Lemmas about Multiset.sum
and Multiset.prod
requiring extra algebra imports #
@[simp]
theorem
Multiset.prod_eq_zero
{α : Type u_2}
[CommMonoidWithZero α]
{s : Multiset α}
(h : 0 ∈ s)
:
s.prod = 0
@[simp]
theorem
Multiset.prod_eq_zero_iff
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
{s : Multiset α}
:
theorem
Multiset.prod_ne_zero
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
{s : Multiset α}
(h : 0 ∉ s)
:
s.prod ≠ 0
theorem
Commute.multiset_sum_right
{α : Type u_2}
[NonUnitalNonAssocSemiring α]
(s : Multiset α)
(a : α)
(h : ∀ b ∈ s, Commute a b)
:
Commute a s.sum
theorem
Commute.multiset_sum_left
{α : Type u_2}
[NonUnitalNonAssocSemiring α]
(s : Multiset α)
(b : α)
(h : ∀ a ∈ s, Commute a b)
:
Commute s.sum b