Documentation

Mathlib.Algebra.Star.StarAlgHom

Morphisms of star algebras #

This file defines morphisms between R-algebras (unital or non-unital) A and B where both A and B are equipped with a star operation. These morphisms, namely StarAlgHom and NonUnitalStarAlgHom are direct extensions of their non-starred counterparts with a field map_star which guarantees they preserve the star operation. We keep the type classes as generic as possible, in keeping with the definition of NonUnitalAlgHom in the non-unital case. In this file, we only assume Star unless we want to talk about the zero map as a NonUnitalStarAlgHom, in which case we need StarAddMonoid. Note that the scalar ring R is not required to have a star operation, nor do we need StarRing or StarModule structures on A and B.

As with NonUnitalAlgHom, in the non-unital case the multiplications are not assumed to be associative or unital, or even to be compatible with the scalar actions. In a typical application, the operations will satisfy compatibility conditions making them into algebras (albeit possibly non-associative and/or non-unital) but such conditions are not required here for the definitions.

The primary impetus for defining these types is that they constitute the morphisms in the categories of unital C⋆-algebras (with StarAlgHoms) and of C⋆-algebras (with NonUnitalStarAlgHoms).

Main definitions #

Tags #

non-unital, algebra, morphism, star

Non-unital star algebra homomorphisms #

structure NonUnitalStarAlgHom (R : Type u_1) (A : Type u_2) (B : Type u_3) [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] extends A →ₙₐ[R] B :
Type (max u_2 u_3)

A non-unital ⋆-algebra homomorphism is a non-unital algebra homomorphism between non-unital R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

A non-unital ⋆-algebra homomorphism is a non-unital algebra homomorphism between non-unital R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

Equations

A non-unital ⋆-algebra homomorphism is a non-unital algebra homomorphism between non-unital R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

Equations
  • One or more equations did not get rendered due to their size.

Turn an element of a type F satisfying NonUnitalAlgHomClass F R A B and StarHomClass F A B into an actual NonUnitalStarAlgHom. This is declared as the default coercion from F to A →⋆ₙₐ[R] B.

Equations
Equations

See Note [custom simps projection]

Equations
@[simp]
theorem NonUnitalStarAlgHom.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] {F : Type u_6} [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) :
f = f
theorem NonUnitalStarAlgHom.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] {f g : A →⋆ₙₐ[R] B} (h : ∀ (x : A), f x = g x) :
f = g
theorem NonUnitalStarAlgHom.ext_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] {f g : A →⋆ₙₐ[R] B} :
f = g ∀ (x : A), f x = g x
def NonUnitalStarAlgHom.copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : A →⋆ₙₐ[R] B) (f' : AB) (h : f' = f) :

Copy of a NonUnitalStarAlgHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', map_smul' := , map_zero' := , map_add' := , map_mul' := , map_star' := }
@[simp]
theorem NonUnitalStarAlgHom.coe_copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : A →⋆ₙₐ[R] B) (f' : AB) (h : f' = f) :
(f.copy f' h) = f'
theorem NonUnitalStarAlgHom.copy_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : A →⋆ₙₐ[R] B) (f' : AB) (h : f' = f) :
f.copy f' h = f
@[simp]
theorem NonUnitalStarAlgHom.coe_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : AB) (h₁ : ∀ (m : R) (x : A), f (m x) = (MonoidHom.id R) m f x) (h₂ : { toFun := f, map_smul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : A), { toFun := f, map_smul' := h₁ }.toFun (x + y) = { toFun := f, map_smul' := h₁ }.toFun x + { toFun := f, map_smul' := h₁ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun (x * y) = { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun x * { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄ }.toFun (star a) = star ({ toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄ }.toFun a)) :
{ toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄, map_star' := h₅ } = f
@[simp]
theorem NonUnitalStarAlgHom.coe_mk' {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : A →ₙₐ[R] B) (h : ∀ (a : A), f.toFun (star a) = star (f.toFun a)) :
{ toNonUnitalAlgHom := f, map_star' := h } = f
@[simp]
theorem NonUnitalStarAlgHom.mk_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (f : A →⋆ₙₐ[R] B) (h₁ : ∀ (m : R) (x : A), f (m x) = (MonoidHom.id R) m f x) (h₂ : { toFun := f, map_smul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : A), { toFun := f, map_smul' := h₁ }.toFun (x + y) = { toFun := f, map_smul' := h₁ }.toFun x + { toFun := f, map_smul' := h₁ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun (x * y) = { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun x * { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄ }.toFun (star a) = star ({ toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄ }.toFun a)) :
{ toFun := f, map_smul' := h₁, map_zero' := h₂, map_add' := h₃, map_mul' := h₄, map_star' := h₅ } = f

The identity as a non-unital ⋆-algebra homomorphism.

Equations

The composition of non-unital ⋆-algebra homomorphisms, as a non-unital ⋆-algebra homomorphism.

Equations
@[simp]
theorem NonUnitalStarAlgHom.coe_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : B →⋆ₙₐ[R] C) (g : A →⋆ₙₐ[R] B) :
(f.comp g) = f g
@[simp]
theorem NonUnitalStarAlgHom.comp_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : B →⋆ₙₐ[R] C) (g : A →⋆ₙₐ[R] B) (a : A) :
(f.comp g) a = f (g a)
@[simp]
Equations
@[simp]
theorem NonUnitalStarAlgHom.coe_one {R : Type u_1} {A : Type u_2} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] :
1 = id
theorem NonUnitalStarAlgHom.one_apply {R : Type u_1} {A : Type u_2} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] (a : A) :
1 a = a
Equations

If a monoid R acts on another monoid S, then a non-unital star algebra homomorphism over S can be viewed as a non-unital star algebra homomorphism over R.

Equations
@[simp]

Unital star algebra homomorphisms #

structure StarAlgHom (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] extends A →ₐ[R] B :
Type (max u_2 u_3)

A ⋆-algebra homomorphism is an algebra homomorphism between R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

A ⋆-algebra homomorphism is an algebra homomorphism between R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

Equations

A ⋆-algebra homomorphism is an algebra homomorphism between R-algebras A and B equipped with a star operation, and this homomorphism is also star-preserving.

Equations
  • One or more equations did not get rendered due to their size.
def StarAlgHomClass.toStarAlgHom {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f : F) :

Turn an element of a type F satisfying AlgHomClass F R A B and StarHomClass F A B into an actual StarAlgHom. This is declared as the default coercion from F to A →⋆ₐ[R] B.

Equations
  • f = { toAlgHom := f, map_star' := }
instance StarAlgHomClass.instCoeTCStarAlgHom {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] :
Equations
instance StarAlgHom.instFunLike {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :
FunLike (A →⋆ₐ[R] B) A B
Equations
instance StarAlgHom.instAlgHomClass {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :
instance StarAlgHom.instStarHomClass {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :
@[simp]
theorem StarAlgHom.coe_coe {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] {F : Type u_7} [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f : F) :
f = f
def StarAlgHom.Simps.apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) :
AB

See Note [custom simps projection]

Equations
@[simp]
theorem StarAlgHom.coe_toAlgHom {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] {f : A →⋆ₐ[R] B} :
f.toAlgHom = f
theorem StarAlgHom.ext {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] {f g : A →⋆ₐ[R] B} (h : ∀ (x : A), f x = g x) :
f = g
theorem StarAlgHom.ext_iff {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] {f g : A →⋆ₐ[R] B} :
f = g ∀ (x : A), f x = g x
def StarAlgHom.copy {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) (f' : AB) (h : f' = f) :

Copy of a StarAlgHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := , map_star' := }
@[simp]
theorem StarAlgHom.coe_copy {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) (f' : AB) (h : f' = f) :
(f.copy f' h) = f'
theorem StarAlgHom.copy_eq {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) (f' : AB) (h : f' = f) :
f.copy f' h = f
@[simp]
theorem StarAlgHom.coe_mk {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : AB) (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun 0 = 0) (h₄ : ∀ (x y : A), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun (x + y) = (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun x + (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun y) (h₅ : ∀ (r : R), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄ }).toFun ((algebraMap R A) r) = (algebraMap R B) r) (h₆ : ∀ (x : A), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅ }.toRingHom).toFun (star x) = star ((↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅ }.toRingHom).toFun x)) :
{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅, map_star' := h₆ } = f
@[simp]
theorem StarAlgHom.coe_mk' {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →ₐ[R] B) (h : ∀ (x : A), (↑f.toRingHom).toFun (star x) = star ((↑f.toRingHom).toFun x)) :
{ toAlgHom := f, map_star' := h } = f
@[simp]
theorem StarAlgHom.mk_coe {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun 0 = 0) (h₄ : ∀ (x y : A), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun (x + y) = (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun x + (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun y) (h₅ : ∀ (r : R), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄ }).toFun ((algebraMap R A) r) = (algebraMap R B) r) (h₆ : ∀ (x : A), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅ }.toRingHom).toFun (star x) = star ((↑{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅ }.toRingHom).toFun x)) :
{ toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄, commutes' := h₅, map_star' := h₆ } = f
def StarAlgHom.id (R : Type u_2) (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] :

The identity as a StarAlgHom.

Equations
@[simp]
theorem StarAlgHom.coe_id (R : Type u_2) (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] :
(StarAlgHom.id R A) = id
def StarAlgHom.ofId (R : Type u_7) (A : Type u_8) [CommSemiring R] [StarRing R] [Semiring A] [StarMul A] [Algebra R A] [StarModule R A] :

algebraMap R A as a StarAlgHom when A is a star algebra over R.

Equations
  • StarAlgHom.ofId R A = { toFun := (algebraMap R A), map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := , map_star' := }
@[simp]
theorem StarAlgHom.ofId_apply (R : Type u_7) (A : Type u_8) [CommSemiring R] [StarRing R] [Semiring A] [StarMul A] [Algebra R A] [StarModule R A] (a : R) :
(ofId R A) a = (algebraMap R A) a
instance StarAlgHom.instInhabited {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] :
Equations
def StarAlgHom.comp {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : B →⋆ₐ[R] C) (g : A →⋆ₐ[R] B) :

The composition of ⋆-algebra homomorphisms, as a ⋆-algebra homomorphism.

Equations
@[simp]
theorem StarAlgHom.coe_comp {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : B →⋆ₐ[R] C) (g : A →⋆ₐ[R] B) :
(f.comp g) = f g
@[simp]
theorem StarAlgHom.comp_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : B →⋆ₐ[R] C) (g : A →⋆ₐ[R] B) (a : A) :
(f.comp g) a = f (g a)
@[simp]
theorem StarAlgHom.comp_assoc {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] [Semiring D] [Algebra R D] [Star D] (f : C →⋆ₐ[R] D) (g : B →⋆ₐ[R] C) (h : A →⋆ₐ[R] B) :
(f.comp g).comp h = f.comp (g.comp h)
@[simp]
theorem StarAlgHom.id_comp {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) :
(StarAlgHom.id R B).comp f = f
@[simp]
theorem StarAlgHom.comp_id {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) :
f.comp (StarAlgHom.id R A) = f
instance StarAlgHom.instMonoid {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] :
Equations
def StarAlgHom.toNonUnitalStarAlgHom {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) :

A unital morphism of ⋆-algebras is a NonUnitalStarAlgHom.

Equations
@[simp]
theorem StarAlgHom.coe_toNonUnitalStarAlgHom {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (f : A →⋆ₐ[R] B) :

Operations on the product type #

Note that this is copied from Algebra.Hom.NonUnitalAlg.

The first projection of a product is a non-unital ⋆-algebra homomorphism.

Equations
@[simp]
theorem NonUnitalStarAlgHom.fst_apply (R : Type u_1) (A : Type u_2) (B : Type u_3) [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (self : A × B) :
(fst R A B) self = self.1

The second projection of a product is a non-unital ⋆-algebra homomorphism.

Equations
@[simp]
theorem NonUnitalStarAlgHom.snd_apply (R : Type u_1) (A : Type u_2) (B : Type u_3) [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] (self : A × B) :
(snd R A B) self = self.2

The Pi.prod of two morphisms is a morphism.

Equations
@[simp]
theorem NonUnitalStarAlgHom.prod_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : A →⋆ₙₐ[R] B) (g : A →⋆ₙₐ[R] C) (i : A) :
(f.prod g) i = (f i, g i)
theorem NonUnitalStarAlgHom.coe_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : A →⋆ₙₐ[R] B) (g : A →⋆ₙₐ[R] C) :
(f.prod g) = Pi.prod f g
@[simp]
theorem NonUnitalStarAlgHom.fst_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : A →⋆ₙₐ[R] B) (g : A →⋆ₙₐ[R] C) :
(fst R B C).comp (f.prod g) = f
@[simp]
theorem NonUnitalStarAlgHom.snd_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] (f : A →⋆ₙₐ[R] B) (g : A →⋆ₙₐ[R] C) :
(snd R B C).comp (f.prod g) = g
@[simp]
theorem NonUnitalStarAlgHom.prod_fst_snd {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] :
(fst R A B).prod (snd R A B) = 1

Taking the product of two maps with the same domain is equivalent to taking the product of their codomains.

Equations
  • One or more equations did not get rendered due to their size.
def Pi.evalNonUnitalStarAlgHom {ι : Type u_1} (R : Type u_2) (A : ιType u_3) (j : ι) [Monoid R] [(i : ι) → NonUnitalNonAssocSemiring (A i)] [(i : ι) → DistribMulAction R (A i)] [(i : ι) → Star (A i)] :
((i : ι) → A i) →⋆ₙₐ[R] A j

Function.eval as a NonUnitalStarAlgHom.

Equations
@[simp]
theorem Pi.evalNonUnitalStarAlgHom_apply {ι : Type u_1} (R : Type u_2) (A : ιType u_3) (j : ι) [Monoid R] [(i : ι) → NonUnitalNonAssocSemiring (A i)] [(i : ι) → DistribMulAction R (A i)] [(i : ι) → Star (A i)] (a✝ : (i : ι) → A i) :
(evalNonUnitalStarAlgHom R A j) a✝ = (evalMulHom A j).toFun a✝
def Pi.evalStarAlgHom {ι : Type u_1} (R : Type u_2) (A : ιType u_3) (j : ι) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] [(i : ι) → Star (A i)] :
((i : ι) → A i) →⋆ₐ[R] A j

Function.eval as a StarAlgHom.

Equations
@[simp]
theorem Pi.evalStarAlgHom_apply {ι : Type u_1} (R : Type u_2) (A : ιType u_3) (j : ι) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] [(i : ι) → Star (A i)] (a✝ : (i : ι) → A i) :
(evalStarAlgHom R A j) a✝ = (evalNonUnitalStarAlgHom R A j).toFun a✝

The left injection into a product is a non-unital algebra homomorphism.

Equations

The right injection into a product is a non-unital algebra homomorphism.

Equations
@[simp]
theorem NonUnitalStarAlgHom.coe_inl {R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [StarAddMonoid A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [StarAddMonoid B] :
(inl R A B) = fun (x : A) => (x, 0)
def StarAlgHom.fst (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :

The first projection of a product is a ⋆-algebra homomorphism.

Equations
@[simp]
theorem StarAlgHom.fst_apply (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (self : A × B) :
(fst R A B) self = self.1
def StarAlgHom.snd (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :

The second projection of a product is a ⋆-algebra homomorphism.

