Topological bases in compact sets and compact spaces #
theorem
eq_finite_iUnion_of_isTopologicalBasis_of_isCompact_open
{X : Type u_1}
{ι : Type u_2}
[TopologicalSpace X]
(b : ι → Set X)
(hb : TopologicalSpace.IsTopologicalBasis (Set.range b))
(U : Set X)
(hUc : IsCompact U)
(hUo : IsOpen U)
:
theorem
eq_sUnion_finset_of_isTopologicalBasis_of_isCompact_open
{X : Type u_1}
[TopologicalSpace X]
(b : Set (Set X))
(hb : TopologicalSpace.IsTopologicalBasis b)
(U : Set X)
(hUc : IsCompact U)
(hUo : IsOpen U)
:
∃ (s : Finset ↑b), U = ⋃₀ (Subtype.val '' ↑s)
theorem
isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis
{X : Type u_1}
{ι : Type u_2}
[TopologicalSpace X]
(b : ι → Set X)
(hb : TopologicalSpace.IsTopologicalBasis (Set.range b))
(hb' : ∀ (i : ι), IsCompact (b i))
(U : Set X)
:
If X
has a basis consisting of compact opens, then an open set in X
is compact open iff
it is a finite union of some elements in the basis