Documentation

Mathlib.RingTheory.Finiteness.Defs

Finiteness conditions in commutative algebra #

In this file we define a notion of finiteness that is common in commutative algebra.

Main declarations #

def Submodule.FG {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (N : Submodule R M) :

A submodule of M is finitely generated if it is the span of a finite subset of M.

Equations
theorem Submodule.fg_def {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {N : Submodule R M} :
N.FG ∃ (S : Set M), S.Finite span R S = N
theorem Submodule.fg_iff_exists_fin_generating_family {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {N : Submodule R M} :
N.FG ∃ (n : ) (s : Fin nM), span R (Set.range s) = N
theorem Submodule.fg_iff_exists_finite_generating_family {A : Type u} [Semiring A] {M : Type v} [AddCommMonoid M] [Module A M] {N : Submodule A M} :
N.FG ∃ (G : Type w) (_ : Finite G) (g : GM), span A (Set.range g) = N
def Ideal.FG {R : Type u_1} [Semiring R] (I : Ideal R) :

An ideal of R is finitely generated if it is the span of a finite subset of R.

This is defeq to Submodule.FG, but unfolds more nicely.

Equations
class Module.Finite (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] :

A module over a semiring is Module.Finite if it is finitely generated as a module.

  • fg_top : .FG

    A module over a semiring is Module.Finite if it is finitely generated as a module.

Instances
    theorem Module.finite_def {R : Type u_6} {M : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] :
    theorem Module.Finite.exists_fin {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Finite R M] :
    ∃ (n : ) (s : Fin nM), Submodule.span R (Set.range s) =

    See also Module.Finite.exists_fin'.

    def RingHom.Finite {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] (f : A →+* B) :

    A ring morphism A →+* B is RingHom.Finite if B is finitely generated as A-module.

    Equations
    def AlgHom.Finite {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :

    An algebra morphism A →ₐ[R] B is finite if it is finite as ring morphism. In other words, if B is finitely generated as A-module.

    Equations