Equations
@[simp]
theorem StarAlgHom.snd_apply (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] (self : A × B) :
(snd R A B) self = self.2
def StarAlgHom.prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B) (g : A →⋆ₐ[R] C) :

The Pi.prod of two morphisms is a morphism.

Equations
@[simp]
theorem StarAlgHom.prod_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B) (g : A →⋆ₐ[R] C) (x : A) :
(f.prod g) x = (f x, g x)
theorem StarAlgHom.coe_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B) (g : A →⋆ₐ[R] C) :
(f.prod g) = Pi.prod f g
@[simp]
theorem StarAlgHom.fst_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B) (g : A →⋆ₐ[R] C) :
(fst R B C).comp (f.prod g) = f
@[simp]
theorem StarAlgHom.snd_prod {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B) (g : A →⋆ₐ[R] C) :
(snd R B C).comp (f.prod g) = g
@[simp]
theorem StarAlgHom.prod_fst_snd {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] :
(fst R A B).prod (snd R A B) = 1
def StarAlgHom.prodEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] :
(A →⋆ₐ[R] B) × (A →⋆ₐ[R] C) (A →⋆ₐ[R] B × C)

Taking the product of two maps with the same domain is equivalent to taking the product of their codomains.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem StarAlgHom.prodEquiv_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C)) :
prodEquiv f = f.1.prod f.2
@[simp]
theorem StarAlgHom.prodEquiv_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] (f : A →⋆ₐ[R] B × C) :
prodEquiv.symm f = ((fst R B C).comp f, (snd R B C).comp f)

Star algebra equivalences #

structure StarAlgEquiv (R : Type u_1) (A : Type u_2) (B : Type u_3) [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] extends A ≃+* B :
Type (max u_2 u_3)

A ⋆-algebra equivalence is an equivalence preserving addition, multiplication, scalar multiplication and the star operation, which allows for considering both unital and non-unital equivalences with a single structure. Currently, AlgEquiv requires unital algebras, which is why this structure does not extend it.

A ⋆-algebra equivalence is an equivalence preserving addition, multiplication, scalar multiplication and the star operation, which allows for considering both unital and non-unital equivalences with a single structure. Currently, AlgEquiv requires unital algebras, which is why this structure does not extend it.

Equations

A ⋆-algebra equivalence is an equivalence preserving addition, multiplication, scalar multiplication and the star operation, which allows for considering both unital and non-unital equivalences with a single structure. Currently, AlgEquiv requires unital algebras, which is why this structure does not extend it.

Equations
  • One or more equations did not get rendered due to their size.
class NonUnitalAlgEquivClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [Add A] [Mul A] [SMul R A] [Add B] [Mul B] [SMul R B] [EquivLike F A B] extends RingEquivClass F A B, MulActionSemiHomClass F id A B :

The class that directly extends RingEquivClass and SMulHomClass.

Mostly an implementation detail for StarAlgEquivClass.

Instances
    @[instance 100]
    instance StarAlgEquivClass.instAlgHomClass (F : Type u_1) (R : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [EquivLike F A B] [NonUnitalAlgEquivClass F R A B] :
    def StarAlgEquivClass.toStarAlgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Mul A] [SMul R A] [Star A] [Add B] [Mul B] [SMul R B] [Star B] [EquivLike F A B] [NonUnitalAlgEquivClass F R A B] [StarHomClass F A B] (f : F) :

    Turn an element of a type F satisfying AlgEquivClass F R A B and StarHomClass F A B into an actual StarAlgEquiv. This is declared as the default coercion from F to A ≃⋆ₐ[R] B.

    Equations
    • f = { toRingEquiv := f, map_star' := , map_smul' := }
    instance StarAlgEquivClass.instCoeHead {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Mul A] [SMul R A] [Star A] [Add B] [Mul B] [SMul R B] [Star B] [EquivLike F A B] [NonUnitalAlgEquivClass F R A B] [StarHomClass F A B] :

    Any type satisfying AlgEquivClass and StarHomClass can be cast into StarAlgEquiv via StarAlgEquivClass.toStarAlgEquiv.

