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1. Introduction

Type theory is a foundational system for mathematics that replaces classical logic and set
theory by a unified framework where inference rules and mathematical constructions exist
on the same level. Let us elaborate on this: In type theory, everything is a type, including
“objects”, properties, implications, etc. Proving that a type has a certain property means
providing a term, or a witness, of the type corresponding to that property.
The work presented in this thesis benefits from two big advantages of type theory against

other formal systems:

• The constructive/computational style of type theory allows us to write formal proofs
as computer programs in proof assistants; modulo errors in the implementation of the
type theory itself, we can have a proof that is verifiably correct, in the full axiomatic
sense.

• Different type theories can be developed as settings to work in different areas of math-
ematics. This is, in some sense, a question of analytic vs synthetic approaches to math-
ematics: The former of these is concerned with defining mathematical objects and
deriving their desirable properties; The second, which we follow here, works by pos-
tulating that our objects have the desirable properτies, and working from there. This
thesis is concerned with one of these systems, simplicial type theory [RS17], a type
theory made to reason about∞-categories, and its dedicated proof assistant, Rzk.

So,whyworkwith higher categories in the first place? Intuitively, higher categories are
like generalized categorieswith objects,morphisms, and levels of𝑛-morphisms between (𝑛−
1)-morphisms for each𝑛 ≥ 2. Moreover, the usual properties of uniqueness and associativity
of compositions are only satisfied up to weaker uniqueness conditions, which are witnessed
by the morphisms one level above.
One category that wewould like to generalize this way is the category of topological spaces

𝒯op: A classic problem of 𝒯op is that, while ordinary category theory works best when
notions are considered up to isomorphisms, homotopy theory is concerned with studying
spaces up to homotopy equivalence (or even up to weak homotopy equivalence!). We there-
fore want an analogous higher category where morphisms between morphisms correspond
to homotopies, and we also have higher homotopies between homotopies, etc. All these lev-
els of coherences are needed, as a lot of constructions in𝒯op are not homotopy invariant (see
2.3.3 for a quick example). Indeed, one can define the∞-category of spaces or anima (𝒜𝑛),
where compositions are unique and associative only up to homotopy. Homotopy-coherent
structures come up in many other variants: For example, when studying stable phenomena
using the category of spectra, we can work with algebraic structures, which, once again,
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only satisfy their expected properties up to homotopy, thus leading us to the field of higher
algebra.
We did not mention one thing: what are the “objects” in the category 𝒜𝑛? Topological

spaces themselves have an internal higher homotopical structure, given by paths between
points, homotopies between paths, etc. Note that, now, all paths are invertible. We can thus
use the notion of an∞-groupoid to capture this information about spaces. We can now go
back and make a similar observation about ∞-categories: All higher morphisms, starting
at homotopies, are equivalences. To remember this fact (and distinguish frommore general
notions), we often refer to∞-groupoids as (∞, 0)-categories andwe say that the∞-categories
we work with are specifically (∞, 1)-categories.

And why formalize∞‑categories synthetically? There is no a priori “correct” analytic
definition of an ∞-category. Doing higher category theory usually involves working with
concrete definitions usually referred to asmodels of∞-categories, most often defined as ob-
jects in some category of simplicial objects that satisfy some coherence conditions. The two
most used models are Boardman and Vogt’s quasicategories [BV73] and Rezk’s complete Se-
gal spaces [Rez01]. These models, are, in some sense, homotopically equivalent, so it is a
reasonable idea to try to present a general theory of∞-categories, that has these construc-
tions as its models. In set-basedmathematics, such a theory is developed by Riehl and Verity
in [RV22].
Even with the existence of such a generalization, a synthetic theory would still remove

a lot of the technical work required to get any reasonable∞-categorical machinery up and
running (see, for example, Lurie’s seminal work on quasicategories and higher topos theory
[Lur09]). Simplicial type theory aims to reduce a lot of the basic study of higher categories to
more familiar low-dimensional arguments, with the type theory keeping track of the higher
coherences. Furthermore, the 2-categorical methods from [RV22] can be developed analo-
gously in the type-theoretic context, as done, for example, by Buchholtz and Weinberger in
[BW23].

