Documentation

Mathlib.Algebra.Group.Submonoid.MulOpposite

Submonoid of opposite monoids #

For every monoid M, we construct an equivalence between submonoids of M and that of Mᵐᵒᵖ.

Pull a submonoid back to an opposite submonoid along MulOpposite.unop

Equations

Pull an additive submonoid back to an opposite submonoid along AddOpposite.unop

Equations
@[simp]
theorem Submonoid.coe_op {M : Type u_2} [MulOneClass M] (x : Submonoid M) :
@[simp]
theorem AddSubmonoid.coe_op {M : Type u_2} [AddZeroClass M] (x : AddSubmonoid M) :
@[simp]
theorem Submonoid.mem_op {M : Type u_2} [MulOneClass M] {x : Mᵐᵒᵖ} {S : Submonoid M} :
@[simp]

Pull an opposite submonoid back to a submonoid along MulOpposite.op

Equations

Pull an opposite additive submonoid back to a submonoid along AddOpposite.op

Equations
@[simp]
@[simp]
theorem Submonoid.mem_unop {M : Type u_2} [MulOneClass M] {x : M} {S : Submonoid Mᵐᵒᵖ} :
@[simp]
@[simp]
theorem Submonoid.unop_op {M : Type u_2} [MulOneClass M] (S : Submonoid M) :
S.op.unop = S
@[simp]
theorem AddSubmonoid.unop_op {M : Type u_2} [AddZeroClass M] (S : AddSubmonoid M) :
S.op.unop = S
@[simp]
theorem Submonoid.op_unop {M : Type u_2} [MulOneClass M] (S : Submonoid Mᵐᵒᵖ) :
S.unop.op = S
@[simp]

Lattice results #

theorem Submonoid.op_le_iff {M : Type u_2} [MulOneClass M] {S₁ : Submonoid M} {S₂ : Submonoid Mᵐᵒᵖ} :
S₁.op S₂ S₁ S₂.unop
theorem AddSubmonoid.op_le_iff {M : Type u_2} [AddZeroClass M] {S₁ : AddSubmonoid M} {S₂ : AddSubmonoid Mᵃᵒᵖ} :
S₁.op S₂ S₁ S₂.unop
theorem Submonoid.le_op_iff {M : Type u_2} [MulOneClass M] {S₁ : Submonoid Mᵐᵒᵖ} {S₂ : Submonoid M} :
S₁ S₂.op S₁.unop S₂
theorem AddSubmonoid.le_op_iff {M : Type u_2} [AddZeroClass M] {S₁ : AddSubmonoid Mᵃᵒᵖ} {S₂ : AddSubmonoid M} :
S₁ S₂.op S₁.unop S₂
@[simp]
theorem Submonoid.op_le_op_iff {M : Type u_2} [MulOneClass M] {S₁ S₂ : Submonoid M} :
S₁.op S₂.op S₁ S₂
@[simp]
theorem AddSubmonoid.op_le_op_iff {M : Type u_2} [AddZeroClass M] {S₁ S₂ : AddSubmonoid M} :
S₁.op S₂.op S₁ S₂
@[simp]
theorem Submonoid.unop_le_unop_iff {M : Type u_2} [MulOneClass M] {S₁ S₂ : Submonoid Mᵐᵒᵖ} :
S₁.unop S₂.unop S₁ S₂
@[simp]
theorem AddSubmonoid.unop_le_unop_iff {M : Type u_2} [AddZeroClass M] {S₁ S₂ : AddSubmonoid Mᵃᵒᵖ} :
S₁.unop S₂.unop S₁ S₂

A submonoid H of G determines a submonoid H.op of the opposite group Gᵐᵒᵖ.

Equations

A additive submonoid H of G determines an additive submonoid H.op of the opposite group Gᵐᵒᵖ.

