Documentation

Mathlib.CategoryTheory.Bicategory.Kan.IsKan

Kan extensions and Kan lifts in bicategories #

The left Kan extension of a 1-morphism g : a ⟶ c along a 1-morphism f : a ⟶ b is the initial object in the category of left extensions LeftExtension f g. The universal property can be accessed by the following definition and lemmas:

We also define left Kan lifts, right Kan extensions, and right Kan lifts.

Implementation Notes #

We use the Is-Has design pattern, which is used for the implementation of limits and colimits in the category theory library. This means that IsKan t is a structure containing the data of 2-morphisms which ensure that t is a Kan extension, while HasKan f g (to be implemented in the near future) is a Prop-valued typeclass asserting that a Kan extension of g along f exists.

We define LeftExtension.IsKan t for an extension t : LeftExtension f g (which is an abbreviation of t : StructuredArrow g (precomp _ f)) to be an abbreviation for StructuredArrow.IsUniversal t. This means that we can use the definitions and lemmas living in the namespace StructuredArrow.IsUniversal.

References #

https://ncatlab.org/nlab/show/Kan+extension

@[reducible, inline]
abbrev CategoryTheory.Bicategory.LeftExtension.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
Type (max (max v w) w)

A left Kan extension of g along f is an initial object in LeftExtension f g.

Equations
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.Bicategory.LeftExtension.IsAbsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
    Type (max (max u v) w)

    An absolute left Kan extension is a Kan extension that commutes with any 1-morphism.

    Equations
    • t.IsAbsKan = ({x : B} → (h : c x) → (t.whisker h).IsKan)
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Bicategory.LeftExtension.IsKan.mk {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} {t : CategoryTheory.Bicategory.LeftExtension f g} (desc : (s : CategoryTheory.Bicategory.LeftExtension f g) → t s) (w : ∀ (s : CategoryTheory.Bicategory.LeftExtension f g) (τ : t s), τ = desc s) :
      t.IsKan

      To show that a left extension t is a Kan extension, we need to show that for every left extension s there is a unique morphism t ⟶ s.

      Equations
      Instances For
        @[reducible, inline]
        abbrev CategoryTheory.Bicategory.LeftExtension.IsKan.desc {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} {t : CategoryTheory.Bicategory.LeftExtension f g} (H : t.IsKan) (s : CategoryTheory.Bicategory.LeftExtension f g) :
        t.extension s.extension

        The family of 2-morphisms out of a left Kan extension.

        Equations
        Instances For
          theorem CategoryTheory.Bicategory.LeftExtension.IsKan.hom_ext {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} {t : CategoryTheory.Bicategory.LeftExtension f g} (H : t.IsKan) {k : b c} {τ : t.extension k} {τ' : t.extension k} (w : CategoryTheory.CategoryStruct.comp t.unit (CategoryTheory.Bicategory.whiskerLeft f τ) = CategoryTheory.CategoryStruct.comp t.unit (CategoryTheory.Bicategory.whiskerLeft f τ')) :
          τ = τ'

          Two 2-morphisms out of a left Kan extension are equal if their compositions with each triangle 2-morphism are equal.

          @[reducible, inline]

          The family of 2-morphisms out of an absolute left Kan extension.

          Equations
          • H.desc s = (H h).desc s
          Instances For
            def CategoryTheory.Bicategory.LeftExtension.IsAbsKan.isKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} {t : CategoryTheory.Bicategory.LeftExtension f g} (H : t.IsAbsKan) :
            t.IsKan

            An absolute left Kan extension is a left Kan extension.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[reducible, inline]
              abbrev CategoryTheory.Bicategory.LeftLift.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
              Type (max (max v w) w)

              A left Kan lift of g along f is an initial object in LeftLift f g.

              Equations
              Instances For
                @[reducible, inline]
                abbrev CategoryTheory.Bicategory.LeftLift.IsAbsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
                Type (max (max u v) w)

                An absolute left Kan lift is a Kan lift such that every 1-morphism commutes with it.

                Equations
                • t.IsAbsKan = ({x : B} → (h : x c) → (t.whisker h).IsKan)
                Instances For
                  @[reducible, inline]
                  abbrev CategoryTheory.Bicategory.LeftLift.IsKan.mk {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} {t : CategoryTheory.Bicategory.LeftLift f g} (desc : (s : CategoryTheory.Bicategory.LeftLift f g) → t s) (w : ∀ (s : CategoryTheory.Bicategory.LeftLift f g) (τ : t s), τ = desc s) :
                  t.IsKan

                  To show that a left lift t is a Kan lift, we need to show that for every left lift s there is a unique morphism t ⟶ s.

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev CategoryTheory.Bicategory.LeftLift.IsKan.desc {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} {t : CategoryTheory.Bicategory.LeftLift f g} (H : t.IsKan) (s : CategoryTheory.Bicategory.LeftLift f g) :
                    t.lift s.lift

                    The family of 2-morphisms out of a left Kan lift.

                    Equations
                    Instances For
                      theorem CategoryTheory.Bicategory.LeftLift.IsKan.hom_ext {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} {t : CategoryTheory.Bicategory.LeftLift f g} (H : t.IsKan) {k : c b} {τ : t.lift k} {τ' : t.lift k} (w : CategoryTheory.CategoryStruct.comp t.unit (CategoryTheory.Bicategory.whiskerRight τ f) = CategoryTheory.CategoryStruct.comp t.unit (CategoryTheory.Bicategory.whiskerRight τ' f)) :
                      τ = τ'

                      Two 2-morphisms out of a left Kan lift are equal if their compositions with each triangle 2-morphism are equal.

                      @[reducible, inline]

                      The family of 2-morphisms out of an absolute left Kan lift.

                      Equations
                      • H.desc s = (H h).desc s
                      Instances For
                        def CategoryTheory.Bicategory.LeftLift.IsAbsKan.isKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} {t : CategoryTheory.Bicategory.LeftLift f g} (H : t.IsAbsKan) :
                        t.IsKan

                        An absolute left Kan lift is a left Kan lift.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[reducible, inline]
                          abbrev CategoryTheory.Bicategory.RightExtension.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.RightExtension f g) :
                          Type (max (max v w) w)

                          A right Kan extension of g along f is a terminal object in RightExtension f g.

                          Equations
                          Instances For
                            @[reducible, inline]
                            abbrev CategoryTheory.Bicategory.RightLift.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.RightLift f g) :
                            Type (max (max v w) w)

                            A right Kan lift of g along f is a terminal object in RightLift f g.

                            Equations
                            Instances For