Documentation

Mathlib.LinearAlgebra.Basis.Defs

Bases #

This file defines bases in a module or vector space.

It is inspired by Isabelle/HOL's linear algebra, and hence indirectly by HOL Light.

Main definitions #

All definitions are given for families of vectors, i.e. v : ι → M where M is the module or vector space and ι : Type* is an arbitrary indexing type.

Main results #

Implementation notes #

We use families instead of sets because it allows us to say that two identical vectors are linearly dependent. For bases, this is useful as well because we can easily derive ordered bases by using an ordered index type ι.

Tags #

basis, bases

structure Basis (ι : Type u_1) (R : Type u_3) (M : Type u_6) [Semiring R] [AddCommMonoid M] [Module R M] :
Type (max (max u_1 u_3) u_6)

A Basis ι R M for a module M is the type of ι-indexed R-bases of M.

The basis vectors are available as DFunLike.coe (b : Basis ι R M) : ι → M. To turn a linear independent family of vectors spanning M into a basis, use Basis.mk. They are internally represented as linear equivs M ≃ₗ[R] (ι →₀ R), available as Basis.repr.

  • ofRepr :: (
    • repr : M ≃ₗ[R] ι →₀ R

      repr is the linear equivalence sending a vector x to its coordinates: the cs such that x = ∑ i, c i.

  • )
instance Basis.instInhabitedFinsupp {ι : Type u_1} {R : Type u_3} [Semiring R] :
Inhabited (Basis ι R (ι →₀ R))
Equations
theorem Basis.repr_injective {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] :
instance Basis.instFunLike {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] :
FunLike (Basis ι R M) ι M

b i is the ith basis vector.

Equations
@[simp]
theorem Basis.coe_ofRepr {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (e : M ≃ₗ[R] ι →₀ R) :
{ repr := e } = fun (i : ι) => e.symm (Finsupp.single i 1)
theorem Basis.injective {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Nontrivial R] :
theorem Basis.repr_symm_single_one {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) :
theorem Basis.repr_symm_single {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) (c : R) :
b.repr.symm (Finsupp.single i c) = c b i
@[simp]
theorem Basis.repr_self {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) :
b.repr (b i) = Finsupp.single i 1
theorem Basis.repr_self_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i j : ι) [Decidable (i = j)] :
(b.repr (b i)) j = if i = j then 1 else 0
@[simp]
theorem Basis.repr_symm_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (v : ι →₀ R) :
@[simp]
theorem Basis.coe_repr_symm {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
@[simp]
theorem Basis.repr_linearCombination {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (v : ι →₀ R) :
@[simp]
theorem Basis.linearCombination_repr {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : M) :
def Basis.map {ι : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (f : M ≃ₗ[R] M') :
Basis ι R M'

Apply the linear equivalence f to the basis vectors.

Equations
@[simp]
theorem Basis.map_repr {ι : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (f : M ≃ₗ[R] M') :
@[simp]
theorem Basis.map_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (f : M ≃ₗ[R] M') (i : ι) :
(b.map f) i = f (b i)
theorem Basis.coe_map {ι : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (f : M ≃ₗ[R] M') :
(b.map f) = f b
def Basis.reindex {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (e : ι ι') :
Basis ι' R M

b.reindex (e : ι ≃ ι') is a basis indexed by ι'

Equations
theorem Basis.reindex_apply {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (e : ι ι') (i' : ι') :
(b.reindex e) i' = b (e.symm i')
@[simp]
theorem Basis.coe_reindex {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (e : ι ι') :
(b.reindex e) = b e.symm
theorem Basis.repr_reindex_apply {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : M) (e : ι ι') (i' : ι') :
((b.reindex e).repr x) i' = (b.repr x) (e.symm i')
@[simp]
theorem Basis.repr_reindex {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : M) (e : ι ι') :
(b.reindex e).repr x = Finsupp.mapDomain (⇑e) (b.repr x)
@[simp]
theorem Basis.reindex_refl {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
theorem Basis.range_reindex {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (e : ι ι') :

simp can prove this as Basis.coe_reindex + EquivLike.range_comp

def Basis.equivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (b : Basis ι R M) :
M ≃ₗ[R] ιR

A module over R with a finite basis is linearly equivalent to functions from its basis to R.

