Documentation

Mathlib.Data.Nat.PrimeFin

Prime numbers #

This file contains some results about prime numbers which depend on finiteness of sets.

The prime factors of a natural number as a finset.

Equations
@[simp]
theorem Nat.mem_primeFactors {n p : } :
theorem Nat.primeFactors_mono {m n : } (hmn : m n) (hn : n 0) :
theorem Nat.dvd_of_mem_primeFactors {n p : } (hp : p n.primeFactors) :
p n
theorem Nat.pos_of_mem_primeFactors {n p : } (hp : p n.primeFactors) :
0 < p
@[simp]
@[simp]
theorem Nat.Prime.primeFactors {p : } (hp : Prime p) :
theorem Nat.primeFactors_mul {a b : } (ha : a 0) (hb : b 0) :
theorem Nat.primeFactors_gcd {a b : } (ha : a 0) (hb : b 0) :
@[simp]
theorem Nat.disjoint_primeFactors {a b : } (ha : a 0) (hb : b 0) :
theorem Nat.primeFactors_pow {k : } (n : ) (hk : k 0) :
theorem Nat.primeFactors_prime_pow {k p : } (hk : k 0) (hp : Prime p) :

The only prime divisor of positive prime power p^k is p itself