Properties of morphisms #
We provide the basic framework for talking about properties of morphisms. The following meta-property is defined
RespectsIso:Prespects isomorphisms ifP f → P (e ≫ f)andP f → P (f ≫ e), whereeis an isomorphism.
A MorphismProperty C is a class of morphisms between objects in C.
Equations
- CategoryTheory.MorphismProperty C = (⦃X Y : C⦄ → (X ⟶ Y) → Prop)
Instances For
Equations
- CategoryTheory.instCompleteBooleanAlgebraMorphismProperty C = let __spread.0 := inferInstanceAs (CompleteBooleanAlgebra (⦃X Y : C⦄ → (X ⟶ Y) → Prop)); CompleteBooleanAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- CategoryTheory.instInhabitedMorphismProperty C = { default := ⊤ }
The morphism property in Cᵒᵖ associated to a morphism property in C
Equations
- P.op f = P f.unop
Instances For
The morphism property in C associated to a morphism property in Cᵒᵖ
Equations
- P.unop f = P f.op
Instances For
The inverse image of a MorphismProperty D by a functor C ⥤ D
Equations
- P.inverseImage F f = P (F.map f)
Instances For
The image (up to isomorphisms) of a MorphismProperty C by a functor C ⥤ D
Equations
- P.map F f = ∃ (X' : C) (Y' : C) (f' : X' ⟶ Y') (_ : P f'), Nonempty (CategoryTheory.Arrow.mk (F.map f') ≅ CategoryTheory.Arrow.mk f)
Instances For
A morphism property RespectsIso if it still holds when composed with an isomorphism
- precomp : ∀ {X Y Z : C} (e : X ≅ Y) (f : Y ⟶ Z), P f → P (CategoryTheory.CategoryStruct.comp e.hom f)
- postcomp : ∀ {X Y Z : C} (e : Y ≅ Z) (f : X ⟶ Y), P f → P (CategoryTheory.CategoryStruct.comp f e.hom)
Instances
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
The closure by isomorphisms of a MorphismProperty
Equations
- P.isoClosure f = ∃ (Y₁ : C) (Y₂ : C) (f' : Y₁ ⟶ Y₂) (_ : P f'), Nonempty (CategoryTheory.Arrow.mk f' ≅ CategoryTheory.Arrow.mk f)
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
The MorphismProperty C satisfied by isomorphisms in C.
Equations
Instances For
The MorphismProperty C satisfied by monomorphisms in C.
Equations
Instances For
The MorphismProperty C satisfied by epimorphisms in C.
Equations
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Alias of CategoryTheory.MorphismProperty.cancel_left_of_respectsIso.
Alias of CategoryTheory.MorphismProperty.cancel_right_of_respectsIso.
Alias of CategoryTheory.MorphismProperty.isoClosure_eq_self.
If W₁ and W₂ are morphism properties on two categories C₁ and C₂,
this is the induced morphism property on C₁ × C₂.
Instances For
If W j are morphism properties on categories C j for all j, this is the
induced morphism property on the category ∀ j, C j.
Equations
- CategoryTheory.MorphismProperty.pi W f = ∀ (j : J), W j (f j)
Instances For
The morphism property on J ⥤ C which is defined objectwise
from W : MorphismProperty C.
Equations
- W.functorCategory J f = ∀ (j : J), W (f.app j)
Instances For
Given W : MorphismProperty C, this is the morphism property on Arrow C of morphisms
whose left and right parts are in W.