    Equations
    instance StarAlgEquiv.instEquivLike {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] :
    Equations
    instance StarAlgEquiv.instNonUnitalAlgEquivClass {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] :
    instance StarAlgEquiv.instStarHomClass {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] :
    instance StarAlgEquiv.instFunLike {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] :
    FunLike (A ≃⋆ₐ[R] B) A B

    Helper instance for cases where the inference via EquivLike is too hard.

    Equations
    @[simp]
    theorem StarAlgEquiv.toRingEquiv_eq_coe {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    e.toRingEquiv = e
    theorem StarAlgEquiv.ext {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] {f g : A ≃⋆ₐ[R] B} (h : ∀ (a : A), f a = g a) :
    f = g
    theorem StarAlgEquiv.ext_iff {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] {f g : A ≃⋆ₐ[R] B} :
    f = g ∀ (a : A), f a = g a
    def StarAlgEquiv.refl {R : Type u_2} {A : Type u_3} [Add A] [Mul A] [SMul R A] [Star A] :

    The identity map is a star algebra isomorphism.

    Equations
    instance StarAlgEquiv.instInhabited {R : Type u_2} {A : Type u_3} [Add A] [Mul A] [SMul R A] [Star A] :
    Equations
    @[simp]
    theorem StarAlgEquiv.coe_refl {R : Type u_2} {A : Type u_3} [Add A] [Mul A] [SMul R A] [Star A] :
    refl = id
    def StarAlgEquiv.symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :

    The inverse of a star algebra isomorphism is a star algebra isomorphism.

    Equations
    • e.symm = { toRingEquiv := e.symm, map_star' := , map_smul' := }
    def StarAlgEquiv.Simps.apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    AB

    See Note [custom simps projection]

    Equations
    def StarAlgEquiv.Simps.symm_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    BA

    See Note [custom simps projection]

    Equations
    @[simp]
    theorem StarAlgEquiv.invFun_eq_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] {e : A ≃⋆ₐ[R] B} :
    @[simp]
    theorem StarAlgEquiv.symm_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    e.symm.symm = e
    theorem StarAlgEquiv.symm_bijective {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] :
    @[simp]
    theorem StarAlgEquiv.coe_mk {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃+* B) (h₁ : ∀ (a : A), e.toFun (star a) = star (e.toFun a)) (h₂ : ∀ (r : R) (a : A), e.toFun (r a) = r e.toFun a) :
    { toRingEquiv := e, map_star' := h₁, map_smul' := h₂ } = e
    @[simp]
    theorem StarAlgEquiv.mk_coe {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) (e' : BA) (h₁ : Function.LeftInverse e' e) (h₂ : Function.RightInverse e' e) (h₃ : ∀ (x y : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) (h₆ : ∀ (r : R) (a : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (r a) = r { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a) :
    { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅, map_smul' := h₆ } = e
    def StarAlgEquiv.symm_mk.aux {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (f : AB) (f' : BA) (h₁ : Function.LeftInverse f' f) (h₂ : Function.RightInverse f' f) (h₃ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) (h₆ : ∀ (r : R) (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (r a) = r { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a) :

    Auxiliary definition to avoid looping in dsimp with StarAlgEquiv.symm_mk.

    Equations
    • StarAlgEquiv.symm_mk.aux f f' h₁ h₂ h₃ h₄ h₅ h₆ = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅, map_smul' := h₆ }.symm
    @[simp]
    theorem StarAlgEquiv.symm_mk {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (f : AB) (f' : BA) (h₁ : Function.LeftInverse f' f) (h₂ : Function.RightInverse f' f) (h₃ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) (h₆ : ∀ (r : R) (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (r a) = r { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a) :
    { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅, map_smul' := h₆ }.symm = let __src := symm_mk.aux f f' h₁ h₂ h₃ h₄ h₅ h₆; { toFun := f', invFun := f, left_inv := , right_inv := , map_mul' := , map_add' := , map_star' := , map_smul' := }
    @[simp]
    theorem StarAlgEquiv.refl_symm {R : Type u_2} {A : Type u_3} [Add A] [Mul A] [SMul R A] [Star A] :
    theorem StarAlgEquiv.to_ringEquiv_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (f : A ≃⋆ₐ[R] B) :
    (↑f).symm = f.symm
    @[simp]
    theorem StarAlgEquiv.symm_to_ringEquiv {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    e.symm = (↑e).symm
    def StarAlgEquiv.trans {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] [Add C] [Mul C] [SMul R C] [Star C] (e₁ : A ≃⋆ₐ[R] B) (e₂ : B ≃⋆ₐ[R] C) :

    Transitivity of StarAlgEquiv.

    Equations
    @[simp]
    theorem StarAlgEquiv.apply_symm_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) (x : B) :
    e (e.symm x) = x
    @[simp]
    theorem StarAlgEquiv.symm_apply_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) (x : A) :
    e.symm (e x) = x
    @[simp]
    theorem StarAlgEquiv.symm_trans_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] [Add C] [Mul C] [SMul R C] [Star C] (e₁ : A ≃⋆ₐ[R] B) (e₂ : B ≃⋆ₐ[R] C) (x : C) :
    (e₁.trans e₂).symm x = e₁.symm (e₂.symm x)
    @[simp]
    theorem StarAlgEquiv.coe_trans {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] [Add C] [Mul C] [SMul R C] [Star C] (e₁ : A ≃⋆ₐ[R] B) (e₂ : B ≃⋆ₐ[R] C) :
    (e₁.trans e₂) = e₂ e₁
    @[simp]
    theorem StarAlgEquiv.trans_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] [Add C] [Mul C] [SMul R C] [Star C] (e₁ : A ≃⋆ₐ[R] B) (e₂ : B ≃⋆ₐ[R] C) (x : A) :
    (e₁.trans e₂) x = e₂ (e₁ x)
    theorem StarAlgEquiv.leftInverse_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    theorem StarAlgEquiv.rightInverse_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} [Add A] [Add B] [Mul A] [Mul B] [SMul R A] [SMul R B] [Star A] [Star B] (e : A ≃⋆ₐ[R] B) :
    def StarAlgEquiv.ofStarAlgHom {F : Type u_1} {G : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) :

    If a (unital or non-unital) star algebra morphism has an inverse, it is an isomorphism of star algebras.

    Equations
    • StarAlgEquiv.ofStarAlgHom f g h₁ h₂ = { toFun := f, invFun := g, left_inv := h₁, right_inv := h₂, map_mul' := , map_add' := , map_star' := , map_smul' := }
    @[simp]
    theorem StarAlgEquiv.ofStarAlgHom_symm_apply {F : Type u_1} {G : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) (a : B) :
    (ofStarAlgHom f g h₁ h₂).symm a = g a
    @[simp]
    theorem StarAlgEquiv.ofStarAlgHom_apply {F : Type u_1} {G : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) (a : A) :
    (ofStarAlgHom f g h₁ h₂) a = f a
    noncomputable def StarAlgEquiv.ofBijective {F : Type u_1} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (hf : Function.Bijective f) :

    Promote a bijective star algebra homomorphism to a star algebra equivalence.

    Equations
    @[simp]
    theorem StarAlgEquiv.coe_ofBijective {F : Type u_1} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {f : F} (hf : Function.Bijective f) :
    (ofBijective f hf) = f
    theorem StarAlgEquiv.ofBijective_apply {F : Type u_1} {R : Type u_3} {A : Type u_4} {B : Type u_5} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {f : F} (hf : Function.Bijective f) (a : A) :
    (ofBijective f hf) a = f a