Documentation

Mathlib.Analysis.Analytic.OfScalars

Scalar series #

This file contains API for analytic functions ∑ cᵢ • xⁱ defined in terms of scalars c₀, c₁, c₂, ….

Main definitions / results: #

def FormalMultilinearSeries.ofScalars {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) :

Formal power series of ∑ cᵢ • xⁱ for some scalar field 𝕜 and ring algebra E

Equations
@[simp]
theorem FormalMultilinearSeries.ofScalars_eq_zero {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] {c : 𝕜} [Nontrivial E] (n : ) :
ofScalars E c n = 0 c n = 0
@[simp]
theorem FormalMultilinearSeries.ofScalars_eq_zero_of_scalar_zero {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] {c : 𝕜} {n : } (hc : c n = 0) :
ofScalars E c n = 0
@[simp]
theorem FormalMultilinearSeries.ofScalars_series_eq_zero {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] {c : 𝕜} [Nontrivial E] :
ofScalars E c = 0 c = 0
@[simp]
theorem FormalMultilinearSeries.ofScalars_series_of_subsingleton {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] {c : 𝕜} [Subsingleton E] :
ofScalars E c = 0
@[simp]
theorem FormalMultilinearSeries.ofScalars_series_eq_iff {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) [Nontrivial E] (c' : 𝕜) :
ofScalars E c = ofScalars E c' c = c'
theorem FormalMultilinearSeries.ofScalars_apply_zero {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (n : ) :
((ofScalars E c n) fun (x : Fin n) => 0) = Pi.single 0 (c 0 1) n
@[simp]
theorem FormalMultilinearSeries.coeff_ofScalars {𝕜 : Type u_3} [NontriviallyNormedField 𝕜] {p : 𝕜} {n : } :
(ofScalars 𝕜 p).coeff n = p n
theorem FormalMultilinearSeries.ofScalars_add {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c c' : 𝕜) :
ofScalars E (c + c') = ofScalars E c + ofScalars E c'
theorem FormalMultilinearSeries.ofScalars_smul {𝕜 : Type u_1} (E : Type u_2) [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (x : 𝕜) :
ofScalars E (x c) = x ofScalars E c

The submodule generated by scalar series on FormalMultilinearSeries 𝕜 E E.

Equations
  • One or more equations did not get rendered due to their size.
theorem FormalMultilinearSeries.ofScalars_apply_eq {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (x : E) (n : ) :
((ofScalars E c n) fun (x_1 : Fin n) => x) = c n x ^ n
theorem FormalMultilinearSeries.ofScalars_apply_eq' {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (x : E) :
(fun (n : ) => (ofScalars E c n) fun (x_1 : Fin n) => x) = fun (n : ) => c n x ^ n

This naming follows the convention of NormedSpace.expSeries_apply_eq'.

noncomputable def FormalMultilinearSeries.ofScalarsSum {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (x : E) :
E

The sum of the formal power series. Takes the value 0 outside the radius of convergence.

Equations
theorem FormalMultilinearSeries.ofScalars_sum_eq {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) (x : E) :
ofScalarsSum c x = ∑' (n : ), c n x ^ n
theorem FormalMultilinearSeries.ofScalarsSum_eq_tsum {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) :
ofScalarsSum c = fun (x : E) => ∑' (n : ), c n x ^ n
@[simp]
theorem FormalMultilinearSeries.ofScalarsSum_zero {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) :
ofScalarsSum c 0 = c 0 1
@[simp]
theorem FormalMultilinearSeries.ofScalarsSum_of_subsingleton {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) [Subsingleton E] {x : E} :
@[simp]
theorem FormalMultilinearSeries.ofScalarsSum_op {𝕜 : Type u_1} {E : Type u_2} [Field 𝕜] [Ring E] [Algebra 𝕜 E] [TopologicalSpace E] [IsTopologicalRing E] (c : 𝕜) [T2Space E] (x : E) :
@[simp]
theorem FormalMultilinearSeries.ofScalars_norm_le {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [SeminormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) (n : ) (hn : n > 0) :
@[simp]
theorem FormalMultilinearSeries.ofScalars_norm {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [SeminormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) (n : ) [NormOneClass E] :
theorem FormalMultilinearSeries.ofScalars_radius_ge_inv_of_tendsto {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [NormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) {r : NNReal} (hr : r 0) (hc : Filter.Tendsto (fun (n : ) => c n.succ / c n) Filter.atTop (nhds r)) :
theorem FormalMultilinearSeries.ofScalars_radius_eq_inv_of_tendsto {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [NormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) [NormOneClass E] {r : NNReal} (hr : r 0) (hc : Filter.Tendsto (fun (n : ) => c n.succ / c n) Filter.atTop (nhds r)) :

The radius of convergence of a scalar series is the inverse of the non-zero limit fun n ↦ ‖c n.succ‖ / ‖c n‖.

theorem FormalMultilinearSeries.ofScalars_radius_eq_of_tendsto {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [NormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) [NormOneClass E] {r : NNReal} (hr : r 0) (hc : Filter.Tendsto (fun (n : ) => c n / c n.succ) Filter.atTop (nhds r)) :
(ofScalars E c).radius = r

A convenience lemma restating the result of ofScalars_radius_eq_inv_of_tendsto under the inverse ratio.

theorem FormalMultilinearSeries.ofScalars_radius_eq_top_of_tendsto {𝕜 : Type u_1} (E : Type u_2) [NontriviallyNormedField 𝕜] [NormedRing E] [NormedAlgebra 𝕜 E] (c : 𝕜) (hc : ∀ᶠ (n : ) in Filter.atTop, c n 0) (hc' : Filter.Tendsto (fun (n : ) => c n.succ / c n) Filter.atTop (nhds 0)) :

The ratio test stating that if ‖c n.succ‖ / ‖c n‖ tends to zero, the radius is unbounded. This requires that the coefficients are eventually non-zero as ‖c n.succ‖ / 0 = 0 by convention.

If ‖c n.succ‖ / ‖c n‖ is unbounded, then the radius of convergence is zero.

This theorem combines the results of the special cases above, using ENNReal division to remove the requirement that the ratio is eventually non-zero.