Documentation

Mathlib.Analysis.Analytic.Linear

Linear functions are analytic #

In this file we prove that a ContinuousLinearMap defines an analytic function with the formal power series f x = f a + f (x - a). We also prove similar results for bilinear maps.

We deduce this fact from the stronger result that continuous linear maps are continuously polynomial, i.e., they admit a finite power series.

@[simp]
theorem ContinuousLinearMap.fpowerSeries_radius {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
theorem ContinuousLinearMap.hasFiniteFPowerSeriesOnBall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
theorem ContinuousLinearMap.hasFPowerSeriesOnBall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
theorem ContinuousLinearMap.hasFPowerSeriesAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
HasFPowerSeriesAt (โ‡‘f) (f.fpowerSeries x) x
theorem ContinuousLinearMap.cpolynomialAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
CPolynomialAt ๐•œ (โ‡‘f) x
theorem ContinuousLinearMap.analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : E) :
AnalyticAt ๐•œ (โ‡‘f) x
theorem ContinuousLinearMap.cpolynomialOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
CPolynomialOn ๐•œ (โ‡‘f) s
@[deprecated ContinuousLinearMap.cpolynomialOn (since := "2025-03-22")]
theorem ContinuousLinearMap.colynomialOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
CPolynomialOn ๐•œ (โ‡‘f) s

Alias of ContinuousLinearMap.cpolynomialOn.

theorem ContinuousLinearMap.analyticOnNhd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
AnalyticOnNhd ๐•œ (โ‡‘f) s
theorem ContinuousLinearMap.analyticWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) (x : E) :
AnalyticWithinAt ๐•œ (โ‡‘f) s x
theorem ContinuousLinearMap.analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
AnalyticOn ๐•œ (โ‡‘f) s
def ContinuousLinearMap.uncurryBilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) :
ContinuousMultilinearMap ๐•œ (fun (i : Fin 2) => E ร— F) G

Reinterpret a bilinear map f : E โ†’L[๐•œ] F โ†’L[๐•œ] G as a multilinear map (E ร— F) [ร—2]โ†’L[๐•œ] G. This multilinear map is the second term in the formal multilinear series expansion of uncurry f. It is given by f.uncurryBilinear ![(x, y), (x', y')] = f x y'.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem ContinuousLinearMap.uncurryBilinear_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (m : Fin 2 โ†’ E ร— F) :
f.uncurryBilinear m = (f (m 0).1) (m 1).2
def ContinuousLinearMap.fpowerSeriesBilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
FormalMultilinearSeries ๐•œ (E ร— F) G

Formal multilinear series expansion of a bilinear function f : E โ†’L[๐•œ] F โ†’L[๐•œ] G.

Equations
@[simp]
theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_zero {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
@[simp]
theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_one {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
@[simp]
theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_two {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
@[simp]
theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) (n : โ„•) :
@[simp]
theorem ContinuousLinearMap.fpowerSeriesBilinear_radius {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
theorem ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
HasFPowerSeriesOnBall (fun (x : E ร— F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x โŠค
theorem ContinuousLinearMap.hasFPowerSeriesAt_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
HasFPowerSeriesAt (fun (x : E ร— F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x
theorem ContinuousLinearMap.analyticAt_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (x : E ร— F) :
AnalyticAt ๐•œ (fun (x : E ร— F) => (f x.1) x.2) x
theorem ContinuousLinearMap.analyticWithinAt_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (s : Set (E ร— F)) (x : E ร— F) :
AnalyticWithinAt ๐•œ (fun (x : E ร— F) => (f x.1) x.2) s x
theorem ContinuousLinearMap.analyticOnNhd_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (s : Set (E ร— F)) :
AnalyticOnNhd ๐•œ (fun (x : E ร— F) => (f x.1) x.2) s
theorem ContinuousLinearMap.analyticOn_bilinear {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E โ†’L[๐•œ] F โ†’L[๐•œ] G) (s : Set (E ร— F)) :
AnalyticOn ๐•œ (fun (x : E ร— F) => (f x.1) x.2) s
theorem analyticAt_id {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {z : E} :
AnalyticAt ๐•œ id z
theorem analyticWithinAt_id {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} {z : E} :
AnalyticWithinAt ๐•œ id s z
theorem analyticOnNhd_id {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} :
AnalyticOnNhd ๐•œ (fun (x : E) => x) s

id is entire

theorem analyticOn_id {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} :
AnalyticOn ๐•œ (fun (x : E) => x) s
theorem analyticAt_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : E ร— F} :
AnalyticAt ๐•œ (fun (p : E ร— F) => p.1) p

fst is analytic

theorem analyticWithinAt_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} {p : E ร— F} :
AnalyticWithinAt ๐•œ (fun (p : E ร— F) => p.1) t p
theorem analyticAt_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : E ร— F} :
AnalyticAt ๐•œ (fun (p : E ร— F) => p.2) p

snd is analytic

theorem analyticWithinAt_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} {p : E ร— F} :
AnalyticWithinAt ๐•œ (fun (p : E ร— F) => p.2) t p
theorem analyticOnNhd_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} :
AnalyticOnNhd ๐•œ (fun (p : E ร— F) => p.1) t

fst is entire

theorem analyticOn_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} :
AnalyticOn ๐•œ (fun (p : E ร— F) => p.1) t
theorem analyticOnNhd_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} :
AnalyticOnNhd ๐•œ (fun (p : E ร— F) => p.2) t

snd is entire

theorem analyticOn_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {t : Set (E ร— F)} :
AnalyticOn ๐•œ (fun (p : E ร— F) => p.2) t
theorem ContinuousLinearEquiv.analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒL[๐•œ] F) (x : E) :
AnalyticAt ๐•œ (โ‡‘f) x
theorem ContinuousLinearEquiv.analyticOnNhd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒL[๐•œ] F) (s : Set E) :
AnalyticOnNhd ๐•œ (โ‡‘f) s
theorem ContinuousLinearEquiv.analyticWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) (x : E) :
AnalyticWithinAt ๐•œ (โ‡‘f) s x
theorem ContinuousLinearEquiv.analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
AnalyticOn ๐•œ (โ‡‘f) s
theorem LinearIsometryEquiv.analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (x : E) :
AnalyticAt ๐•œ (โ‡‘f) x
theorem LinearIsometryEquiv.analyticOnNhd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (s : Set E) :
AnalyticOnNhd ๐•œ (โ‡‘f) s
theorem LinearIsometryEquiv.analyticWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) (x : E) :
AnalyticWithinAt ๐•œ (โ‡‘f) s x
theorem LinearIsometryEquiv.analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (s : Set E) :
AnalyticOn ๐•œ (โ‡‘f) s