From dependent type theory to homotopy type theory to simplicial type theory. The
origin of all such homotopical thinking by type-theoretic means lies with Martin-Löf’s de-
pendent type theory [Mar71] and its groupoid interpretation byHoffman andStreicher [HS98].
Among other things, Martin-Löf extended type theory with intensional identity types, i.e.,
type of witnesses to equalities between terms, which Hoffman and Streicher interpret as
paths.
Thenext stepwas observing that these identity types can, just like paths andhomotopies in

topological spaces, be extended to capture higher homotοpical structure, akin to the notion
of∞-groupoids discussed earlier. Together with the univalence axiom and the addition of
higher inductive types, this type theory, now called homotopy type theory [Uni13], could now
be interpreted in spaces [KL21], and later, in any ∞-topos [Shu19], i.e., any structure in
which one can reasonably do homotopy theory.
The challengenowwasmoving from interpreting∞-groupoids to (∞, 1)-categories: adding

the structure of spaces of non-invertible morphisms internal to a type, to create a so-called
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directed type theory. Types with directed morphisms could be defined in the setting of “book
HoTT” already in [AKS15], but there was no way to capture the infinite levels of coherences
internally, so category theory had to be done in terms of 1-categories. Riehl and Shulman
manage to extend dependent type theory to a theory that can reason about∞-categories by
introducing a theory of shapes, out of which one can construct simplices which represent
directed intervals, 2-cells witnessing compositions, etc. Thus, out of any type, we can take
its hom-type, or the type of directed arrows, and by imposing conditions on it we can re-
quire that it is an∞-category, with the standard semantics being in Reedy fibrant simplicial
spaces, with∞-categories corresponding to complete Segal spaces.

In this thesis, we present contributions to the Rzk formalization library of simplicial type
theory. Note that not every type in simplicial type theory is an∞-category, and in fact a lot
of results can follow by imposing less strict assumptions. Finding the most general versions
of results is another advantage of formalization of mathematics, where we want theorems
that can be applied to as many places as possible, ideally proved only once. We also present
some results that generalize for types with properties relating to higher-dimensional shapes.
Here, we again take advantage of this axiomatic choice in simplicial type theory. A different
approach, making all types∞-categories, which should be more powerful but less general,
is currently being developed by Cisinski, Nguyen, Walde and Cnossen in [Cis+].

Structure of the thesis

Chapter 2. We introduce our models for higher category theory and the tools we have to
compare them using model categories. Before introducing quasicategories and com-
plete Segal spaces, we also briefly discuss Kan complexes and their homotopy theory
as motivation.

Chapter 3. We give a mostly formal presentation of homotopy type theory. Starting from
the axiomatic system of dependent type theory,

Chapter 4. A short diversion, we discuss some 2-categorical examples that hint towards the
relation of Rezk-completeness and univalence.

Chapter 5. After a brief presentation of the modifications one has to do to the Segal condi-
tion to get a reasonable type-theoretic definition, we introduce simplicial type theory
and present some contributed formal proofs to the sHoTT library of formalizations in
the Rzk proof assistant. Once again, we mainly focus the exposition on foundational
aspects.

Chapter 6. Discussion regarding a new experimental project aimed at using simplicial type
theory to formalize 2-Segal types, defined using generalized 3-horn filling conditions.

Weassume familiaritywith ordinary 1-category theory (Yoneda lemma, adjunctions, (co)limits).
Knowledge of homotopy theory (homotopy groups, CW-complexes, Serre fibrations, trun-
cations) is desirable for motivational purposes.
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2. TwoModels for Higher Categories

2.1. A Quick Review of Model Categories

In this first chapter, our aim is to provide concrete “models” for the concepts of an ∞-
groupoid and an∞-category, and make comparisons: In the first case, we compare models
of∞-groupoids, one in Kan complexes and one in spaces, and in the second case, we com-
pare models of∞-categories to each other. One reason that both of these comparisons need
to be made is to ensure that the objects we have defined provide a meaningful replacement
for doing classical homotopy theory. Model categories, then, are the tools one uses to make
such comparisons.
While the definition, which goes back to Quillen [Qui67] to generalize common results in

algebraic topology and homological algebra, is quite long, the idea is relatively straightfor-
ward: When working homotopically we are concerned with notions of equivalence weaker
than isomorphisms (In topology: weak homotopy equivalences, in algebra: chain homotopy
equivalences, etc.), and model categories provide a coherent framework where one can use
this weak equivalences as “normal” equivalences.
Along with weak equivalences, model categories come with two more classes of maps,

representing the morphisms that interact with weak equivalences in desirable ways (lifting
properties, etc.). Using these distinguished classes of maps, we then define homotopies and
compare different model categories up to homotopy. As an imprecise slogan, we can say
that “model categories present homotopy theories”.

