Ordered instances on submonoids #
@[instance 75]
instance
SubmonoidClass.toIsOrderedMonoid
{M : Type u_1}
{S : Type u_2}
[SetLike S M]
[CommMonoid M]
[PartialOrder M]
[IsOrderedMonoid M]
[SubmonoidClass S M]
(s : S)
:
A submonoid of an ordered monoid is an ordered monoid.
@[instance 75]
instance
AddSubmonoidClass.toIsOrderedAddMonoid
{M : Type u_1}
{S : Type u_2}
[SetLike S M]
[AddCommMonoid M]
[PartialOrder M]
[IsOrderedAddMonoid M]
[AddSubmonoidClass S M]
(s : S)
:
An AddSubmonoid
of an ordered additive monoid is an ordered additive monoid.
@[instance 75]
instance
SubmonoidClass.toIsOrderedCancelMonoid
{M : Type u_1}
{S : Type u_2}
[SetLike S M]
[CommMonoid M]
[PartialOrder M]
[IsOrderedCancelMonoid M]
[SubmonoidClass S M]
(s : S)
:
A submonoid of an ordered cancellative monoid is an ordered cancellative monoid.
@[instance 75]
instance
AddSubmonoidClass.toIsOrderedCancelAddMonoid
{M : Type u_1}
{S : Type u_2}
[SetLike S M]
[AddCommMonoid M]
[PartialOrder M]
[IsOrderedCancelAddMonoid M]
[AddSubmonoidClass S M]
(s : S)
:
An AddSubmonoid
of an ordered cancellative additive monoid is an ordered cancellative
additive monoid.
instance
Submonoid.toIsOrderedMonoid
{M : Type u_1}
[CommMonoid M]
[PartialOrder M]
[IsOrderedMonoid M]
(S : Submonoid M)
:
A submonoid of an ordered monoid is an ordered monoid.
instance
AddSubmonoid.toIsOrderedAddMonoid
{M : Type u_1}
[AddCommMonoid M]
[PartialOrder M]
[IsOrderedAddMonoid M]
(S : AddSubmonoid M)
:
An AddSubmonoid
of an ordered additive monoid is an ordered additive monoid.
instance
Submonoid.toIsOrderedCancelMonoid
{M : Type u_1}
[CommMonoid M]
[PartialOrder M]
[IsOrderedCancelMonoid M]
(S : Submonoid M)
:
A submonoid of an ordered cancellative monoid is an ordered cancellative monoid.
instance
AddSubmonoid.toIsOrderedCancelAddMonoid
{M : Type u_1}
[AddCommMonoid M]
[PartialOrder M]
[IsOrderedCancelAddMonoid M]
(S : AddSubmonoid M)
:
An AddSubmonoid
of an ordered cancellative additive monoid is an ordered cancellative
additive monoid.
The submonoid of elements that are at least 1
.
Equations
- Submonoid.oneLE M = { carrier := Set.Ici 1, mul_mem' := ⋯, one_mem' := ⋯ }
Instances For
The submonoid of nonnegative elements.
Equations
- AddSubmonoid.nonneg M = { carrier := Set.Ici 0, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]