Documentation

Mathlib.RingTheory.Congruence.Defs

Congruence relations on rings #

This file defines congruence relations on rings, which extend Con and AddCon on monoids and additive monoids.

Most of the time you likely want to use the Ideal.Quotient API that is built on top of this.

Main Definitions #

TODO #

structure RingCon (R : Type u_1) [Add R] [Mul R] extends Con R, AddCon R :
Type u_1

A congruence relation on a type with an addition and multiplication is an equivalence relation which preserves both.

inductive RingConGen.Rel {R : Type u_1} [Add R] [Mul R] (r : RRProp) :
RRProp

The inductively defined smallest ring congruence relation containing a given binary relation.

def ringConGen {R : Type u_1} [Add R] [Mul R] (r : RRProp) :

The inductively defined smallest ring congruence relation containing a given binary relation.

Equations
instance RingCon.instFunLikeForallProp {R : Type u_1} [Add R] [Mul R] :
FunLike (RingCon R) R (RProp)

A coercion from a congruence relation to its underlying binary relation.

Equations
@[simp]
theorem RingCon.coe_mk {R : Type u_1} [Add R] [Mul R] (s : Con R) (h : ∀ {w x y z : R}, s.toSetoid w xs.toSetoid y zs.toSetoid (w + y) (x + z)) :
{ toCon := s, add' := h } = s
theorem RingCon.rel_eq_coe {R : Type u_1} [Add R] [Mul R] (c : RingCon R) :
c.toSetoid = c
@[simp]
theorem RingCon.toCon_coe_eq_coe {R : Type u_1} [Add R] [Mul R] (c : RingCon R) :
c.toCon = c
theorem RingCon.refl {R : Type u_1} [Add R] [Mul R] (c : RingCon R) (x : R) :
c x x
theorem RingCon.symm {R : Type u_1} [Add R] [Mul R] (c : RingCon R) {x y : R} :
c x yc y x
theorem RingCon.trans {R : Type u_1} [Add R] [Mul R] (c : RingCon R) {x y z : R} :
c x yc y zc x z
theorem RingCon.add {R : Type u_1} [Add R] [Mul R] (c : RingCon R) {w x y z : R} :
c w xc y zc (w + y) (x + z)
theorem RingCon.mul {R : Type u_1} [Add R] [Mul R] (c : RingCon R) {w x y z : R} :
c w xc y zc (w * y) (x * z)
theorem RingCon.sub {S : Type u_2} [AddGroup S] [Mul S] (t : RingCon S) {a b c d : S} (h : t a b) (h' : t c d) :
t (a - c) (b - d)
theorem RingCon.neg {S : Type u_2} [AddGroup S] [Mul S] (t : RingCon S) {a b : S} (h : t a b) :
t (-a) (-b)
theorem RingCon.nsmul {S : Type u_2} [AddMonoid S] [Mul S] (t : RingCon S) (m : ) {x y : S} (hx : t x y) :
t (m x) (m y)
theorem RingCon.zsmul {S : Type u_2} [AddGroup S] [Mul S] (t : RingCon S) (z : ) {x y : S} (hx : t x y) :
t (z x) (z y)
@[simp]
theorem RingCon.rel_mk {R : Type u_1} [Add R] [Mul R] {s : Con R} {h : ∀ {w x y z : R}, s.toSetoid w xs.toSetoid y zs.toSetoid (w + y) (x + z)} {a b : R} :
{ toCon := s, add' := h } a b s a b
theorem RingCon.ext' {R : Type u_1} [Add R] [Mul R] {c d : RingCon R} (H : c = d) :
c = d

The map sending a congruence relation to its underlying binary relation is injective.

theorem RingCon.ext {R : Type u_1} [Add R] [Mul R] {c d : RingCon R} (H : ∀ (x y : R), c x y d x y) :
c = d

Extensionality rule for congruence relations.

theorem RingCon.ext_iff {R : Type u_1} [Add R] [Mul R] {c d : RingCon R} :
c = d ∀ (x y : R), c x y d x y
def RingCon.comap {R : Type u_2} {R' : Type u_3} {F : Type u_4} [Add R] [Add R'] [FunLike F R R'] [AddHomClass F R R'] [Mul R] [Mul R'] [MulHomClass F R R'] (J : RingCon R') (f : F) :

Pulling back a RingCon across a ring homomorphism.

Equations
def RingCon.Quotient {R : Type u_1} [Add R] [Mul R] (c : RingCon R) :
Type u_1

Defining the quotient by a congruence relation of a type with addition and multiplication.

Equations
def RingCon.toQuotient {R : Type u_1} [Add R] [Mul R] {c : RingCon R} (r : R) :

The morphism into the quotient by a congruence relation

Equations
instance RingCon.instCoeTCQuotient {R : Type u_1} [Add R] [Mul R] (c : RingCon R) :

Coercion from a type with addition and multiplication to its quotient by a congruence relation.

See Note [use has_coe_t].

Equations
@[instance 500]
instance RingCon.instDecidableEqQuotientOfDecidableCoeForallProp {R : Type u_1} [Add R] [Mul R] (c : RingCon R) [_d : (a b : R) → Decidable (c a b)] :

The quotient by a decidable congruence relation has decidable equality.

Equations
@[simp]
theorem RingCon.quot_mk_eq_coe {R : Type u_1} [Add R] [Mul R] (c : RingCon R) (x : R) :
Quot.mk (⇑c) x = x
@[simp]
theorem RingCon.eq {R : Type u_1} [Add R] [Mul R] (c : RingCon R) {a b : R} :
a = b c a b

Two elements are related by a congruence relation c iff they are represented by the same element of the quotient by c.

Basic notation #

The basic algebraic notation, 0, 1, +, *, -, ^, descend naturally under the quotient

@[simp]
theorem RingCon.coe_add {R : Type u_1} [Add R] [Mul R] (c : RingCon R) (x y : R) :
↑(x + y) = x + y
@[simp]
theorem RingCon.coe_mul {R : Type u_1} [Add R] [Mul R] (c : RingCon R) (x y : R) :
↑(x * y) = x * y
@[simp]
theorem RingCon.coe_zero {R : Type u_1} [AddZeroClass R] [Mul R] (c : RingCon R) :
0 = 0
@[simp]
theorem RingCon.coe_one {R : Type u_1} [Add R] [MulOneClass R] (c : RingCon R) :
1 = 1
@[simp]
theorem RingCon.coe_neg {R : Type u_1} [AddGroup R] [Mul R] (c : RingCon R) (x : R) :
↑(-x) = -x
@[simp]
theorem RingCon.coe_sub {R : Type u_1} [AddGroup R] [Mul R] (c : RingCon R) (x y : R) :
↑(x - y) = x - y
@[simp]
theorem RingCon.coe_zsmul {R : Type u_1} [AddGroup R] [Mul R] (c : RingCon R) (z : ) (x : R) :
↑(z x) = z x
@[simp]
theorem RingCon.coe_nsmul {R : Type u_1} [AddMonoid R] [Mul R] (c : RingCon R) (n : ) (x : R) :
↑(n x) = n x
@[simp]
theorem RingCon.coe_pow {R : Type u_1} [Add R] [Monoid R] (c : RingCon R) (x : R) (n : ) :
↑(x ^ n) = x ^ n
Equations
@[simp]
theorem RingCon.coe_natCast {R : Type u_1} [AddMonoidWithOne R] [Mul R] (c : RingCon R) (n : ) :
n = n
Equations
@[simp]
theorem RingCon.coe_intCast {R : Type u_1} [AddGroupWithOne R] [Mul R] (c : RingCon R) (n : ) :
n = n
instance RingCon.instInhabitedQuotient {R : Type u_1} [Inhabited R] [Add R] [Mul R] (c : RingCon R) :
Equations

Algebraic structure #

The operations above on the quotient by c : RingCon R preserve the algebraic structure of R.

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
instance RingCon.instRingQuotient {R : Type u_1} [Ring R] (c : RingCon R) :
Equations
  • One or more equations did not get rendered due to their size.
Equations
def RingCon.mk' {R : Type u_1} [NonAssocSemiring R] (c : RingCon R) :

The natural homomorphism from a ring to its quotient by a congruence relation.

Equations