Equations
def Module.fintypeOfFintype {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) [Fintype R] :

A module over a finite ring that admits a finite basis is finite.

Equations
theorem Module.card_fintype {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) [Fintype R] [Fintype M] :
@[simp]
theorem Basis.equivFun_symm_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) (x : ιR) :
b.equivFun.symm x = i : ι, x i b i

Given a basis v indexed by ι, the canonical linear equivalence between ι → R and M maps a function x : ι → R to the linear combination ∑_i x i • v i.

@[simp]
theorem Basis.equivFun_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (b : Basis ι R M) (u : M) :
b.equivFun u = (b.repr u)
@[simp]
theorem Basis.map_equivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] [Finite ι] (b : Basis ι R M) (f : M ≃ₗ[R] M') :
theorem Basis.sum_equivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) (u : M) :
i : ι, b.equivFun u i b i = u
theorem Basis.sum_repr {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) (u : M) :
i : ι, (b.repr u) i b i = u
@[simp]
theorem Basis.equivFun_self {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] [DecidableEq ι] (b : Basis ι R M) (i j : ι) :
b.equivFun (b i) j = if i = j then 1 else 0
theorem Basis.repr_sum_self {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (b : Basis ι R M) (c : ιR) :
(b.repr (∑ i : ι, c i b i)) = c
def Basis.ofEquivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (e : M ≃ₗ[R] ιR) :
Basis ι R M

Define a basis by mapping each vector x : M to its coordinates e x : ι → R, as long as ι is finite.

Equations
@[simp]
theorem Basis.ofEquivFun_repr_apply {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (e : M ≃ₗ[R] ιR) (x : M) (i : ι) :
((ofEquivFun e).repr x) i = e x i
@[simp]
theorem Basis.coe_ofEquivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] [DecidableEq ι] (e : M ≃ₗ[R] ιR) :
(ofEquivFun e) = fun (i : ι) => e.symm (Pi.single i 1)
@[simp]
theorem Basis.ofEquivFun_equivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (v : Basis ι R M) :
@[simp]
theorem Basis.equivFun_ofEquivFun {ι : Type u_1} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (e : M ≃ₗ[R] ιR) :
theorem Basis.ext {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R₁ : Type u_13} [Semiring R₁] {σ : R →+* R₁} {M₁ : Type u_14} [AddCommMonoid M₁] [Module R₁ M₁] {f₁ f₂ : M →ₛₗ[σ] M₁} (h : ∀ (i : ι), f₁ (b i) = f₂ (b i)) :
f₁ = f₂

Two linear maps are equal if they are equal on basis vectors.

theorem Basis.ext' {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R₁ : Type u_13} [Semiring R₁] {σ : R →+* R₁} {σ' : R₁ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] {M₁ : Type u_14} [AddCommMonoid M₁] [Module R₁ M₁] {f₁ f₂ : M ≃ₛₗ[σ] M₁} (h : ∀ (i : ι), f₁ (b i) = f₂ (b i)) :
f₁ = f₂

Two linear equivs are equal if they are equal on basis vectors.

theorem Basis.ext_elem_iff {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {x y : M} :
x = y ∀ (i : ι), (b.repr x) i = (b.repr y) i

Two elements are equal iff their coordinates are equal.

theorem Basis.ext_elem {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {x y : M} :
(∀ (i : ι), (b.repr x) i = (b.repr y) i)x = y

Alias of the reverse direction of Basis.ext_elem_iff.