2.1.1 Definition. Amodel structure on a category 𝒞 consists of three classes of morphisms
calledweak equivalences (denoted W), fibrations (denoted Fib), and cofibrations (denoted
Cof), satisfying the following properties:

1. (2-out-of-3 property for weak equivalences). For morphisms 𝐴 𝑓−→ 𝐵 𝑔−→ 𝐶, if any two
of {𝑓, 𝑔, 𝑔 ∘ 𝑓} are weak equivalences, so is the third.

2. W, Fib and Cof are closed under retracts: For any commutative diagram of the form

𝐴 𝐶 𝐴

𝐵 𝐷 𝐵

𝑖𝑑𝑋

𝑓 𝑔 𝑓

𝑖𝑑𝑌

(wherewe say 𝑓 is a retract of 𝑔), if 𝑔 ∈ W/Fib/Cof, then 𝑓 ∈ W/Fib/Cof respectively.

6



3. For any commutative square
𝐴 𝐵

𝐶 𝐷
𝑖 𝑝∃?

if one of the following holds:
• 𝑖 ∈ Cof and 𝑝 ∈ Fib ∩ W, or
• 𝑖 ∈ Cof ∩ W and 𝑝 ∈ Fib,

then there exists a lift making the diagram commute.

4. Every morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝐶 admits two factorizations:

• 𝑓 = (𝐴 𝑖−→ 𝐶 𝑝−→ 𝐵), where 𝑖 ∈ Cof and 𝑝 ∈ Fib ∩ W.

• 𝑓 = (𝐴 𝑗−→ 𝐷 𝑞−→ 𝐵), where 𝑗 ∈ Cof ∩ W and 𝑞 ∈ Fib.

Amodel category is a category with small limits and colimits equipped with a model struc-
ture.

2.1.2 Remark. In his original definition in [Qui67], Quillen only assumes that a model cat-
egory has finite (co)limits. Small (co)limits are usually assumed inmodern definitions, both
to give access to more technical arguments and because the categories that usually concern
us (spaces, simplicial objects, chain complexes) have small (co)limits.

2.1.3 Notation. 1. In particular, a model category 𝒞 has an initial and a terminal object,
which we denote by ∅ and ∗ respectively.

2. When working with diagrams, it is convenient to fix some notation for arrows in this
section: We use (

∼−→) for weak equivalences, (↠) for fibrations, and (↪) for cofibra-
tions.

2.1.4 Definition. In a model category, morphisms in Fib ∩ W are called trivial fibrations
(or acyclic fibrations) and morphisms in Cof ∩ W are called trivial cofibrations (or acyclic
cofibrations).

2.1.5 Definition. Let 𝒞 be a model category. An object 𝐴 of 𝐶 is called fibrant if the map
𝐴 → ∗ is a fibration. Dually, 𝐴 is cofibrant if the map∅ → 𝐴 is a cofibration. 𝐴 is bifibrant
if it is both fibrant and cofibrant.

2.1.6 Construction ((Co)fibrant replacement). Let 𝒞 be a model category and 𝐴 an object
of 𝒞. By [2.1.1, 4.], we can factor the map into ∗ as

𝐴 ∗

𝑅𝐴
∼
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(note that 𝑅𝐴 is not necessarily unique). 𝑅𝐴 is now a fibrant object which is weakly equiva-
lent to𝐴. We call such an object𝑅𝐴 togetherwith a trivial cofibration 𝐴 𝑅𝐴∼ a fibrant
replacement of 𝐴.

Similarly, factoring
∅ 𝐴

𝑄𝐴
∼

results in a cofibrant replacement 𝑄𝐴 𝐴.∼

2.1.7 Remark. Wewill alsomake a stronger assumption on (co)fibrant replacement: A lot of
constructions may depend on a choice of factorization, so we assume that the constructions
above assemble into (co)fibrant replacement functors 𝑅,𝑄 ∶ 𝒞 → 𝒞. This is reasonable to
assume as, for example, functorial factorizations like this exist for

• All combinatorial model categories.

