Algebraic structures on unit balls and spheres #
In this file we define algebraic structures (Semigroup
, CommSemigroup
, Monoid
, CommMonoid
,
Group
, CommGroup
) on Metric.ball (0 : ๐) 1
, Metric.closedBall (0 : ๐) 1
, and
Metric.sphere (0 : ๐) 1
. In each case we use the weakest possible typeclass assumption on ๐
,
from NonUnitalSeminormedRing
to NormedField
.
Algebraic structures on Metric.ball 0 1
#
Unit ball in a non-unital seminormed ring as a bundled Subsemigroup
.
Equations
- Subsemigroup.unitBall ๐ = { carrier := Metric.ball 0 1, mul_mem' := โฏ }
Instances For
Equations
Equations
Alias of Metric.unitBall.coe_mul
.
Equations
- Metric.unitBall.instZero = { zero := โจ0, โฏโฉ }
Equations
- Metric.unitBall.instSemigroupWithZero = { toSemigroup := Metric.unitBall.instSemigroup, toZero := Metric.unitBall.instZero, zero_mul := โฏ, mul_zero := โฏ }
Algebraic instances for Metric.closedBall 0 1
#
Closed unit ball in a non-unital seminormed ring as a bundled Subsemigroup
.
Equations
- Subsemigroup.unitClosedBall ๐ = { carrier := Metric.closedBall 0 1, mul_mem' := โฏ }
Instances For
Equations
Alias of Metric.unitClosedBall.coe_mul
.
Equations
- Metric.unitClosedBall.instZero = { zero := โจ0, โฏโฉ }
Equations
- Metric.unitClosedBall.instSemigroupWithZero = { toSemigroup := Metric.unitClosedBall.instSemigroup, toZero := Metric.unitClosedBall.instZero, zero_mul := โฏ, mul_zero := โฏ }
Closed unit ball in a seminormed ring as a bundled Submonoid
.
Equations
- Submonoid.unitClosedBall ๐ = { carrier := Metric.closedBall 0 1, mul_mem' := โฏ, one_mem' := โฏ }
Instances For
Alias of Metric.unitClosedBall.coe_one
.
Alias of Metric.unitClosedBall.coe_pow
.
Equations
- Metric.unitClosedBall.instMonoidWithZero = { toMonoid := Metric.unitClosedBall.instMonoid, toZero := SemigroupWithZero.toZero, zero_mul := โฏ, mul_zero := โฏ }
Equations
- Metric.unitClosedBall.instCancelMonoidWithZero = { toMonoidWithZero := Metric.unitClosedBall.instMonoidWithZero, toIsCancelMulZero := โฏ }
Algebraic instances on the unit sphere #
Unit sphere in a seminormed ring (with strictly multiplicative norm) as a bundled
Submonoid
.
Equations
- Submonoid.unitSphere ๐ = { carrier := Metric.sphere 0 1, mul_mem' := โฏ, one_mem' := โฏ }
Instances For
Equations
- Metric.unitSphere.instInv = { inv := fun (x : โ(Metric.sphere 0 1)) => โจ(โx)โปยน, โฏโฉ }
Alias of Metric.unitSphere.coe_inv
.
Equations
- Metric.unitSphere.instDiv = { div := fun (x y : โ(Metric.sphere 0 1)) => โจโx / โy, โฏโฉ }
Alias of Metric.unitSphere.coe_div
.
Equations
- Metric.unitSphere.instZPow = { pow := fun (x : โ(Metric.sphere 0 1)) (n : โค) => โจโx ^ n, โฏโฉ }
Alias of Metric.unitSphere.coe_zpow
.
Equations
Alias of Metric.unitSphere.coe_one
.
Alias of Metric.unitSphere.coe_mul
.
Alias of Metric.unitSphere.coe_pow
.
Monoid homomorphism from the unit sphere in a normed division ring to the group of units.
Equations
- unitSphereToUnits ๐ = Units.liftRight (Submonoid.unitSphere ๐).subtype (fun (x : โ(Metric.sphere 0 1)) => Units.mk0 โx โฏ) โฏ
Instances For
Equations
- Metric.unitSphere.instGroup = Function.Injective.group โ(unitSphereToUnits ๐) โฏ โฏ โฏ โฏ โฏ โฏ โฏ
Equations
Equations
- Metric.sphere.instCommGroup = { toGroup := Metric.unitSphere.instGroup, mul_comm := โฏ }