Two elements are equal iff their coordinates are equal.

theorem Basis.repr_eq_iff {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b : Basis ι R M} {f : M →ₗ[R] ι →₀ R} :
b.repr = f ∀ (i : ι), f (b i) = Finsupp.single i 1
theorem Basis.repr_eq_iff' {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b : Basis ι R M} {f : M ≃ₗ[R] ι →₀ R} :
b.repr = f ∀ (i : ι), f (b i) = Finsupp.single i 1
theorem Basis.apply_eq_iff {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b : Basis ι R M} {x : M} {i : ι} :
b i = x b.repr x = Finsupp.single i 1
theorem Basis.repr_apply_eq {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (f : MιR) (hadd : ∀ (x y : M), f (x + y) = f x + f y) (hsmul : ∀ (c : R) (x : M), f (c x) = c f x) (f_eq : ∀ (i : ι), f (b i) = (Finsupp.single i 1)) (x : M) (i : ι) :
(b.repr x) i = f x i

An unbundled version of repr_eq_iff

theorem Basis.eq_ofRepr_eq_repr {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b₁ b₂ : Basis ι R M} (h : ∀ (x : M) (i : ι), (b₁.repr x) i = (b₂.repr x) i) :
b₁ = b₂

Two bases are equal if they assign the same coordinates.

theorem Basis.eq_of_apply_eq {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b₁ b₂ : Basis ι R M} :
(∀ (i : ι), b₁ i = b₂ i)b₁ = b₂

Two bases are equal if their basis vectors are the same.

theorem Basis.eq_of_apply_eq_iff {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] {b₁ b₂ : Basis ι R M} :
b₁ = b₂ ∀ (i : ι), b₁ i = b₂ i
def Basis.mapCoeffs {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R' : Type u_13} [Semiring R'] [Module R' M] (f : R ≃+* R') (h : ∀ (c : R) (x : M), f c x = c x) :
Basis ι R' M

If R and R' are isomorphic rings that act identically on a module M, then a basis for M as R-module is also a basis for M as R'-module.

See also Basis.algebraMapCoeffs for the case where f is equal to algebraMap.

Equations
@[simp]
theorem Basis.mapCoeffs_repr {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R' : Type u_13} [Semiring R'] [Module R' M] (f : R ≃+* R') (h : ∀ (c : R) (x : M), f c x = c x) :
theorem Basis.mapCoeffs_apply {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R' : Type u_13} [Semiring R'] [Module R' M] (f : R ≃+* R') (h : ∀ (c : R) (x : M), f c x = c x) (i : ι) :
(b.mapCoeffs f h) i = b i
@[simp]
theorem Basis.coe_mapCoeffs {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {R' : Type u_13} [Semiring R'] [Module R' M] (f : R ≃+* R') (h : ∀ (c : R) (x : M), f c x = c x) :
(b.mapCoeffs f h) = b
def Basis.reindexRange {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
Basis (↑(Set.range b)) R M

b.reindexRange is a basis indexed by range b, the basis vectors themselves.

Equations
theorem Basis.reindexRange_self {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) (h : b i Set.range b := ) :
b.reindexRange b i, h = b i
theorem Basis.reindexRange_repr_self {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) :
b.reindexRange.repr (b i) = Finsupp.single b i, 1
@[simp]
theorem Basis.reindexRange_apply {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : (Set.range b)) :
b.reindexRange x = x
theorem Basis.reindexRange_repr' {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : M) {bi : M} {i : ι} (h : b i = bi) :
(b.reindexRange.repr x) bi, = (b.repr x) i
@[simp]
theorem Basis.reindexRange_repr {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (x : M) (i : ι) (h : b i Set.range b := ) :
(b.reindexRange.repr x) b i, h = (b.repr x) i
def Basis.reindexFinsetRange {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] [DecidableEq M] :
Basis { x : M // x Finset.image (⇑b) Finset.univ } R M

b.reindexFinsetRange is a basis indexed by Finset.univ.image b, the finite set of basis vectors themselves.

