Documentation

BonnAnalysis.LorentzSpace

The distribution function d_f #

def MeasureTheory.distribution {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NNNorm E] (f : αE) (t : ENNReal) (μ : MeasureTheory.Measure α) :

The distribution function d_f of a function f. Note that unlike the notes, we also define this for t = ∞. Note: we also want to use this for functions with codomain ℝ≥0∞, but for those we just write μ { x | t < f x }

Equations
Instances For
    theorem MeasureTheory.distribution_mono_left {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {t : ENNReal} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
    theorem MeasureTheory.distribution_mono {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {t : ENNReal} {s : ENNReal} (h : ∀ᵐ (x : α) ∂μ, f x g x) (h : t s) :
    theorem MeasureTheory.distribution_smul_left {α : Type u_1} {𝕜 : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : αE} {t : ENNReal} {c : 𝕜} (hc : c 0) :
    theorem MeasureTheory.distribution_add_le {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {t : ENNReal} {s : ENNReal} :
    theorem ContinuousLinearMap.distribution_le {α : Type u_1} {𝕜 : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {E₃ : Type u_6} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E₁] [NormedSpace 𝕜 E₁] [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] (L : E₁ →L[𝕜] E₂ →L[𝕜] E₃) {t : ENNReal} {s : ENNReal} {f : αE₁} {g : αE₂} :
    MeasureTheory.distribution (fun (x : α) => (L (f x)) (g x)) (L‖₊ * t * s) μ MeasureTheory.distribution f t μ + MeasureTheory.distribution g s μ
    theorem MeasureTheory.lintegral_norm_pow {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {p : } (hp : 1 p) :
    ∫⁻ (x : α), f x‖₊ ^ pμ = ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (p * t ^ (p - 1)) * MeasureTheory.distribution f (ENNReal.ofReal t) μ

    Decreasing rearrangements f^# #

    def MeasureTheory.rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NNNorm E] (f : αE) (x : ENNReal) (μ : MeasureTheory.Measure α) :

    The decreasing rearrangement function f^#. It equals μ univ for negative x. Note that unlike the notes, we also define this for x = ∞. To do: we should also be able to use this for functions with codomain ℝ≥0∞.