Equations
@[simp]
@[simp]
theorem Submonoid.opEquiv_apply {M : Type u_2} [MulOneClass M] (x : Submonoid M) :
@[simp]
theorem Submonoid.op_inj {M : Type u_2} [MulOneClass M] {S T : Submonoid M} :
S.op = T.op S = T
@[simp]
theorem AddSubmonoid.op_inj {M : Type u_2} [AddZeroClass M] {S T : AddSubmonoid M} :
S.op = T.op S = T
@[simp]
theorem Submonoid.unop_inj {M : Type u_2} [MulOneClass M] {S T : Submonoid Mᵐᵒᵖ} :
S.unop = T.unop S = T
@[simp]
theorem AddSubmonoid.unop_inj {M : Type u_2} [AddZeroClass M] {S T : AddSubmonoid Mᵃᵒᵖ} :
S.unop = T.unop S = T
@[simp]
theorem Submonoid.op_bot {M : Type u_2} [MulOneClass M] :
@[simp]
@[simp]
theorem Submonoid.op_eq_bot {M : Type u_2} [MulOneClass M] {S : Submonoid M} :
S.op = S =
@[simp]
theorem AddSubmonoid.op_eq_bot {M : Type u_2} [AddZeroClass M] {S : AddSubmonoid M} :
S.op = S =
@[simp]
@[simp]
@[simp]
@[simp]
theorem Submonoid.op_top {M : Type u_2} [MulOneClass M] :
@[simp]
@[simp]
theorem Submonoid.op_eq_top {M : Type u_2} [MulOneClass M] {S : Submonoid M} :
S.op = S =
@[simp]
theorem AddSubmonoid.op_eq_top {M : Type u_2} [AddZeroClass M] {S : AddSubmonoid M} :
S.op = S =
@[simp]
@[simp]
@[simp]
theorem Submonoid.op_sup {M : Type u_2} [MulOneClass M] (S₁ S₂ : Submonoid M) :
(S₁S₂).op = S₁.opS₂.op
theorem AddSubmonoid.op_sup {M : Type u_2} [AddZeroClass M] (S₁ S₂ : AddSubmonoid M) :
(S₁S₂).op = S₁.opS₂.op
theorem Submonoid.unop_sup {M : Type u_2} [MulOneClass M] (S₁ S₂ : Submonoid Mᵐᵒᵖ) :
(S₁S₂).unop = S₁.unopS₂.unop
theorem AddSubmonoid.unop_sup {M : Type u_2} [AddZeroClass M] (S₁ S₂ : AddSubmonoid Mᵃᵒᵖ) :
(S₁S₂).unop = S₁.unopS₂.unop
theorem Submonoid.op_inf {M : Type u_2} [MulOneClass M] (S₁ S₂ : Submonoid M) :
(S₁S₂).op = S₁.opS₂.op
theorem AddSubmonoid.op_inf {M : Type u_2} [AddZeroClass M] (S₁ S₂ : AddSubmonoid M) :
(S₁S₂).op = S₁.opS₂.op
theorem Submonoid.unop_inf {M : Type u_2} [MulOneClass M] (S₁ S₂ : Submonoid Mᵐᵒᵖ) :
(S₁S₂).unop = S₁.unopS₂.unop
theorem AddSubmonoid.unop_inf {M : Type u_2} [AddZeroClass M] (S₁ S₂ : AddSubmonoid Mᵃᵒᵖ) :
(S₁S₂).unop = S₁.unopS₂.unop
theorem Submonoid.op_iSup {ι : Sort u_1} {M : Type u_2} [MulOneClass M] (S : ιSubmonoid M) :
(iSup S).op = ⨆ (i : ι), (S i).op
theorem AddSubmonoid.op_iSup {ι : Sort u_1} {M : Type u_2} [AddZeroClass M] (S : ιAddSubmonoid M) :
(iSup S).op = ⨆ (i : ι), (S i).op
theorem Submonoid.unop_iSup {ι : Sort u_1} {M : Type u_2} [MulOneClass M] (S : ιSubmonoid Mᵐᵒᵖ) :
(iSup S).unop = ⨆ (i : ι), (S i).unop
theorem AddSubmonoid.unop_iSup {ι : Sort u_1} {M : Type u_2} [AddZeroClass M] (S : ιAddSubmonoid Mᵃᵒᵖ) :
(iSup S).unop = ⨆ (i : ι), (S i).unop
theorem Submonoid.op_iInf {ι : Sort u_1} {M : Type u_2} [MulOneClass M] (S : ιSubmonoid M) :
(iInf S).op = ⨅ (i : ι), (S i).op
theorem AddSubmonoid.op_iInf {ι : Sort u_1} {M : Type u_2} [AddZeroClass M] (S : ιAddSubmonoid M) :
(iInf S).op = ⨅ (i : ι), (S i).op
theorem Submonoid.unop_iInf {ι : Sort u_1} {M : Type u_2} [MulOneClass M] (S : ιSubmonoid Mᵐᵒᵖ) :
(iInf S).unop = ⨅ (i : ι), (S i).unop
theorem AddSubmonoid.unop_iInf {ι : Sort u_1} {M : Type u_2} [AddZeroClass M] (S : ιAddSubmonoid Mᵃᵒᵖ) :
(iInf S).unop = ⨅ (i : ι), (S i).unop
def Submonoid.equivOp {M : Type u_2} [MulOneClass M] (H : Submonoid M) :
H H.op

Bijection between a submonoid H and its opposite.

Equations
def AddSubmonoid.equivOp {M : Type u_2} [AddZeroClass M] (H : AddSubmonoid M) :
H H.op

Bijection between an additive submonoid H and its opposite.

Equations
@[simp]
theorem Submonoid.equivOp_apply_coe {M : Type u_2} [MulOneClass M] (H : Submonoid M) (a : H) :
(H.equivOp a) = MulOpposite.op a
@[simp]
theorem AddSubmonoid.equivOp_apply_coe {M : Type u_2} [AddZeroClass M] (H : AddSubmonoid M) (a : H) :
(H.equivOp a) = AddOpposite.op a
@[simp]
theorem Submonoid.equivOp_symm_apply_coe {M : Type u_2} [MulOneClass M] (H : Submonoid M) (b : H.op) :
@[simp]
theorem AddSubmonoid.equivOp_symm_apply_coe {M : Type u_2} [AddZeroClass M] (H : AddSubmonoid M) (b : H.op) :