A0 :: Γ ⊢e B0 : !b
============================
(Γ ⊢e A0 : !a) /\ A0 :: Γ ⊢e B0 : !b
(dependent evars:)
split; trivial.No more subgoals.
(dependent evars:)
Qed.
Lemma TypeCorrect_Refl : (forall Γ M T, Γ ⊢e M : T -> exists s, T = !s \/ Γ ⊢e T : !s) /\
(forall Γ M N T, Γ ⊢e M = N : T -> Γ ⊢e M : T /\ Γ ⊢e N : T /\ exists s, T = !s \/ Γ ⊢e T : !s) /\
(forall Γ, Γ ⊣e -> True).1 subgoals, subgoal 1 (ID 34410)
============================
(forall (Γ : Env) (M T : Term),
Γ ⊢e M : T -> exists s : Sorts, T = !s \/ Γ ⊢e T : !s) /\
(forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T ->
(Γ ⊢e M : T) /\ (Γ ⊢e N : T) /\ (exists s : Sorts, T = !s \/ Γ ⊢e T : !s)) /\
(forall Γ : Env, Γ ⊣e -> True)
(dependent evars:)
apply typ_induc; intros; simpl in *.17 subgoals, subgoal 1 (ID 34588)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0
subgoal 2 (ID 34595) is:
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 3 (ID 34607) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 4 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 5 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 6 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 7 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 8 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 10 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 11 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 12 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 13 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 14 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 15 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 16 (ID 34746) is:
True
subgoal 17 (ID 34752) is:
True
(dependent evars:)
exists t; left; trivial.16 subgoals, subgoal 1 (ID 34595)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 34607) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 4 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 5 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 6 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 7 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 9 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 10 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 11 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 12 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 13 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 14 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 15 (ID 34746) is:
True
subgoal 16 (ID 34752) is:
True
(dependent evars:)
apply wf_item_lift in i. 17 subgoals, subgoal 1 (ID 34758)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : True
i : exists s : Sorts, Γ ⊢e A : !s
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 34759) is:
Γ ⊣e
subgoal 3 (ID 34607) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 4 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 5 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 6 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 7 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 8 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 10 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 11 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 12 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 13 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 14 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 15 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 16 (ID 34746) is:
True
subgoal 17 (ID 34752) is:
True
(dependent evars:)
destruct i. 17 subgoals, subgoal 1 (ID 34763)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : True
x : Sorts
H0 : Γ ⊢e A : !x
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 34759) is:
Γ ⊣e
subgoal 3 (ID 34607) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 4 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 5 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 6 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 7 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 8 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 10 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 11 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 12 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 13 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 14 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 15 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 16 (ID 34746) is:
True
subgoal 17 (ID 34752) is:
True
(dependent evars:)
exists x; right ; trivial. 16 subgoals, subgoal 1 (ID 34759)
Γ : Env
A : Term
v : nat
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
Γ ⊣e
subgoal 2 (ID 34607) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 4 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 5 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 6 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 7 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 9 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 10 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 11 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 12 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 13 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 14 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 15 (ID 34746) is:
True
subgoal 16 (ID 34752) is:
True
(dependent evars:)
trivial.15 subgoals, subgoal 1 (ID 34607)
Γ : Env
A : Term
B : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 2 (ID 34622) is:
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 3 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 4 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 5 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 6 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 8 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 9 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 10 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 12 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 13 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 14 (ID 34746) is:
True
subgoal 15 (ID 34752) is:
True
(dependent evars:)
exists u; left; trivial.14 subgoals, subgoal 1 (ID 34622)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : exists s : Sorts, !s1 = !s \/ Γ ⊢e !s1 : !s
t0 : A :: Γ ⊢e B : !s2
H0 : exists s : Sorts, !s2 = !s \/ A :: Γ ⊢e !s2 : !s
t1 : A :: Γ ⊢e b : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
============================
exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
subgoal 2 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 3 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 4 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 5 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 7 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 8 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 9 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 12 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 13 (ID 34746) is:
