Documentation

Mathlib.Algebra.Group.Commute.Units

Lemmas about commuting pairs of elements involving units. #

theorem Commute.units_inv_right {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute a uCommute a u⁻¹
theorem AddCommute.addUnits_neg_right {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a uAddCommute a ↑(-u)
@[simp]
theorem Commute.units_inv_right_iff {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute a u⁻¹ Commute a u
@[simp]
theorem AddCommute.addUnits_neg_right_iff {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a ↑(-u) AddCommute a u
theorem Commute.units_inv_left {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute (↑u) aCommute (↑u⁻¹) a
theorem AddCommute.addUnits_neg_left {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (↑u) aAddCommute (↑(-u)) a
@[simp]
theorem Commute.units_inv_left_iff {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute (↑u⁻¹) a Commute (↑u) a
@[simp]
theorem AddCommute.addUnits_neg_left_iff {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (↑(-u)) a AddCommute (↑u) a
theorem Commute.units_val {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
theorem AddCommute.addUnits_val {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
theorem Commute.units_of_val {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
theorem AddCommute.addUnits_of_val {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
@[simp]
theorem Commute.units_val_iff {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂ Commute u₁ u₂
@[simp]
theorem AddCommute.addUnits_val_iff {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂ AddCommute u₁ u₂
def Units.leftOfMul {M : Type u_1} [Monoid M] (u : Mˣ) (a b : M) (hu : a * b = u) (hc : Commute a b) :

If the product of two commuting elements is a unit, then the left multiplier is a unit.

Equations
  • u.leftOfMul a b hu hc = { val := a, inv := b * u⁻¹, val_inv := , inv_val := }
def AddUnits.leftOfAdd {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a b : M) (hu : a + b = u) (hc : AddCommute a b) :

If the sum of two commuting elements is an additive unit, then the left summand is an additive unit.

Equations
  • u.leftOfAdd a b hu hc = { val := a, neg := b + ↑(-u), val_neg := , neg_val := }
def Units.rightOfMul {M : Type u_1} [Monoid M] (u : Mˣ) (a b : M) (hu : a * b = u) (hc : Commute a b) :

If the product of two commuting elements is a unit, then the right multiplier is a unit.

Equations
def AddUnits.rightOfAdd {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a b : M) (hu : a + b = u) (hc : AddCommute a b) :

If the sum of two commuting elements is an additive unit, then the right summand is an additive unit.

Equations
theorem Commute.isUnit_mul_iff {M : Type u_1} [Monoid M] {a b : M} (h : Commute a b) :
theorem AddCommute.isAddUnit_add_iff {M : Type u_1} [AddMonoid M] {a b : M} (h : AddCommute a b) :
@[simp]
theorem isUnit_mul_self_iff {M : Type u_1} [Monoid M] {a : M} :
IsUnit (a * a) IsUnit a
@[simp]
theorem isAddUnit_add_self_iff {M : Type u_1} [AddMonoid M] {a : M} :
@[simp]
theorem Commute.units_zpow_right {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} (h : Commute a u) (m : ) :
Commute a ↑(u ^ m)
@[simp]
theorem AddCommute.addUnits_zsmul_right {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} (h : AddCommute a u) (m : ) :
AddCommute a ↑(m u)
@[simp]
theorem Commute.units_zpow_left {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} (h : Commute (↑u) a) (m : ) :
Commute (↑(u ^ m)) a
@[simp]
theorem AddCommute.addUnits_zsmul_left {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} (h : AddCommute (↑u) a) (m : ) :
AddCommute (↑(m u)) a
def Units.ofPow {M : Type u_1} [Monoid M] (u : Mˣ) (x : M) {n : } (hn : n 0) (hu : x ^ n = u) :

If a natural power of x is a unit, then x is a unit.

Equations
def AddUnits.ofNSMul {M : Type u_1} [AddMonoid M] (u : AddUnits M) (x : M) {n : } (hn : n 0) (hu : n x = u) :

If a natural multiple of x is an additive unit, then x is an additive unit.

Equations
@[simp]
theorem isUnit_pow_iff {M : Type u_1} [Monoid M] {n : } {a : M} (hn : n 0) :
IsUnit (a ^ n) IsUnit a
@[simp]
theorem isAddUnit_nsmul_iff {M : Type u_1} [AddMonoid M] {n : } {a : M} (hn : n 0) :
theorem isUnit_pow_succ_iff {M : Type u_1} [Monoid M] {n : } {a : M} :
IsUnit (a ^ (n + 1)) IsUnit a
theorem isAddUnit_nsmul_succ_iff {M : Type u_1} [AddMonoid M] {n : } {a : M} :
theorem isUnit_pow_iff_of_not_isUnit {M : Type u_1} [Monoid M] {a : M} (hx : ¬IsUnit a) {n : } :
IsUnit (a ^ n) n = 0
def Units.ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :

If a ^ n = 1, n ≠ 0, then a is a unit.

Equations
def AddUnits.ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :

If n • x = 0, n ≠ 0, then x is an additive unit.

Equations
@[simp]
theorem AddUnits.val_neg_ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :
↑(-ofNSMulEqZero a n ha hn) = (n - 1) a
@[simp]
theorem Units.val_ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :
(ofPowEqOne a n ha hn) = a
@[simp]
theorem Units.val_inv_ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :
(ofPowEqOne a n ha hn)⁻¹ = a ^ (n - 1)
@[simp]
theorem AddUnits.val_ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :
(ofNSMulEqZero a n ha hn) = a
@[simp]
theorem Units.pow_ofPowEqOne {M : Type u_1} [Monoid M] {n : } {a : M} (ha : a ^ n = 1) (hn : n 0) :
ofPowEqOne a n ha hn ^ n = 1
@[simp]
theorem AddUnits.nsmul_ofNSMulEqZero {M : Type u_1} [AddMonoid M] {n : } {a : M} (ha : n a = 0) (hn : n 0) :
n ofNSMulEqZero a n ha hn = 0
theorem IsUnit.of_pow_eq_one {M : Type u_1} [Monoid M] {n : } {a : M} (ha : a ^ n = 1) (hn : n 0) :
theorem IsAddUnit.of_nsmul_eq_zero {M : Type u_1} [AddMonoid M] {n : } {a : M} (ha : n a = 0) (hn : n 0) :
@[deprecated IsUnit.of_pow_eq_one (since := "2025-02-03")]
theorem isUnit_ofPowEqOne {M : Type u_1} [Monoid M] {n : } {a : M} (ha : a ^ n = 1) (hn : n 0) :

Alias of IsUnit.of_pow_eq_one.

@[deprecated IsAddUnit.of_nsmul_eq_zero (since := "2025-02-03")]
theorem isAddUnit_ofNSMulEqZero {M : Type u_1} [AddMonoid M] {n : } {a : M} (ha : n a = 0) (hn : n 0) :

Alias of IsAddUnit.of_nsmul_eq_zero.

theorem Commute.div_eq_div_iff_of_isUnit {M : Type u_1} [DivisionMonoid M] {a b c d : M} (hbd : Commute b d) (hb : IsUnit b) (hd : IsUnit d) :
a / b = c / d a * d = c * b
theorem AddCommute.sub_eq_sub_iff_of_isAddUnit {M : Type u_1} [SubtractionMonoid M] {a b c d : M} (hbd : AddCommute b d) (hb : IsAddUnit b) (hd : IsAddUnit d) :
a - b = c - d a + d = c + b