theorem
measurable_biSup_of_continuousOn
{ι : Type u_1}
{X : Type u_2}
[PseudoEMetricSpace ι]
[TopologicalSpace.SeparableSpace ι]
[MeasurableSpace X]
{T : Set ι}
{f : ι → X → ENNReal}
(mf : ∀ t ∈ T, Measurable (f t))
(cf : ∀ (x : X), ContinuousOn (fun (x_1 : ι) => f x_1 x) T)
:
Measurable (⨆ t ∈ T, f t)
Given T : Set ι over a separable pseudometric space ι, let f : ι → X → ℝ≥0∞ be
- measurable in
xfor allt ∈ T - continuous on
Tfor allx
Then the supremum of f over T is measurable.
The proof follows https://math.stackexchange.com/a/4685735/357390.