Equations
theorem Basis.reindexFinsetRange_self {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] [DecidableEq M] (i : ι) (h : b i Finset.image (⇑b) Finset.univ := ) :
b.reindexFinsetRange b i, h = b i
@[simp]
theorem Basis.reindexFinsetRange_apply {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] [DecidableEq M] (x : { x : M // x Finset.image (⇑b) Finset.univ }) :
theorem Basis.reindexFinsetRange_repr_self {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] [DecidableEq M] (i : ι) :
b.reindexFinsetRange.repr (b i) = Finsupp.single b i, 1
@[simp]
theorem Basis.reindexFinsetRange_repr {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] [DecidableEq M] (x : M) (i : ι) (h : b i Finset.image (⇑b) Finset.univ := ) :
(b.reindexFinsetRange.repr x) b i, h = (b.repr x) i
def Basis.constr {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] :
(ιM') ≃ₗ[S] M →ₗ[R] M'

Construct a linear map given the value at the basis, called Basis.constr b S f where b is a basis, f is the value of the linear map over the elements of the basis, and S is an extra semiring (typically S = R or S = ℕ).

This definition is parameterized over an extra Semiring S, such that SMulCommClass R S M' holds. If R is commutative, you can set S := R; if R is not commutative, you can recover an AddEquiv by setting S := ℕ. See library note [bundled maps over different rings].

Equations
  • One or more equations did not get rendered due to their size.
theorem Basis.constr_def {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] (f : ιM') :
theorem Basis.constr_apply {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] (f : ιM') (x : M) :
((b.constr S) f) x = (b.repr x).sum fun (b : ι) (a : R) => a f b
@[simp]
theorem Basis.constr_basis {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] (f : ιM') (i : ι) :
((b.constr S) f) (b i) = f i
theorem Basis.constr_eq {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] {g : ιM'} {f : M →ₗ[R] M'} (h : ∀ (i : ι), g i = f (b i)) :
(b.constr S) g = f
theorem Basis.constr_self {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] (f : M →ₗ[R] M') :
((b.constr S) fun (i : ι) => f (b i)) = f
theorem Basis.constr_range {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] {f : ιM'} :
@[simp]
theorem Basis.constr_comp {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (S : Type u_13) [Semiring S] [Module S M'] [SMulCommClass R S M'] (f : M' →ₗ[R] M') (v : ιM') :
(b.constr S) (f v) = f ∘ₗ (b.constr S) v
@[simp]
theorem Basis.constr_apply_fintype {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] [Module R M'] (S : Type u_14) [Semiring S] [Module S M'] [SMulCommClass R S M'] [Fintype ι] (b : Basis ι R M) (f : ιM') (x : M) :
((b.constr S) f) x = i : ι, b.equivFun x i f i
def Basis.equiv {ι' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (b' : Basis ι' R M') (e : ι ι') :
M ≃ₗ[R] M'

If b is a basis for M and b' a basis for M', and the index types are equivalent, b.equiv b' e is a linear equivalence M ≃ₗ[R] M', mapping b i to b' (e i).

Equations
@[simp]
theorem Basis.equiv_apply {ι' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (i : ι) (b' : Basis ι' R M') (e : ι ι') :
(b.equiv b' e) (b i) = b' (e i)
@[simp]
theorem Basis.equiv_refl {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
@[simp]
theorem Basis.equiv_symm {ι' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] (b' : Basis ι' R M') (e : ι ι') :
(b.equiv b' e).symm = b'.equiv b e.symm
@[simp]
theorem Basis.equiv_trans {ι' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Module R M'] {M'' : Type u_13} (b' : Basis ι' R M') [AddCommMonoid M''] [Module R M''] {ι'' : Type u_14} (b'' : Basis ι'' R M'') (e : ι ι') (e' : ι' ι'') :
b.equiv b' e ≪≫ₗ b'.equiv b'' e' = b.equiv b'' (e.trans e')
@[simp]
theorem Basis.map_equiv {ι' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] [Module R M'] (b : Basis ι R M) (b' : Basis ι' R M') (e : ι ι') :
b.map (b.equiv b' e) = b'.reindex e.symm
def Basis.equiv' {ι' : Type u_2} {ι : Type u_10} {R : Type u_14} {M : Type u_15} {M' : Type u_16} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (b' : Basis ι' R M') [SMulCommClass R R M'] (f : MM') (g : M'M) (hf : ∀ (i : ι), f (b i) Set.range b') (hg : ∀ (i : ι'), g (b' i) Set.range b) (hgf : ∀ (i : ι), g (f (b i)) = b i) (hfg : ∀ (i : ι'), f (g (b' i)) = b' i) :
M ≃ₗ[R] M'

If b is a basis for M and b' a basis for M', and f, g form a bijection between the basis vectors, b.equiv' b' f g hf hg hgf hfg is a linear equivalence M ≃ₗ[R] M', mapping b i to f (b i).

