Documentation

Mathlib.Data.Multiset.Sum

Disjoint sum of multisets #

This file defines the disjoint sum of two multisets as Multiset (α ⊕ β). Beware not to confuse with the Multiset.sum operation which computes the additive sum.

Main declarations #

def Multiset.disjSum {α : Type u_1} {β : Type u_2} (s : Multiset α) (t : Multiset β) :
Multiset (α β)

Disjoint sum of multisets.

Equations
@[simp]
theorem Multiset.zero_disjSum {α : Type u_1} {β : Type u_2} (t : Multiset β) :
@[simp]
theorem Multiset.disjSum_zero {α : Type u_1} {β : Type u_2} (s : Multiset α) :
@[simp]
theorem Multiset.card_disjSum {α : Type u_1} {β : Type u_2} (s : Multiset α) (t : Multiset β) :
(s.disjSum t).card = s.card + t.card
theorem Multiset.mem_disjSum {α : Type u_1} {β : Type u_2} {s : Multiset α} {t : Multiset β} {x : α β} :
x s.disjSum t (∃ as, Sum.inl a = x) bt, Sum.inr b = x
@[simp]
theorem Multiset.inl_mem_disjSum {α : Type u_1} {β : Type u_2} {s : Multiset α} {t : Multiset β} {a : α} :
@[simp]
theorem Multiset.inr_mem_disjSum {α : Type u_1} {β : Type u_2} {s : Multiset α} {t : Multiset β} {b : β} :
theorem Multiset.disjSum_mono {α : Type u_1} {β : Type u_2} {s₁ s₂ : Multiset α} {t₁ t₂ : Multiset β} (hs : s₁ s₂) (ht : t₁ t₂) :
s₁.disjSum t₁ s₂.disjSum t₂
theorem Multiset.disjSum_mono_left {α : Type u_1} {β : Type u_2} (t : Multiset β) :
Monotone fun (s : Multiset α) => s.disjSum t
theorem Multiset.disjSum_mono_right {α : Type u_1} {β : Type u_2} (s : Multiset α) :
theorem Multiset.disjSum_lt_disjSum_of_lt_of_le {α : Type u_1} {β : Type u_2} {s₁ s₂ : Multiset α} {t₁ t₂ : Multiset β} (hs : s₁ < s₂) (ht : t₁ t₂) :
s₁.disjSum t₁ < s₂.disjSum t₂
theorem Multiset.disjSum_lt_disjSum_of_le_of_lt {α : Type u_1} {β : Type u_2} {s₁ s₂ : Multiset α} {t₁ t₂ : Multiset β} (hs : s₁ s₂) (ht : t₁ < t₂) :
s₁.disjSum t₁ < s₂.disjSum t₂
theorem Multiset.disjSum_strictMono_left {α : Type u_1} {β : Type u_2} (t : Multiset β) :
StrictMono fun (s : Multiset α) => s.disjSum t
theorem Multiset.Nodup.disjSum {α : Type u_1} {β : Type u_2} {s : Multiset α} {t : Multiset β} (hs : s.Nodup) (ht : t.Nodup) :
theorem Multiset.map_disjSum {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Multiset α} {t : Multiset β} (f : α βγ) :
map f (s.disjSum t) = map (fun (x : α) => f (Sum.inl x)) s + map (fun (x : β) => f (Sum.inr x)) t