Hausdorff's maximality principle #
This file proves Hausdorff's maximality principle.
Main declarations #
maxChain_spec
: Hausdorff's Maximality Principle.
Notes #
Originally ported from Isabelle/HOL. The original file was written by Jacques D. Fleuriot, Tobias Nipkow, Christian Sternagel.
Predicate for whether a set is reachable from ∅
using SuccChain
and ⋃₀
.
- succ {α : Type u_1} {r : α → α → Prop} {s : Set α} : ChainClosure r s → ChainClosure r (SuccChain r s)
- union {α : Type u_1} {r : α → α → Prop} {s : Set (Set α)} : (∀ a ∈ s, ChainClosure r a) → ChainClosure r (⋃₀ s)
theorem
ChainClosure.total
{α : Type u_1}
{r : α → α → Prop}
{c₁ c₂ : Set α}
(hc₁ : ChainClosure r c₁)
(hc₂ : ChainClosure r c₂)
:
theorem
ChainClosure.succ_fixpoint
{α : Type u_1}
{r : α → α → Prop}
{c₁ c₂ : Set α}
(hc₁ : ChainClosure r c₁)
(hc₂ : ChainClosure r c₂)
(hc : SuccChain r c₂ = c₂)
:
theorem
ChainClosure.isChain
{α : Type u_1}
{r : α → α → Prop}
{c : Set α}
(hc : ChainClosure r c)
:
IsChain r c
Hausdorff's maximality principle
There exists a maximal totally ordered set of α
.
Note that we do not require α
to be partially ordered by r
.