    Equations
    Instances For
      theorem MeasureTheory.rearrangement_mono_left {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {x : ENNReal} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
      theorem MeasureTheory.rearrangement_mono {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {x : ENNReal} {y : ENNReal} (h1 : ∀ᵐ (x : α) ∂μ, f x g x) (h2 : x y) :
      theorem MeasureTheory.rearrangement_smul_left {α : Type u_1} {𝕜 : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : αE} {x : ENNReal} (c : 𝕜) :
      theorem MeasureTheory.rearrangement_add_le {α : Type u_1} {𝕜 : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} {x : ENNReal} {y : ENNReal} (c : 𝕜) :
      theorem ContinuousLinearMap.rearrangement_le {α : Type u_1} {𝕜 : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {E₃ : Type u_6} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E₁] [NormedSpace 𝕜 E₁] [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] (L : E₁ →L[𝕜] E₂ →L[𝕜] E₃) {x : ENNReal} {y : ENNReal} {f : αE₁} {g : αE₂} :
      MeasureTheory.rearrangement (fun (x : α) => (L (f x)) (g x)) (L‖₊ * x * y) μ MeasureTheory.rearrangement f x μ + MeasureTheory.rearrangement g y μ
      theorem MeasureTheory.volume_lt_rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) (s : ENNReal) :
      MeasureTheory.volume {x : | s < MeasureTheory.rearrangement f (ENNReal.ofReal x) μ} = MeasureTheory.distribution f s μ
      theorem MeasureTheory.lintegral_rearrangement_pow {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) {p : } (hp : 1 p) :
      ∫⁻ (t : ), MeasureTheory.rearrangement f (ENNReal.ofReal t) μ ^ p = ∫⁻ (x : α), f x‖₊μ
      theorem MeasureTheory.sSup_rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) :
      ⨆ (t : ENNReal), ⨆ (_ : t > 0), MeasureTheory.rearrangement f t μ = MeasureTheory.rearrangement f 0 μ
      theorem MeasureTheory.essSup_nnnorm_eq_rearrangement_zero {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) :
      (essSup (fun (x : α) => f x‖₊) μ) = MeasureTheory.rearrangement f 0 μ
      theorem MeasureTheory.tendsto_rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} {s : αE} (hs : ∀ᶠ (i : ) in Filter.atTop, Measurable (s i)) (hf : Measurable f) (h2s : ∀ᵐ (x : α) ∂μ, Monotone fun (n : ) => s n x) (h : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (x_1 : ) => s x_1 x) Filter.atTop (nhds f x)) :
      Filter.Tendsto s Filter.atTop (nhds f)
      theorem MeasureTheory.liminf_rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} {x : ENNReal} {s : αE} (hs : ∀ᶠ (i : ) in Filter.atTop, Measurable (s i)) (hf : Measurable f) (h : ∀ᵐ (x : α) ∂μ, f x Filter.liminf (fun (x_1 : ) => s x_1 x) Filter.atTop) :
      MeasureTheory.rearrangement f x μ Filter.liminf (fun (i : ) => MeasureTheory.rearrangement (s i) x μ) Filter.atTop
      theorem MeasureTheory.distribution_indicator_le_measure {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) {X : Set α} (hX : MeasurableSet X) (t : ENNReal) (μ : MeasureTheory.Measure α) :
      MeasureTheory.distribution (X.indicator f) t μ μ X
      Equations
      Instances For
        theorem MeasureTheory.rearrangement_indicator_le' {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) {X : Set α} (hX : MeasurableSet X) (t : ENNReal) (μ : MeasureTheory.Measure α) :
        MeasureTheory.rearrangement (X.indicator f) t μ (Set.Iio (μ X)).indicator (fun (x : ENNReal) => MeasureTheory.rearrangement f x μ) t

        Version of rearrangement_indicator_le for t : ℝ≥0∞

        theorem MeasureTheory.rearrangement_indicator_le {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) {X : Set α} (hX : MeasurableSet X) (t : ) (μ : MeasureTheory.Measure α) :
        MeasureTheory.rearrangement (X.indicator f) (ENNReal.ofReal t) μ (μ X).Ico.indicator (fun (x : ) => MeasureTheory.rearrangement f (ENNReal.ofReal x) μ) t
        theorem MeasureTheory.integral_norm_le_integral_rearrangement {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] [MeasurableSpace E] {f : αE} (hf : Measurable f) {X : Set α} (hX : MeasurableSet X) (μ : MeasureTheory.Measure α) :
        ∫⁻ (x : α), f x‖₊μ ∫⁻ (t : ) in (μ X).Ico, MeasureTheory.rearrangement f (ENNReal.ofReal t) μ
        theorem MeasureTheory.lintegral_norm_mul_le_lintegral_rearrangement_mul {α : Type u_1} {𝕜 : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] {f : α𝕜} {g : α𝕜} :
        ∫⁻ (x : α), f x * g x‖₊μ ∫⁻ (t : ), MeasureTheory.rearrangement f (ENNReal.ofReal t) μ * MeasureTheory.rearrangement g (ENNReal.ofReal t) μ

        The Hardy-Littlewood rearrangement inequality, for functions into 𝕜

        def MeasureTheory.lnorm' {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] (f : αE) (p : ENNReal) (q : ) (μ : MeasureTheory.Measure α) :

        The norm corresponding to the Lorentz space L^{p,q} for 1 ≤ p ≤ ∞ and 1 ≤ q < ∞.

        Equations
        Instances For
          def MeasureTheory.lnorm {α : Type u_1} {E : Type u_3} {m : MeasurableSpace α} [NormedAddCommGroup E] (f : αE) (p : ENNReal) (q : ENNReal) (μ : MeasureTheory.Measure α) :

          The norm corresponding to the Lorentz space L^{p,q} for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            the Lorentz space L^{p,q}

            Equations
            Instances For