• Classes produced by a small object argument (e.g. [Hir03, 10.5.16]).

2.1.8 Lemma. Any class of morphisms defined via a right lifting property (in particular, Fib
and Fib ∩ W in a model category) is stable under pullback.

Proof. Assume we have a pullback diagram

𝐴 ×𝐶 𝐵 𝐴

𝐵 𝐶

𝑘⌟
𝑟∗𝑓 𝑓

𝑟

and 𝑓 has the right lifting property against a morphism 𝑔 ∶ 𝑋 → 𝑌 . Consider the diagram

𝑋 𝐴 ×𝐶 𝐵 𝐴

𝑌 𝐵 𝐶

𝑔

𝑙 𝑘⌟
𝑓

𝑠

∃ℎ

𝑟

where, by assumption, we have a lift ℎ ∶ 𝑌 → 𝐴 with 𝑟 ∘ 𝑠 = 𝑓 ∘ ℎ and 𝑘 ∘ 𝑙 = ℎ ∘ 𝑔. By the
universal property of 𝐴 ×𝐶 𝐵, we get a unique map ̃ℎ ∶ 𝑌 → 𝐴 ×𝐶 𝐵 making everything on
the right commute. Then ̃ℎ also commutes with the maps on the left by the uniqueness part
of the universal property of the pullback.

2.1.9 Proposition. Let 𝒞 be a model category. Then Cof consists precisely of the morphisms
with the left lifting property against Fib ∩ W. Dually, Fib consists precisely of the morphisms
with the right lifting property against Cof ∩ W.

Proof. See e.g. [Hir03, Proposition 7.2.3].

2.1.10 Corollary. Fib and Cof are closed under composition.
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Using (2.1.9) and with a little more work, we can show that model structures can be
uniquely determined by various distinguished classes of objects and morphisms. We will
take advantage of these facts later, using the simplest classes to determine the rest of the
structure, making the exposition easier to follow. For a detailed discussion, see [Joy, Ap-
pendix E].

2.1.11 Proposition. A model structure on a category 𝒞 is uniquely determined by any of the
following:

1. Any two of the classes W, Fib, Cof.

2. Cofibrations and fibrant objects (dually, fibrations and cofibrant objects).

3. Trivial fibrations and fibrant objects (dually, trivial cofibrations and cofibrant objects).

Proof sketch. The key step is showing that Fib and Cof determine W. We can get Fib ∩ W
and Cof ∩ W by (2.1.9). By the 2-out-of-3 property for weak equivalences, we see that a
morphism in 𝒞 is a weak equivalence if it factors as a trivial cofibration followed by a trivial
fibration (Just use a factorization guaranteed by the axioms and 2-out-of-3), thus we have
determined W.

2.1.12 Example. Every (co)complete category 𝒞 can be made into a model category via the
trivial model structure, where the weak equivalences and every morphism is both a fibration
and a cofibration.

2.1.13 Example (Model structures on 𝒯op). A category may be equipped with more than
one nontrivial model structure. There are two model structures on the category of topolog-
ical spaces, using two commonly studied classes of equivalences and fibrations:

1. The classical/Quillen model structure on 𝒯op, where
• W = {weak equivalences}
• Fib = {Serre fibrations}
• Cof = {retracts of relative cell complexes} (in particular, all CW-inclusions)

2. The Strømmodel structure on 𝒯op, where
• W = {homotopy equivalences}
• Fib = {Hurewicz fibrations}

2.1.14 Definition. Let 𝒞 be a model category and 𝐷 a small category. Define “model struc-
tures” on the functor category Fun(𝒟, 𝒞) with the following classes of maps:

1. • W = {objectwise weak equivalences}
• Cof = {objectwise cofibrations}

which, if it defines a model structure, we call the injective model structure.

2. • W = {objectwise weak equivalences}

9



• Fib = {objectwise fibrations}
which, if it defines a model structure, we call the projective model structure.

2.1.15 Remark. One advantage of working with the projective and injective model struc-
tures is that they are very simple to define. However, one needs to check that they exist.
Once condition that guarantees their existence is 𝒞 being a combinatorial model category,
which roughly means that it is generated by cofibrations using “small data” (For details, see
[Lur09, Section A.2.6]). The “base” model categories we will be concerned with are combi-
natorial, so we may assume that these model structures exist.

