Documentation

Mathlib.Order.CompleteLattice.Chain

Hausdorff's maximality principle #

This file proves Hausdorff's maximality principle.

Main declarations #

Notes #

Originally ported from Isabelle/HOL. The original file was written by Jacques D. Fleuriot, Tobias Nipkow, Christian Sternagel.

inductive ChainClosure {α : Type u_1} (r : ααProp) :
Set αProp

Predicate for whether a set is reachable from using SuccChain and ⋃₀.

def maxChain {α : Type u_1} (r : ααProp) :
Set α

An explicit maximal chain. maxChain is taken to be the union of all sets in ChainClosure.

Equations
theorem chainClosure_empty {α : Type u_1} {r : ααProp} :
theorem chainClosure_maxChain {α : Type u_1} {r : ααProp} :
theorem ChainClosure.total {α : Type u_1} {r : ααProp} {c₁ c₂ : Set α} (hc₁ : ChainClosure r c₁) (hc₂ : ChainClosure r c₂) :
c₁ c₂ c₂ c₁
theorem ChainClosure.succ_fixpoint {α : Type u_1} {r : ααProp} {c₁ c₂ : Set α} (hc₁ : ChainClosure r c₁) (hc₂ : ChainClosure r c₂) (hc : SuccChain r c₂ = c₂) :
c₁ c₂
theorem ChainClosure.succ_fixpoint_iff {α : Type u_1} {r : ααProp} {c : Set α} (hc : ChainClosure r c) :
theorem ChainClosure.isChain {α : Type u_1} {r : ααProp} {c : Set α} (hc : ChainClosure r c) :
theorem maxChain_spec {α : Type u_1} {r : ααProp} :

Hausdorff's maximality principle

There exists a maximal totally ordered set of α. Note that we do not require α to be partially ordered by r.