Documentation

Carleson.ToMathlib.MeasureTheory.Integral.Lebesgue

Some tools for measure theory computations #

A collection of small lemmas to help with integral manipulations.
theorem MeasureTheory.lintegral_shift (f : ENNReal) {a : } :
∫⁻ (x : ), f (x + a) = ∫⁻ (x : ), f x
theorem MeasureTheory.lintegral_shift' (f : ENNReal) {a : } {s : Set } :
∫⁻ (x : ) in (fun (z : ) => z + a) ⁻¹' s, f (x + a) = ∫⁻ (x : ) in s, f x
theorem MeasureTheory.lintegral_add_right_Ioi (f : ENNReal) {a b : } :
∫⁻ (x : ) in Set.Ioi (b - a), f (x + a) = ∫⁻ (x : ) in Set.Ioi b, f x
theorem MeasureTheory.lintegral_scale_constant (f : ENNReal) {a : } (h : a 0) :
∫⁻ (x : ), f (a * x) = ENNReal.ofReal |a⁻¹| * ∫⁻ (x : ), f x
theorem MeasureTheory.lintegral_scale_constant_preimage (f : ENNReal) {a : } (h : a 0) {s : Set } :
∫⁻ (x : ) in (fun (z : ) => a * z) ⁻¹' s, f (a * x) = ENNReal.ofReal |a⁻¹| * ∫⁻ (x : ) in s, f x
theorem MeasureTheory.lintegral_scale_constant' {f : ENNReal} {a : } (h : a 0) :
ENNReal.ofReal |a| * ∫⁻ (x : ), f (a * x) = ∫⁻ (x : ), f x
theorem MeasureTheory.lintegral_eq_iSup_eapprox_lintegral' {α : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) :
∫⁻ (a : α), f a μ = ⨆ (n : ), (SimpleFunc.eapprox (AEMeasurable.mk f hf) n).lintegral μ

Generalization of MeasureTheory.lintegral_eq_iSup_eapprox_lintegral assuming a.e. measurability of f

theorem MeasureTheory.lintegral_comp' {α : Type u_3} {β : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MeasurableSpace β] {f : βENNReal} {g : αβ} (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
lintegral μ (f g) = ∫⁻ (a : β), f a Measure.map g μ

Generalization of MeasureTheory.lintegral_comp assuming a.e. measurability of f and g

theorem MeasureTheory.lintegral_set_mono_fn {α : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {s : Set α} (hs : MeasurableSet s) f g : αENNReal (hfg : xs, f x g x) :
∫⁻ (a : α) in s, f a μ ∫⁻ (a : α) in s, g a μ