True
subgoal 14 (ID 34752) is:
True
(dependent evars:)
exists s3; right. 14 subgoals, subgoal 1 (ID 34775)
Γ : Env
A : Term
b : Term
B : Term
s1 : Sorts
s2 : Sorts
s3 : Sorts
r : Rel s1 s2 s3
t : Γ ⊢e A : !s1
H : exists s : Sorts, !s1 = !s \/ Γ ⊢e !s1 : !s
t0 : A :: Γ ⊢e B : !s2
H0 : exists s : Sorts, !s2 = !s \/ A :: Γ ⊢e !s2 : !s
t1 : A :: Γ ⊢e b : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
============================
Γ ⊢e Π (A), B : !s3
subgoal 2 (ID 34632) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 3 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 4 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 5 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 7 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 8 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 9 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 12 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 13 (ID 34746) is:
True
subgoal 14 (ID 34752) is:
True
(dependent evars:)
apply cPi with s1 s2; trivial.13 subgoals, subgoal 1 (ID 34632)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
H : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
destruct H. 13 subgoals, subgoal 1 (ID 34784)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
H : Π (A), B = !x \/ Γ ⊢e Π (A), B : !x
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
destruct H. 14 subgoals, subgoal 1 (ID 34790)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
H : Π (A), B = !x
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34792) is:
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 3 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 4 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 5 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 7 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 8 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 9 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 12 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 13 (ID 34746) is:
True
subgoal 14 (ID 34752) is:
True
(dependent evars:)
discriminate.13 subgoals, subgoal 1 (ID 34792)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
H : Γ ⊢e Π (A), B : !x
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
apply wgen_pi in H as (s1 & s2 & s3 & h). 13 subgoals, subgoal 1 (ID 34811)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
h : Rel s1 s2 s3 /\ (Γ ⊢e A : !s1) /\ A :: Γ ⊢e B : !s2
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
decompose [and] h; clear h.13 subgoals, subgoal 1 (ID 34825)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
exists s : Sorts, B [ ← b] = !s \/ Γ ⊢e B [ ← b] : !s
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
exists s2; right. 13 subgoals, subgoal 1 (ID 34829)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
Γ ⊢e B [ ← b] : !s2
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
change !s2 with (!s2 [← b]). 13 subgoals, subgoal 1 (ID 34831)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
Γ ⊢e B [ ← b] : !s2 [ ← b]
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars:)
eapply substitution. 15 subgoals, subgoal 1 (ID 34847)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
?34846 ⊢e B : !s2
subgoal 2 (ID 34850) is:
?34848 ⊢e b : ?34849
subgoal 3 (ID 34851) is:
sub_in_env ?34848 b ?34849 0 ?34846 Γ
subgoal 4 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 5 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 6 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 8 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 9 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 10 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 12 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 13 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 14 (ID 34746) is:
True
subgoal 15 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 open, ?34848 open, ?34849 open,)
apply H3. 14 subgoals, subgoal 1 (ID 34850)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
?34848 ⊢e b : ?34849
subgoal 2 (ID 34851) is:
sub_in_env ?34848 b ?34849 0 (A :: Γ) Γ
subgoal 3 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 4 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 5 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 7 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 8 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 9 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 11 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 12 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 13 (ID 34746) is:
True
subgoal 14 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 open, ?34849 open,)
apply t0. 13 subgoals, subgoal 1 (ID 34851)
Γ : Env
a : Term
b : Term
A : Term
B : Term
t : Γ ⊢e a : Π (A), B
x : Sorts
t0 : Γ ⊢e b : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
s1 : Sorts
s2 : Sorts
s3 : Sorts
H : Rel s1 s2 s3
H2 : Γ ⊢e A : !s1
H3 : A :: Γ ⊢e B : !s2
============================
sub_in_env Γ b A 0 (A :: Γ) Γ
subgoal 2 (ID 34642) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 4 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
constructor.12 subgoals, subgoal 1 (ID 34642)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : (Γ ⊢e A : !s) /\
(Γ ⊢e B : !s) /\ (exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0)
t0 : Γ ⊢e a : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 2 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 3 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 5 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
destruct H as (? & ? &?). 12 subgoals, subgoal 1 (ID 34863)
Γ : Env
a : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e a : A
H0 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 2 (ID 34649) is:
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 3 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 5 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
exists s; right; trivial.11 subgoals, subgoal 1 (ID 34649)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
(Γ ⊢e !s : !t) /\
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 2 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split.12 subgoals, subgoal 1 (ID 34869)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
Γ ⊢e !s : !t
subgoal 2 (ID 34870) is:
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 3 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 5 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
now constructor.11 subgoals, subgoal 1 (ID 34870)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
(Γ ⊢e !s : !t) /\ (exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0)