Equations
  • b.equiv' b' f g hf hg hgf hfg = { toLinearMap := (b.constr R) (f b), invFun := ((b'.constr R) (g b')), left_inv := , right_inv := }
@[simp]
theorem Basis.equiv'_apply {ι' : Type u_2} {ι : Type u_10} {R : Type u_14} {M : Type u_15} {M' : Type u_16} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (b' : Basis ι' R M') [SMulCommClass R R M'] (f : MM') (g : M'M) (hf : ∀ (i : ι), f (b i) Set.range b') (hg : ∀ (i : ι'), g (b' i) Set.range b) (hgf : ∀ (i : ι), g (f (b i)) = b i) (hfg : ∀ (i : ι'), f (g (b' i)) = b' i) (i : ι) :
(b.equiv' b' f g hf hg hgf hfg) (b i) = f (b i)
@[simp]
theorem Basis.equiv'_symm_apply {ι' : Type u_2} {ι : Type u_10} {R : Type u_14} {M : Type u_15} {M' : Type u_16} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ι R M) (b' : Basis ι' R M') [SMulCommClass R R M'] (f : MM') (g : M'M) (hf : ∀ (i : ι), f (b i) Set.range b') (hg : ∀ (i : ι'), g (b' i) Set.range b) (hgf : ∀ (i : ι), g (f (b i)) = b i) (hfg : ∀ (i : ι'), f (g (b' i)) = b' i) (i : ι') :
(b.equiv' b' f g hf hg hgf hfg).symm (b' i) = g (b' i)
theorem Basis.sum_repr_mul_repr {ι : Type u_10} {R : Type u_14} {M : Type u_15} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {ι' : Type u_17} [Fintype ι'] (b' : Basis ι' R M) (x : M) (i : ι) :
j : ι', (b.repr (b' j)) i * (b'.repr x) j = (b.repr x) i
def Basis.coord {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) :

b.coord i is the linear function giving the i'th coordinate of a vector with respect to the basis b.

b.coord i is an element of the dual space. In particular, for finite-dimensional spaces it is the ιth basis vector of the dual space.

Equations
@[simp]
theorem Basis.coord_apply {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) (a✝ : M) :
(b.coord i) a✝ = (b.repr a✝) i
theorem Basis.forall_coord_eq_zero_iff {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) {x : M} :
(∀ (i : ι), (b.coord i) x = 0) x = 0
noncomputable def Basis.sumCoords {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :

The sum of the coordinates of an element m : M with respect to a basis.

Equations
@[simp]
theorem Basis.coe_sumCoords {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
b.sumCoords = fun (m : M) => (b.repr m).sum fun (x : ι) => id
@[simp]
theorem Basis.coe_sumCoords_of_fintype {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) [Fintype ι] :
b.sumCoords = (∑ i : ι, b.coord i)
@[simp]
theorem Basis.sumCoords_self_apply {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) :
b.sumCoords (b i) = 1
theorem Basis.dvd_coord_smul {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) (m : M) (r : R) :
r (b.coord i) (r m)
theorem Basis.coord_repr_symm {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (i : ι) (f : ι →₀ R) :
(b.coord i) (b.repr.symm f) = f i
theorem Basis.coe_sumCoords_eq_finsum {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) :
b.sumCoords = fun (m : M) => ∑ᶠ (i : ι), (b.coord i) m
@[simp]
theorem Basis.sumCoords_reindex {ι' : Type u_2} {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (e : ι ι') :
theorem Basis.coord_equivFun_symm {ι : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] [Finite ι] (b : Basis ι R M) (i : ι) (f : ιR) :
(b.coord i) (b.equivFun.symm f) = f i