Documentation

Mathlib.Topology.Compactness.Bases

Topological bases in compact sets and compact spaces #

theorem eq_finite_iUnion_of_isTopologicalBasis_of_isCompact_open {X : Type u_1} {ι : Type u_2} [TopologicalSpace X] (b : ιSet X) (hb : TopologicalSpace.IsTopologicalBasis (Set.range b)) (U : Set X) (hUc : IsCompact U) (hUo : IsOpen U) :
∃ (s : Set ι), s.Finite U = is, b i
theorem isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis {X : Type u_1} {ι : Type u_2} [TopologicalSpace X] (b : ιSet X) (hb : TopologicalSpace.IsTopologicalBasis (Set.range b)) (hb' : ∀ (i : ι), IsCompact (b i)) (U : Set X) :
IsCompact U IsOpen U ∃ (s : Set ι), s.Finite U = is, b i

If X has a basis consisting of compact opens, then an open set in X is compact open iff it is a finite union of some elements in the basis