subgoal 2 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split.12 subgoals, subgoal 1 (ID 34951)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
Γ ⊢e !s : !t
subgoal 2 (ID 34952) is:
exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0
subgoal 3 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 5 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
now constructor.11 subgoals, subgoal 1 (ID 34952)
Γ : Env
s : Sorts
t : Sorts
a : Ax s t
w : Γ ⊣e
H : True
============================
exists s0 : Sorts, !t = !s0 \/ Γ ⊢e !t : !s0
subgoal 2 (ID 34656) is:
(Γ ⊢e #v : A) /\ (Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
exists t; left; trivial.10 subgoals, subgoal 1 (ID 34656)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
(Γ ⊢e #v : A) /\
(Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 2 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split.11 subgoals, subgoal 1 (ID 35037)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
Γ ⊢e #v : A
subgoal 2 (ID 35038) is:
(Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
now constructor.10 subgoals, subgoal 1 (ID 35038)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
(Γ ⊢e #v : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 2 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split.11 subgoals, subgoal 1 (ID 35224)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
Γ ⊢e #v : A
subgoal 2 (ID 35225) is:
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
now constructor.10 subgoals, subgoal 1 (ID 35225)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
apply wf_item_lift in i. 11 subgoals, subgoal 1 (ID 35411)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : exists s : Sorts, Γ ⊢e A : !s
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 35412) is:
Γ ⊣e
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
destruct i. 11 subgoals, subgoal 1 (ID 35416)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
x : Sorts
H0 : Γ ⊢e A : !x
============================
exists s : Sorts, A = !s \/ Γ ⊢e A : !s
subgoal 2 (ID 35412) is:
Γ ⊣e
subgoal 3 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
exists x; right ; trivial. 10 subgoals, subgoal 1 (ID 35412)
Γ : Env
v : nat
A : Term
w : Γ ⊣e
H : True
i : A ↓ v ⊂ Γ
============================
Γ ⊣e
subgoal 2 (ID 34670) is:
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
trivial.9 subgoals, subgoal 1 (ID 34670)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : (Γ ⊢e A : !s) /\
(Γ ⊢e A' : !s) /\ (exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0)
t1 : A :: Γ ⊢e B = B' : !t
H0 : (A :: Γ ⊢e B : !t) /\
(A :: Γ ⊢e B' : !t) /\
(exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s)
============================
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 2 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
destruct H as (? & ?& ?), H0 as (? & ?& ?). 9 subgoals, subgoal 1 (ID 35439)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
(Γ ⊢e Π (A), B : !u) /\
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 2 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split.10 subgoals, subgoal 1 (ID 35441)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e Π (A), B : !u
subgoal 2 (ID 35442) is:
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
apply cPi with s t; trivial. 9 subgoals, subgoal 1 (ID 35442)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
(Γ ⊢e Π (A'), B' : !u) /\ (exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0)
subgoal 2 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
split. 10 subgoals, subgoal 1 (ID 35447)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e Π (A'), B' : !u
subgoal 2 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
apply cPi with s t; trivial.10 subgoals, subgoal 1 (ID 35451)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A' :: Γ ⊢e B' : !t
subgoal 2 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
change (A'::Γ) with (nil++A'::Γ). 10 subgoals, subgoal 1 (ID 35457)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
nil ++ A' :: Γ ⊢e B' : !t
subgoal 2 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using ,)
eapply conv_in_env. 13 subgoals, subgoal 1 (ID 35474)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
?35473 ⊢e B' : !t
subgoal 2 (ID 35476) is:
?35473 = nil ++ ?35475 :: Γ
subgoal 3 (ID 35478) is:
Γ ⊢e ?35475 = A' : !?35477
subgoal 4 (ID 35479) is:
Γ ⊢e A' : !?35477
subgoal 5 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 6 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 open, ?35475 open, ?35477 open,)
apply H3. 12 subgoals, subgoal 1 (ID 35476)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A :: Γ = nil ++ ?35475 :: Γ
subgoal 2 (ID 35478) is:
Γ ⊢e ?35475 = A' : !?35477
subgoal 3 (ID 35479) is:
Γ ⊢e A' : !?35477
subgoal 4 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 5 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 open, ?35477 open,)
simpl; reflexivity. 11 subgoals, subgoal 1 (ID 35478)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A = A' : !?35477
subgoal 2 (ID 35479) is:
Γ ⊢e A' : !?35477
subgoal 3 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 4 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 open,)
apply t0. 10 subgoals, subgoal 1 (ID 35479)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A' : !s
subgoal 2 (ID 35448) is:
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 3 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
trivial.9 subgoals, subgoal 1 (ID 35448)
Γ : Env
A : Term
A' : Term
B : Term
B' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e A' : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B = B' : !t
H0 : A :: Γ ⊢e B : !t
H3 : A :: Γ ⊢e B' : !t
H4 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
exists s0 : Sorts, !u = !s0 \/ Γ ⊢e !u : !s0
subgoal 2 (ID 34687) is:
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
exists u; left; trivial.8 subgoals, subgoal 1 (ID 34687)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : (Γ ⊢e A : !s) /\
(Γ ⊢e A' : !s) /\ (exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0)
t1 : A :: Γ ⊢e M = M' : B
H0 : (A :: Γ ⊢e M : B) /\
(A :: Γ ⊢e M' : B) /\ (exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s)
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 2 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
destruct H as (? & ?& ?), H0 as (? & ?& ?). 8 subgoals, subgoal 1 (ID 35507)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
(Γ ⊢e λ [A], M : Π (A), B) /\
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 2 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
split.9 subgoals, subgoal 1 (ID 35509)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e λ [A], M : Π (A), B
subgoal 2 (ID 35510) is:
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
