Documentation

Mathlib.MeasureTheory.Measure.QuasiMeasurePreserving

Quasi Measure Preserving Functions #

A map f : α → β is said to be quasi measure preserving (a.k.a. non-singular) w.r.t. measures μa and μb if it is measurable and μb s = 0 implies μa (f ⁻¹' s) = 0. That last condition can also be written μa.map f ≪ μb (the map of μa by f is absolutely continuous with respect to μb).

Main definitions #

structure MeasureTheory.Measure.QuasiMeasurePreserving {α : Type u_1} {β : Type u_2} {mβ : MeasurableSpace β} {m0 : MeasurableSpace α} (f : αβ) (μa : Measure α := by volume_tac) (μb : Measure β := by volume_tac) :

A map f : α → β is said to be quasi measure preserving (a.k.a. non-singular) w.r.t. measures μa and μb if it is measurable and μb s = 0 implies μa (f ⁻¹' s) = 0.

  • measurable : Measurable f
  • absolutelyContinuous : (map f μa).AbsolutelyContinuous μb
Instances For
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa μa' : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) (ha : μa'.AbsolutelyContinuous μa) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb μb' : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) (ha : μb.AbsolutelyContinuous μb') :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa μa' : Measure α} {μb μb' : Measure β} {f : αβ} (ha : μa'.AbsolutelyContinuous μa) (hb : μb.AbsolutelyContinuous μb') (h : QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μa : Measure α} {μb : Measure β} {μc : Measure γ} {g : βγ} {f : αβ} (hg : QuasiMeasurePreserving g μb μc) (hf : QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.iterate {α : Type u_1} {mα : MeasurableSpace α} {μa : Measure α} {f : αα} (hf : QuasiMeasurePreserving f μa μa) (n : ) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (hf : QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.smul_measure {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} {R : Type u_5} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (hf : QuasiMeasurePreserving f μa μb) (c : R) :
    QuasiMeasurePreserving f (c μa) (c μb)
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) {p : βProp} (hg : ∀ᵐ (x : β) ∂μb, p x) :
    ∀ᵐ (x : α) ∂μa, p (f x)
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq {α : Type u_1} {β : Type u_2} {δ : Type u_4} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) {g₁ g₂ : βδ} (hg : g₁ =ᵐ[μb] g₂) :
    g₁ f =ᵐ[μa] g₂ f
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} (h : QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
    μa (f ⁻¹' s) = 0
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s ≤ᵐ[μb] t) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_ae_eq {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s =ᵐ[μb] t) :
    f ⁻¹' s =ᵐ[μa] f ⁻¹' t
    theorem MeasureTheory.NullMeasurableSet.preimage {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : Measure α} {μb : Measure β} {f : αβ} {s : Set β} (hs : NullMeasurableSet s μb) (hf : Measure.QuasiMeasurePreserving f μa μb) :

    The preimage of a null measurable set under a (quasi) measure preserving map is a null measurable set.

    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_iterate_ae_eq {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {s : Set α} {f : αα} (hf : QuasiMeasurePreserving f μ μ) (k : ) (hs : f ⁻¹' s =ᵐ[μ] s) :
    f^[k] ⁻¹' s =ᵐ[μ] s
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {s : Set α} {e : α α} (he : QuasiMeasurePreserving (⇑e) μ μ) (he' : QuasiMeasurePreserving (⇑e.symm) μ μ) (k : ) (hs : e '' s =ᵐ[μ] s) :
    (e ^ k) '' s =ᵐ[μ] s
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {s : Set α} {f : αα} (hf : QuasiMeasurePreserving f μ μ) (hs : f ⁻¹' s =ᵐ[μ] s) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {s : Set α} {f : αα} (hf : QuasiMeasurePreserving f μ μ) (hs : f ⁻¹' s =ᵐ[μ] s) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {s : Set α} {f : αα} (h : QuasiMeasurePreserving f μ μ) (hs : NullMeasurableSet s μ) (hs' : f ⁻¹' s =ᵐ[μ] s) :
    ∃ (t : Set α), MeasurableSet t t =ᵐ[μ] s f ⁻¹' t = t

    For a quasi measure preserving self-map f, if a null measurable set s is a.e. invariant, then it is a.e. equal to a measurable invariant set.

    theorem MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq {G : Type u_5} {α : Type u_6} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {s t : Set α} {μ : Measure α} (g : G) (h_qmp : QuasiMeasurePreserving (fun (x : α) => g⁻¹ x) μ μ) (h_ae_eq : s =ᵐ[μ] t) :
    g s =ᵐ[μ] g t
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.vadd_ae_eq_of_ae_eq {G : Type u_5} {α : Type u_6} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {s t : Set α} {μ : Measure α} (g : G) (h_qmp : QuasiMeasurePreserving (fun (x : α) => -g +ᵥ x) μ μ) (h_ae_eq : s =ᵐ[μ] t) :
    g +ᵥ s =ᵐ[μ] g +ᵥ t
    theorem MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G : Type u_5} {α : Type u_6} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} {s : Set α} (h_ae_disjoint : ∀ (g : G), g 1AEDisjoint μ (g s) s) (h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun (x : α) => g x) μ μ) :
    Pairwise (Function.onFun (AEDisjoint μ) fun (g : G) => g s)
    theorem MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_zero {G : Type u_5} {α : Type u_6} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} {s : Set α} (h_ae_disjoint : ∀ (g : G), g 0AEDisjoint μ (g +ᵥ s) s) (h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun (x : α) => g +ᵥ x) μ μ) :
    Pairwise (Function.onFun (AEDisjoint μ) fun (g : G) => g +ᵥ s)
    theorem MeasureTheory.NullMeasurableSet.mono_ac {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} {s : Set α} (h : NullMeasurableSet s μ) (hle : ν.AbsolutelyContinuous μ) :
    theorem MeasureTheory.NullMeasurableSet.mono {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} {s : Set α} (h : NullMeasurableSet s μ) (hle : ν μ) :
    theorem MeasureTheory.AEDisjoint.preimage {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : Measure α} {ν : Measure β} {f : αβ} {s t : Set β} (ht : AEDisjoint ν s t) (hf : Measure.QuasiMeasurePreserving f μ ν) :
    AEDisjoint μ (f ⁻¹' s) (f ⁻¹' t)