Documentation

Carleson.HolderNorm

L^∞-normalized t-Hölder norm #

This file defines the L^∞-normalized t-Hölder norm, which probably in some form should end up in Mathlib. Lemmas about this norm that are proven in Carleson are collected here.

TODO: Assess Mathlib-readiness, complete basic results, optimize imports.

def iHolENorm {𝕜 : Type u_1} {X : Type u_2} [PseudoMetricSpace X] [NormedField 𝕜] (φ : X𝕜) (x₀ : X) (R t : ) :

the L^∞-normalized t-Hölder norm. Defined in ℝ≥0∞ to avoid sup-related issues.

Equations
Instances For
    def iHolNNNorm {𝕜 : Type u_1} {X : Type u_2} [PseudoMetricSpace X] [NormedField 𝕜] (φ : X𝕜) (x₀ : X) (R t : ) :

    The NNReal version of the L^∞-normalized t-Hölder norm, iHolENorm.

    Equations
    Instances For
      theorem enorm_le_iHolENorm_of_mem {X : Type u_1} {𝕜 : Type u_2} {x z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] (hx : x Metric.ball z R) :
      φ x‖ₑ iHolENorm φ z R t
      theorem HolderOnWith.of_iHolENorm_ne_top {X : Type u_1} {𝕜 : Type u_2} {z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] (ht : 0 t) ( : iHolENorm φ z R t ) :
      theorem continuous_of_iHolENorm_ne_top {X : Type u_1} {𝕜 : Type u_2} {z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] (ht : 0 < t) ( : tsupport φ Metric.ball z R) (h'φ : iHolENorm φ z R t ) :
      theorem continuous_of_iHolENorm_ne_top' {X : Type u_1} {𝕜 : Type u_2} {z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] (ht : 0 < t) ( : Function.support φ Metric.ball z R) (h'φ : iHolENorm φ z (2 * R) t ) :
      theorem norm_le_iHolNNNorm_of_mem {X : Type u_1} {𝕜 : Type u_2} {x z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] ( : iHolENorm φ z R t ) (hx : x Metric.ball z R) :
      φ x (iHolNNNorm φ z R t)
      theorem norm_le_iHolNNNorm_of_subset {X : Type u_1} {𝕜 : Type u_2} {x z : X} {R t : } {φ : X𝕜} [MetricSpace X] [NormedField 𝕜] ( : iHolENorm φ z R t ) (h : Function.support φ Metric.ball z R) :
      φ x (iHolNNNorm φ z R t)