apply cLa with s t u; trivial.8 subgoals, subgoal 1 (ID 35510)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
(Γ ⊢e λ [A'], M' : Π (A), B) /\
(exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0)
subgoal 2 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
split. 9 subgoals, subgoal 1 (ID 35516)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e λ [A'], M' : Π (A), B
subgoal 2 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
apply Cnv with (Π(A'),B) u. 10 subgoals, subgoal 1 (ID 35518)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e Π (A'), B = Π (A), B : !u
subgoal 2 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
apply cPi_eq with s t; intuition.10 subgoals, subgoal 1 (ID 35522)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A' :: Γ ⊢e B = B : !t
subgoal 2 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
change (A'::Γ) with (nil++A'::Γ).10 subgoals, subgoal 1 (ID 35581)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
nil ++ A' :: Γ ⊢e B = B : !t
subgoal 2 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using ,)
eapply conv_in_env. 13 subgoals, subgoal 1 (ID 35603)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
?35602 ⊢e B = B : !t
subgoal 2 (ID 35605) is:
?35602 = nil ++ ?35604 :: Γ
subgoal 3 (ID 35607) is:
Γ ⊢e ?35604 = A' : !?35606
subgoal 4 (ID 35608) is:
Γ ⊢e A' : !?35606
subgoal 5 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 6 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 open, ?35604 open, ?35606 open,)
apply cRefl. 13 subgoals, subgoal 1 (ID 35609)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
?35602 ⊢e B : !t
subgoal 2 (ID 35605) is:
?35602 = nil ++ ?35604 :: Γ
subgoal 3 (ID 35607) is:
Γ ⊢e ?35604 = A' : !?35606
subgoal 4 (ID 35608) is:
Γ ⊢e A' : !?35606
subgoal 5 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 6 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 open, ?35604 open, ?35606 open,)
apply t2. 12 subgoals, subgoal 1 (ID 35605)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A :: Γ = nil ++ ?35604 :: Γ
subgoal 2 (ID 35607) is:
Γ ⊢e ?35604 = A' : !?35606
subgoal 3 (ID 35608) is:
Γ ⊢e A' : !?35606
subgoal 4 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 5 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 open, ?35606 open,)
simpl; reflexivity.11 subgoals, subgoal 1 (ID 35607)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A = A' : !?35606
subgoal 2 (ID 35608) is:
Γ ⊢e A' : !?35606
subgoal 3 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 4 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 open,)
apply t0. 10 subgoals, subgoal 1 (ID 35608)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A' : !s
subgoal 2 (ID 35519) is:
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using ,)
trivial.9 subgoals, subgoal 1 (ID 35519)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e λ [A'], M' : Π (A'), B
subgoal 2 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using ,)
apply cLa with s t u; trivial. 10 subgoals, subgoal 1 (ID 35614)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A' :: Γ ⊢e B : !t
subgoal 2 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using ,)
change (A'::Γ) with (nil++A'::Γ).10 subgoals, subgoal 1 (ID 35621)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
nil ++ A' :: Γ ⊢e B : !t
subgoal 2 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using ,)
eapply conv_in_env. 13 subgoals, subgoal 1 (ID 35638)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
?35637 ⊢e B : !t
subgoal 2 (ID 35640) is:
?35637 = nil ++ ?35639 :: Γ
subgoal 3 (ID 35642) is:
Γ ⊢e ?35639 = A' : !?35641
subgoal 4 (ID 35643) is:
Γ ⊢e A' : !?35641
subgoal 5 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 6 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 7 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 8 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 10 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 11 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 12 (ID 34746) is:
True
subgoal 13 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 open, ?35639 open, ?35641 open,)
apply t2. 12 subgoals, subgoal 1 (ID 35640)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A :: Γ = nil ++ ?35639 :: Γ
subgoal 2 (ID 35642) is:
Γ ⊢e ?35639 = A' : !?35641
subgoal 3 (ID 35643) is:
Γ ⊢e A' : !?35641
subgoal 4 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 5 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 open, ?35641 open,)
simpl; reflexivity. 11 subgoals, subgoal 1 (ID 35642)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A = A' : !?35641
subgoal 2 (ID 35643) is:
Γ ⊢e A' : !?35641
subgoal 3 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 4 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 open,)
apply t0. 10 subgoals, subgoal 1 (ID 35643)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A' : !s
subgoal 2 (ID 35615) is:
A' :: Γ ⊢e M' : B
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using ,)
trivial.9 subgoals, subgoal 1 (ID 35615)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A' :: Γ ⊢e M' : B
subgoal 2 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using ,)
change (A'::Γ) with (nil++A'::Γ). 9 subgoals, subgoal 1 (ID 35651)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
nil ++ A' :: Γ ⊢e M' : B
subgoal 2 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using ,)
eapply conv_in_env. 12 subgoals, subgoal 1 (ID 35668)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
?35667 ⊢e M' : B
subgoal 2 (ID 35670) is:
?35667 = nil ++ ?35669 :: Γ
subgoal 3 (ID 35672) is:
Γ ⊢e ?35669 = A' : !?35671
subgoal 4 (ID 35673) is:
Γ ⊢e A' : !?35671
subgoal 5 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 6 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 open, ?35669 open, ?35671 open,)
apply H4.11 subgoals, subgoal 1 (ID 35670)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
A :: Γ = nil ++ ?35669 :: Γ
subgoal 2 (ID 35672) is:
Γ ⊢e ?35669 = A' : !?35671
subgoal 3 (ID 35673) is:
Γ ⊢e A' : !?35671
subgoal 4 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 5 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 open, ?35671 open,)
simpl; reflexivity. 10 subgoals, subgoal 1 (ID 35672)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A = A' : !?35671
subgoal 2 (ID 35673) is:
Γ ⊢e A' : !?35671
subgoal 3 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 4 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 open,)
apply t0. 9 subgoals, subgoal 1 (ID 35673)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e A' : !s
subgoal 2 (ID 35517) is:
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 3 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
trivial.8 subgoals, subgoal 1 (ID 35517)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
exists s0 : Sorts, Π (A), B = !s0 \/ Γ ⊢e Π (A), B : !s0
subgoal 2 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
exists u; right. 8 subgoals, subgoal 1 (ID 35679)
Γ : Env
A : Term
A' : Term
B : Term
M : Term
M' : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A = A' : !s
H : Γ ⊢e A : !s
H2 : Γ ⊢e A' : !s
H3 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e M = M' : B
H0 : A :: Γ ⊢e M : B
H4 : A :: Γ ⊢e M' : B
H5 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t2 : A :: Γ ⊢e B : !t
H1 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
============================
Γ ⊢e Π (A), B : !u
subgoal 2 (ID 34699) is:
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
apply cPi with s t; trivial.7 subgoals, subgoal 1 (ID 34699)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : (Γ ⊢e M : Π (A), B) /\
(Γ ⊢e M' : Π (A), B) /\
(exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s)
t0 : Γ ⊢e N = N' : A
H0 : (Γ ⊢e N : A) /\
(Γ ⊢e N' : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
============================
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
destruct H as (? & ? & ?), H0 as (? & ?& ?). 7 subgoals, subgoal 1 (ID 35701)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
H2 : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e M · N : B [ ← N]) /\
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
split. 8 subgoals, subgoal 1 (ID 35703)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
H2 : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M · N : B [ ← N]
subgoal 2 (ID 35704) is:
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
apply cApp with A; trivial. 7 subgoals, subgoal 1 (ID 35704)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
H2 : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e M' · N' : B [ ← N]) /\
(exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s)
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
split.8 subgoals, subgoal 1 (ID 35708)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
H2 : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M' · N' : B [ ← N]
subgoal 2 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
destruct H2 as (s & ?). 8 subgoals, subgoal 1 (ID 35715)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
H2 : Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M' · N' : B [ ← N]
subgoal 2 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
destruct H2. 9 subgoals, subgoal 1 (ID 35721)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
H2 : Π (A), B = !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M' · N' : B [ ← N]
subgoal 2 (ID 35723) is:
Γ ⊢e M' · N' : B [ ← N]
subgoal 3 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
discriminate. 8 subgoals, subgoal 1 (ID 35723)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
H2 : Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M' · N' : B [ ← N]
subgoal 2 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
apply wgen_pi in H2 as (a & b & c & h); decompose [and] h ;clear h.8 subgoals, subgoal 1 (ID 35756)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e M' · N' : B [ ← N]
subgoal 2 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
apply Cnv with (B[← N']) b. 9 subgoals, subgoal 1 (ID 35757)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e B [ ← N'] = B [ ← N] : !b
subgoal 2 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 3 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
change !b with (!b[← N]). 9 subgoals, subgoal 1 (ID 35760)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e B [ ← N'] = B [ ← N] : !b [ ← N]
subgoal 2 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 3 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
apply cSym. 9 subgoals, subgoal 1 (ID 35761)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e B [ ← N] = B [ ← N'] : !b [ ← N]
subgoal 2 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 3 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using ,)
eapply substitution2.12 subgoals, subgoal 1 (ID 35765)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
?35762 ⊢e B : !b
subgoal 2 (ID 35766) is:
?35763 ⊢e N = N' : ?35764
subgoal 3 (ID 35767) is:
?35763 ⊢e N : ?35764
subgoal 4 (ID 35768) is:
sub_in_env ?35763 N ?35764 0 ?35762 Γ
subgoal 5 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 6 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 7 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 9 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 10 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 11 (ID 34746) is:
True
subgoal 12 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 open, ?35763 open, ?35764 open,)
apply H7. 11 subgoals, subgoal 1 (ID 35766)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
?35763 ⊢e N = N' : ?35764
subgoal 2 (ID 35767) is:
?35763 ⊢e N : ?35764
subgoal 3 (ID 35768) is:
sub_in_env ?35763 N ?35764 0 (A :: Γ) Γ
subgoal 4 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 5 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 6 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 8 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 9 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 10 (ID 34746) is:
True
subgoal 11 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 open, ?35764 open,)
apply t0. 10 subgoals, subgoal 1 (ID 35767)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e N : A
subgoal 2 (ID 35768) is:
sub_in_env Γ N A 0 (A :: Γ) Γ
subgoal 3 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 4 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 5 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 7 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 8 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 9 (ID 34746) is:
True
subgoal 10 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
trivial. 9 subgoals, subgoal 1 (ID 35768)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
sub_in_env Γ N A 0 (A :: Γ) Γ
subgoal 2 (ID 35758) is:
Γ ⊢e M' · N' : B [ ← N']
subgoal 3 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
constructor. 8 subgoals, subgoal 1 (ID 35758)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
s : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e M' · N' : B [ ← N']
subgoal 2 (ID 35709) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
apply cApp with A; trivial.7 subgoals, subgoal 1 (ID 35709)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
H2 : exists s : Sorts, Π (A), B = !s \/ Γ ⊢e Π (A), B : !s
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
destruct H2. 7 subgoals, subgoal 1 (ID 35777)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
H2 : Π (A), B = !x \/ Γ ⊢e Π (A), B : !x
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
destruct H2. 8 subgoals, subgoal 1 (ID 35783)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
H2 : Π (A), B = !x
