L^∞-normalized t-Hölder norm #
This file defines the L^∞-normalized t-Hölder norm, which probably in some form should end up in Mathlib. Lemmas about this norm that are proven in Carleson are collected here.
TODO: Assess Mathlib-readiness, complete basic results, optimize imports.
def
iHolENorm
{𝕜 : Type u_1}
{X : Type u_2}
[PseudoMetricSpace X]
[NormedField 𝕜]
(φ : X → 𝕜)
(x₀ : X)
(R t : ℝ)
:
the L^∞-normalized t-Hölder norm. Defined in ℝ≥0∞ to avoid sup-related issues.
Equations
- iHolENorm φ x₀ R t = (⨆ x ∈ Metric.ball x₀ R, ‖φ x‖ₑ) + ENNReal.ofReal R ^ t * ⨆ x ∈ Metric.ball x₀ R, ⨆ y ∈ Metric.ball x₀ R, ⨆ (_ : x ≠ y), ‖φ x - φ y‖ₑ / edist x y ^ t
Instances For
def
iHolNNNorm
{𝕜 : Type u_1}
{X : Type u_2}
[PseudoMetricSpace X]
[NormedField 𝕜]
(φ : X → 𝕜)
(x₀ : X)
(R t : ℝ)
:
The NNReal version of the L^∞-normalized t-Hölder norm, iHolENorm.
Equations
- iHolNNNorm φ x₀ R t = (iHolENorm φ x₀ R t).toNNReal
Instances For
theorem
enorm_le_iHolENorm_of_mem
{X : Type u_1}
{𝕜 : Type u_2}
{x z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(hx : x ∈ Metric.ball z R)
:
theorem
HolderOnWith.of_iHolENorm_ne_top
{X : Type u_1}
{𝕜 : Type u_2}
{z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(ht : 0 ≤ t)
(hφ : iHolENorm φ z R t ≠ ⊤)
:
HolderOnWith (iHolNNNorm φ z R t / R.toNNReal ^ t) t.toNNReal φ (Metric.ball z R)
theorem
continuous_of_iHolENorm_ne_top
{X : Type u_1}
{𝕜 : Type u_2}
{z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(ht : 0 < t)
(hφ : tsupport φ ⊆ Metric.ball z R)
(h'φ : iHolENorm φ z R t ≠ ⊤)
:
theorem
continuous_of_iHolENorm_ne_top'
{X : Type u_1}
{𝕜 : Type u_2}
{z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(ht : 0 < t)
(hφ : Function.support φ ⊆ Metric.ball z R)
(h'φ : iHolENorm φ z (2 * R) t ≠ ⊤)
:
theorem
norm_le_iHolNNNorm_of_mem
{X : Type u_1}
{𝕜 : Type u_2}
{x z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(hφ : iHolENorm φ z R t ≠ ⊤)
(hx : x ∈ Metric.ball z R)
:
theorem
norm_le_iHolNNNorm_of_subset
{X : Type u_1}
{𝕜 : Type u_2}
{x z : X}
{R t : ℝ}
{φ : X → 𝕜}
[MetricSpace X]
[NormedField 𝕜]
(hφ : iHolENorm φ z R t ≠ ⊤)
(h : Function.support φ ⊆ Metric.ball z R)
: