Documentation

Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero

Localizations of commutative monoids with zeroes #

theorem Submonoid.LocalizationMap.toMap_injective_iff {M : Type u_1} {N : Type u_2} [CommMonoid M] {S : Submonoid M} [CommMonoid N] (f : S.LocalizationMap N) :
Function.Injective f.toMap ∀ ⦃x : M⦄, x SIsLeftRegular x

If S contains 0 then the localization at S is trivial.

structure Submonoid.LocalizationWithZeroMap {M : Type u_1} [CommMonoidWithZero M] (S : Submonoid M) (N : Type u_2) [CommMonoidWithZero N] extends S.LocalizationMap N :
Type (max u_1 u_2)

The type of homomorphisms between monoids with zero satisfying the characteristic predicate: if f : M →*₀ N satisfies this predicate, then N is isomorphic to the localization of M at S.

The monoid with zero hom underlying a LocalizationMap.

Equations
theorem Localization.mk_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} (x : S) :
mk 0 x = 0
theorem Localization.liftOn_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {p : Type u_4} (f : MSp) (H : ∀ {a c : M} {b d : S}, (r S) (a, b) (c, d)f a b = f c d) :
liftOn 0 f H = f 0 1
@[simp]
noncomputable def Submonoid.LocalizationWithZeroMap.lift {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationWithZeroMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) :

Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M and a map of CommMonoidWithZeros g : M →*₀ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

Equations
  • f.lift g hg = { toFun := (↑(f.lift hg)).toFun, map_zero' := , map_one' := , map_mul' := }
theorem Submonoid.LocalizationWithZeroMap.lift_def {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationWithZeroMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) :
(f.lift g hg) = (f.lift hg)
theorem Submonoid.LocalizationWithZeroMap.lift_apply {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationWithZeroMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) (x : N) :
(f.lift g hg) x = g (f.sec x).1 * ((IsUnit.liftRight ((↑g).restrict S) hg) (f.sec x).2)⁻¹

Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is left cancellative monoid with zero, and all elements of S are left regular, then N is a left cancellative monoid with zero.

Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is a cancellative monoid with zero, and all elements of S are regular, then N is a cancellative monoid with zero.