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 2 (ID 35785) is:
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
discriminate. 7 subgoals, subgoal 1 (ID 35785)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
H2 : Γ ⊢e Π (A), B : !x
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
apply wgen_pi in H2 as (a & b & c & h); decompose [and] h; clear h.7 subgoals, subgoal 1 (ID 35818)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
exists s : Sorts, B [ ← N] = !s \/ Γ ⊢e B [ ← N] : !s
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
exists b; right. 7 subgoals, subgoal 1 (ID 35822)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e B [ ← N] : !b
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
change !b with (!b[←N]). 7 subgoals, subgoal 1 (ID 35824)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
Γ ⊢e B [ ← N] : !b [ ← N]
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using ,)
eapply substitution. 9 subgoals, subgoal 1 (ID 35840)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
?35839 ⊢e B : !b
subgoal 2 (ID 35843) is:
?35841 ⊢e N : ?35842
subgoal 3 (ID 35844) is:
sub_in_env ?35841 N ?35842 0 ?35839 Γ
subgoal 4 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 6 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 7 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 8 (ID 34746) is:
True
subgoal 9 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 open, ?35841 open, ?35842 open,)
apply H7. 8 subgoals, subgoal 1 (ID 35843)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
?35841 ⊢e N : ?35842
subgoal 2 (ID 35844) is:
sub_in_env ?35841 N ?35842 0 (A :: Γ) Γ
subgoal 3 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 5 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 6 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 7 (ID 34746) is:
True
subgoal 8 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 open, ?35842 open,)
apply H0. 7 subgoals, subgoal 1 (ID 35844)
Γ : Env
M : Term
M' : Term
N : Term
N' : Term
A : Term
B : Term
t : Γ ⊢e M = M' : Π (A), B
H : Γ ⊢e M : Π (A), B
H1 : Γ ⊢e M' : Π (A), B
x : Sorts
t0 : Γ ⊢e N = N' : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e N' : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
a : Sorts
b : Sorts
c : Sorts
H2 : Rel a b c
H6 : Γ ⊢e A : !a
H7 : A :: Γ ⊢e B : !b
============================
sub_in_env Γ N A 0 (A :: Γ) Γ
subgoal 2 (ID 34706) is:
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 4 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 5 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 6 (ID 34746) is:
True
subgoal 7 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
constructor.6 subgoals, subgoal 1 (ID 34706)
Γ : Env
M : Term
N : Term
A : Term
t : Γ ⊢e M = N : A
H : (Γ ⊢e M : A) /\
(Γ ⊢e N : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
============================
(Γ ⊢e N : A) /\ (Γ ⊢e M : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 2 (ID 34716) is:
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 3 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 4 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 5 (ID 34746) is:
True
subgoal 6 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
intuition.5 subgoals, subgoal 1 (ID 34716)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : (Γ ⊢e M : A) /\
(Γ ⊢e N : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
t0 : Γ ⊢e N = P : A
H0 : (Γ ⊢e N : A) /\
(Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
============================
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 2 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 3 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
destruct H as (? & ?& ?), H0 as (? & ? & ?).5 subgoals, subgoal 1 (ID 35878)
Γ : Env
M : Term
N : Term
P : Term
A : Term
t : Γ ⊢e M = N : A
H : Γ ⊢e M : A
H1 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
t0 : Γ ⊢e N = P : A
H0 : Γ ⊢e N : A
H3 : Γ ⊢e P : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e M : A) /\ (Γ ⊢e P : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
subgoal 2 (ID 34727) is:
(Γ ⊢e M : B) /\ (Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 3 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
intuition.4 subgoals, subgoal 1 (ID 34727)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : (Γ ⊢e A : !s) /\
(Γ ⊢e B : !s) /\ (exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0)
t0 : Γ ⊢e M = N : A
H0 : (Γ ⊢e M : A) /\
(Γ ⊢e N : A) /\ (exists s : Sorts, A = !s \/ Γ ⊢e A : !s)
============================
(Γ ⊢e M : B) /\
(Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 2 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
destruct H as (? & ?& ?), H0 as (? & ?& ?).4 subgoals, subgoal 1 (ID 35903)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e M = N : A
H0 : Γ ⊢e M : A
H3 : Γ ⊢e N : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e M : B) /\
(Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 2 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
split. 5 subgoals, subgoal 1 (ID 35905)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e M = N : A
H0 : Γ ⊢e M : A
H3 : Γ ⊢e N : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M : B
subgoal 2 (ID 35906) is:
(Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 3 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
apply Cnv with A s; trivial. 4 subgoals, subgoal 1 (ID 35906)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e M = N : A
H0 : Γ ⊢e M : A
H3 : Γ ⊢e N : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e N : B) /\ (exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0)
subgoal 2 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
split. 5 subgoals, subgoal 1 (ID 35910)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e M = N : A
H0 : Γ ⊢e M : A
H3 : Γ ⊢e N : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e N : B
subgoal 2 (ID 35911) is:
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 3 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
apply Cnv with A s; trivial.4 subgoals, subgoal 1 (ID 35911)
Γ : Env
M : Term
N : Term
A : Term
B : Term
s : Sorts
t : Γ ⊢e A = B : !s
H : Γ ⊢e A : !s
H1 : Γ ⊢e B : !s
H2 : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t0 : Γ ⊢e M = N : A
H0 : Γ ⊢e M : A
H3 : Γ ⊢e N : A
H4 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s0 : Sorts, B = !s0 \/ Γ ⊢e B : !s0
subgoal 2 (ID 34745) is:
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
exists s; right; trivial.3 subgoals, subgoal 1 (ID 34745)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e (λ [A], M) · N : B [ ← N]) /\
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
split. 4 subgoals, subgoal 1 (ID 35919)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e (λ [A], M) · N : B [ ← N]
subgoal 2 (ID 35920) is:
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
apply cApp with A; trivial. 4 subgoals, subgoal 1 (ID 35921)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e λ [A], M : Π (A), B
subgoal 2 (ID 35920) is:
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
apply cLa with s t u; trivial. 3 subgoals, subgoal 1 (ID 35920)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
(Γ ⊢e M [ ← N] : B [ ← N]) /\
(exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0)
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
split.4 subgoals, subgoal 1 (ID 35928)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e M [ ← N] : B [ ← N]
subgoal 2 (ID 35929) is:
exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using ,)
eapply substitution. 6 subgoals, subgoal 1 (ID 35945)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
?35944 ⊢e M : B
subgoal 2 (ID 35948) is:
?35946 ⊢e N : ?35947
subgoal 3 (ID 35949) is:
sub_in_env ?35946 N ?35947 0 ?35944 Γ
subgoal 4 (ID 35929) is:
exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0
subgoal 5 (ID 34746) is:
True
subgoal 6 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 open, ?35946 open, ?35947 open,)
apply t2. 5 subgoals, subgoal 1 (ID 35948)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
?35946 ⊢e N : ?35947
subgoal 2 (ID 35949) is:
sub_in_env ?35946 N ?35947 0 (A :: Γ) Γ
subgoal 3 (ID 35929) is:
exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 open, ?35947 open,)
apply t3. 4 subgoals, subgoal 1 (ID 35949)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
sub_in_env Γ N A 0 (A :: Γ) Γ
subgoal 2 (ID 35929) is:
exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using ,)
constructor. 3 subgoals, subgoal 1 (ID 35929)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
exists s0 : Sorts, B [ ← N] = !s0 \/ Γ ⊢e B [ ← N] : !s0
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using ,)
exists t; right.3 subgoals, subgoal 1 (ID 35954)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e B [ ← N] : !t
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using ,)
change !t with (!t[← N]). 3 subgoals, subgoal 1 (ID 35956)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
Γ ⊢e B [ ← N] : !t [ ← N]
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using ,)
eapply substitution. 5 subgoals, subgoal 1 (ID 35972)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
?35971 ⊢e B : !t
subgoal 2 (ID 35975) is:
?35973 ⊢e N : ?35974
subgoal 3 (ID 35976) is:
sub_in_env ?35973 N ?35974 0 ?35971 Γ
subgoal 4 (ID 34746) is:
True
subgoal 5 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 open, ?35973 open, ?35974 open,)
apply t1. 4 subgoals, subgoal 1 (ID 35975)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
?35973 ⊢e N : ?35974
subgoal 2 (ID 35976) is:
sub_in_env ?35973 N ?35974 0 (A :: Γ) Γ
subgoal 3 (ID 34746) is:
True
subgoal 4 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 using , ?35973 open, ?35974 open,)
apply t3. 3 subgoals, subgoal 1 (ID 35976)
Γ : Env
A : Term
B : Term
M : Term
N : Term
s : Sorts
t : Sorts
u : Sorts
r : Rel s t u
t0 : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
t1 : A :: Γ ⊢e B : !t
H0 : exists s : Sorts, !t = !s \/ A :: Γ ⊢e !t : !s
t2 : A :: Γ ⊢e M : B
H1 : exists s : Sorts, B = !s \/ A :: Γ ⊢e B : !s
t3 : Γ ⊢e N : A
H2 : exists s : Sorts, A = !s \/ Γ ⊢e A : !s
============================
sub_in_env Γ N A 0 (A :: Γ) Γ
subgoal 2 (ID 34746) is:
True
subgoal 3 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 using , ?35973 using , ?35974 using ,)
constructor.2 subgoals, subgoal 1 (ID 34746)
============================
True
subgoal 2 (ID 34752) is:
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 using , ?35973 using , ?35974 using ,)
trivial. 1 subgoals, subgoal 1 (ID 34752)
Γ : Env
A : Term
s : Sorts
t : Γ ⊢e A : !s
H : exists s0 : Sorts, !s = !s0 \/ Γ ⊢e !s : !s0
============================
True
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 using , ?35973 using , ?35974 using ,)
trivial.No more subgoals.
(dependent evars: ?34840 using ?34846 , ?34841 using ?34848 , ?34842 using ?34849 , ?34846 using , ?34848 using , ?34849 using , ?35466 using ?35473 , ?35467 using ?35475 , ?35468 using ?35477 , ?35473 using , ?35475 using , ?35477 using , ?35588 using ?35595 , ?35589 using ?35597 , ?35590 using ?35599 , ?35595 using ?35602 , ?35597 using ?35604 , ?35599 using ?35606 , ?35602 using , ?35604 using , ?35606 using , ?35630 using ?35637 , ?35631 using ?35639 , ?35632 using ?35641 , ?35637 using , ?35639 using , ?35641 using , ?35660 using ?35667 , ?35661 using ?35669 , ?35662 using ?35671 , ?35667 using , ?35669 using , ?35671 using , ?35762 using , ?35763 using , ?35764 using , ?35833 using ?35839 , ?35834 using ?35841 , ?35835 using ?35842 , ?35839 using , ?35841 using , ?35842 using , ?35938 using ?35944 , ?35939 using ?35946 , ?35940 using ?35947 , ?35944 using , ?35946 using , ?35947 using , ?35965 using ?35971 , ?35966 using ?35973 , ?35967 using ?35974 , ?35971 using , ?35973 using , ?35974 using ,)
Qed.TypeCorrect_Refl is defined
Lemma TypeCorrect : forall Γ M T, Γ ⊢e M : T -> exists s, T = !s \/ Γ ⊢e T : !s.1 subgoals, subgoal 1 (ID 35983)
============================
forall (Γ : Env) (M T : Term),
Γ ⊢e M : T -> exists s : Sorts, T = !s \/ Γ ⊢e T : !s
(dependent evars:)
apply TypeCorrect_Refl.No more subgoals.
(dependent evars:)
Qed.
Lemma TypeCorrect_eq : forall Γ M N T, Γ ⊢e M = N : T -> exists s, T = !s \/ Γ ⊢e T : !s.1 subgoals, subgoal 1 (ID 36008)
============================
forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T -> exists s : Sorts, T = !s \/ Γ ⊢e T : !s
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 36013)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
============================
exists s : Sorts, T = !s \/ Γ ⊢e T : !s
(dependent evars:)
apply TypeCorrect_Refl in H. 1 subgoals, subgoal 1 (ID 36023)
Γ : Env
M : Term
N : Term
T : Term
H : (Γ ⊢e M : T) /\
(Γ ⊢e N : T) /\ (exists s : Sorts, T = !s \/ Γ ⊢e T : !s)
============================
exists s : Sorts, T = !s \/ Γ ⊢e T : !s
(dependent evars:)
intuition.No more subgoals.
(dependent evars:)
Qed.TypeCorrect_eq is defined
Lemma left_reflexivity : forall Γ M N T, Γ ⊢e M = N : T -> Γ ⊢e M : T.1 subgoals, subgoal 1 (ID 36036)
============================
forall (Γ : Env) (M N T : Term), Γ ⊢e M = N : T -> Γ ⊢e M : T
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 36041)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
============================
Γ ⊢e M : T
(dependent evars:)
apply TypeCorrect_Refl in H. 1 subgoals, subgoal 1 (ID 36051)
Γ : Env
M : Term
N : Term
T : Term
H : (Γ ⊢e M : T) /\
(Γ ⊢e N : T) /\ (exists s : Sorts, T = !s \/ Γ ⊢e T : !s)
============================
Γ ⊢e M : T
(dependent evars:)
intuition.No more subgoals.
(dependent evars:)
Qed.left_reflexivity is defined
Lemma right_reflexivity : forall Γ M N T, Γ ⊢e M = N : T -> Γ ⊢e N : T.1 subgoals, subgoal 1 (ID 36064)
============================
forall (Γ : Env) (M N T : Term), Γ ⊢e M = N : T -> Γ ⊢e N : T
(dependent evars:)
intros. 1 subgoals, subgoal 1 (ID 36069)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
============================
Γ ⊢e N : T
(dependent evars:)
apply TypeCorrect_Refl in H. 1 subgoals, subgoal 1 (ID 36079)
Γ : Env
M : Term
N : Term
T : Term
H : (Γ ⊢e M : T) /\
(Γ ⊢e N : T) /\ (exists s : Sorts, T = !s \/ Γ ⊢e T : !s)
============================
Γ ⊢e N : T
(dependent evars:)
intuition.No more subgoals.
(dependent evars:)
Qed.right_reflexivity is defined
Lemma parallel_subst : forall Γ M N T , Γ ⊢e M = N : T ->
forall Δ P P' A Γ' n , Δ ⊢e P = P': A -> sub_in_env Δ P A n Γ Γ' ->
Γ' ⊢e M [ n ←P ] = N [ n ← P'] : T [ n ←P ].1 subgoals, subgoal 1 (ID 36098)
============================
forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T ->
forall (Δ : Env) (P P' A : Term) (Γ' : Env) (n : nat),
Δ ⊢e P = P' : A ->
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars:)
Proof.1 subgoals, subgoal 1 (ID 36098)
============================
forall (Γ : Env) (M N T : Term),
Γ ⊢e M = N : T ->
forall (Δ : Env) (P P' A : Term) (Γ' : Env) (n : nat),
Δ ⊢e P = P' : A ->
sub_in_env Δ P A n Γ Γ' -> Γ' ⊢e M [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars:)
intros.1 subgoals, subgoal 1 (ID 36111)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e M [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars:)
apply cTrans with (N [n ← P]).2 subgoals, subgoal 1 (ID 36112)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e M [n ← P] = N [n ← P] : T [n ← P]
subgoal 2 (ID 36113) is:
Γ' ⊢e N [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars:)
eapply substitution.4 subgoals, subgoal 1 (ID 36133)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
?36132 ⊢e M = N : T
subgoal 2 (ID 36136) is:
?36134 ⊢e P : ?36135
subgoal 3 (ID 36137) is:
sub_in_env ?36134 P ?36135 n ?36132 Γ'
subgoal 4 (ID 36113) is:
Γ' ⊢e N [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 open, ?36134 open, ?36135 open,)
apply H.3 subgoals, subgoal 1 (ID 36136)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
?36134 ⊢e P : ?36135
subgoal 2 (ID 36137) is:
sub_in_env ?36134 P ?36135 n Γ Γ'
subgoal 3 (ID 36113) is:
Γ' ⊢e N [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 open, ?36135 open,)
apply left_reflexivity in H0; apply H0.2 subgoals, subgoal 1 (ID 36137)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
sub_in_env Δ P A n Γ Γ'
subgoal 2 (ID 36113) is:
Γ' ⊢e N [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using ,)
apply H1.1 subgoals, subgoal 1 (ID 36113)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
Γ' ⊢e N [n ← P] = N [n ← P'] : T [n ← P]
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using ,)
eapply substitution2.4 subgoals, subgoal 1 (ID 36145)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
?36142 ⊢e N : T
subgoal 2 (ID 36146) is:
?36143 ⊢e P = P' : ?36144
subgoal 3 (ID 36147) is:
?36143 ⊢e P : ?36144
subgoal 4 (ID 36148) is:
sub_in_env ?36143 P ?36144 n ?36142 Γ'
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using , ?36142 open, ?36143 open, ?36144 open,)
apply right_reflexivity in H; apply H.3 subgoals, subgoal 1 (ID 36146)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
?36143 ⊢e P = P' : ?36144
subgoal 2 (ID 36147) is:
?36143 ⊢e P : ?36144
subgoal 3 (ID 36148) is:
sub_in_env ?36143 P ?36144 n Γ Γ'
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using , ?36142 using ?36150 , ?36143 open, ?36144 open, ?36150 using ,)
apply H0.2 subgoals, subgoal 1 (ID 36147)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
Δ ⊢e P : A
subgoal 2 (ID 36148) is:
sub_in_env Δ P A n Γ Γ'
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using , ?36142 using ?36150 , ?36143 using , ?36144 using , ?36150 using ,)
apply left_reflexivity in H0; apply H0.1 subgoals, subgoal 1 (ID 36148)
Γ : Env
M : Term
N : Term
T : Term
H : Γ ⊢e M = N : T
Δ : Env
P : Term
P' : Term
A : Term
Γ' : Env
n : nat
H0 : Δ ⊢e P = P' : A
H1 : sub_in_env Δ P A n Γ Γ'
============================
sub_in_env Δ P A n Γ Γ'
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using , ?36142 using ?36150 , ?36143 using , ?36144 using , ?36150 using ,)
assumption.No more subgoals.
(dependent evars: ?36120 using ?36126 , ?36121 using ?36128 , ?36122 using ?36129 , ?36126 using ?36132 , ?36128 using ?36134 , ?36129 using ?36135 , ?36132 using , ?36134 using ?36139 , ?36135 using ?36140 , ?36139 using , ?36140 using , ?36142 using ?36150 , ?36143 using , ?36144 using , ?36150 using ,)
Qed.parallel_subst is defined
We can easily prove that every judgement in PTSe is a valid one in PTS.
It's just a matter of "forgetting" typing information during the conversion.
Equivalence with simpler presentation of the typed equality,
suggested by Randy Pollack