The homotopy category of amodel category

We introduced model categories in order to have a consistent method of working with ob-
jects up to weaker forms of equivalences. The homotopy category of a model category real-
izes this, using the distinguished classes of morphisms to define the appropriate notion of
homotopy between two maps, and then working with morphisms modulo homotopy rela-
tions. Moreover, the homotopy category is equivalent to the category one gets from formally
inverting the weak equivalences (localizations can have size issues; in this case it is a cate-
gory!), justifying the fact that weak equivalences are now our “proper” equivalences.

2.1.16 Definition. The homotopy category of a model category 𝒞 is the category 𝒞[W−1]
obtained by formally inverting the weak equivalences.

For an arbitrary collection of maps in a category 𝒞, this definition has set-theoretic issues:
Localizations 𝒞[𝑀−1] may not be presented in a way that guarantees the hom-classes in
𝒞[𝑀−1] to be sets. However, when inverting weak equivalences in a model category, we can
provide an explicit construction of a category that realizes this definition.

Constructing the homotopy category. We have to say what two maps being homotopic
means in this context. A definition of homotopy first requires a path, so this is where we
begin.

2.1.17 Definition. Let 𝒞 be a model category and 𝑋 and object of 𝒞.

• A path object of 𝑋 is a factorization of the diagonal

𝑋 𝑃(𝑋) 𝑋 × 𝑋𝑖
∼

Δ𝑋

𝑝

• Dually, a cylinder object of 𝑋 is a factorization of the codiagonal

𝑋∐𝑋 𝐶(𝑋) 𝑋𝑗

∇𝑋

𝑞
∼
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As with (co)fibrant replacement, these factorizations exist by definition.

2.1.18 Definition. Let 𝒞 be a model category and 𝑓, 𝑔 ∶ 𝑋 → 𝑌 morphisms in 𝒞. We say

• 𝑓 is right homotopic to 𝑔 (𝑓 ≃𝑅 𝑔) if there is a commutative diagram

𝑋 𝑃(𝑌)

𝑌 × 𝑌
(𝑓,𝑔)

where 𝑃(𝑌) ↠ 𝑌 × 𝑌 is a path object.

• 𝑓 is left homotopic to 𝑔 (𝑓 ≃𝐿 𝑔) if there is a commutative diagram

𝑋∐𝑋 𝐶(𝑋)

𝑌
(𝑓,𝑔)

where 𝑋∐𝑋 ↪ 𝐶(𝑋) is a cylinder object.

2.1.19 Proposition. Let 𝒞 be a model category 𝑓, 𝑔 ∶ 𝑋 → 𝑌 morphisms in 𝒞. Then:

1. If 𝑋 is cofibrant, ≃𝐿 is an equivalence relations onHom𝒞(𝑥, 𝑦).

2. If 𝑌 is fibrant, ≃𝑅 is an equivalence relations onHom𝒞(𝑥, 𝑦).

3. If 𝑋 is cofibrant and 𝑌 is fibrant, then 𝑓 ≃𝐿 𝑔 if and only if 𝑓 ≃𝑅 𝑔.

4. Homotopy respects compositions.

Proof. See e.g. [Hir03, 7.4.5, 7.4.9].

2.1.20 Remark. Under the same assumptions, one can also prove that homotopy relations
are independent of the choice of path/cylinder object.

2.1.21 Definition. For a model category 𝒞, define the category Ho(𝒞) with

• Objects: the objects of 𝒞.

• HomHo(𝒞)(𝑋, 𝑌) ≔ Hom(𝑄(𝑅(𝑋)), 𝑄(𝑅(𝑌)))⧸∼
As in spaces, we say that a morphism is a homotopy equivalence if it has an inverse in the

homotopy category.

2.1.22 Theorem (Model category Whitehead). In a model category, every weak equivalence
between bifibrant objects is a homotopy equivalence.
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Proof sketch. As in the proof of (2.1.11), a weak equivalence 𝑓 ∶ 𝑋 → 𝑌 is a composite
𝑋 𝑍 𝑌∼

𝑖
∼
𝑝 so it suffices to prove that trivial (co)fibrations have homotopy inverses.

Then we can solve lifting problems of the form

∅ 𝐴

𝐵 𝐵

∼

𝑖𝑑𝐵

and its dual for trivial cofibrations.

Thus we have constructed a category Ho(𝒞) that is equivalent to 𝒞[W−1]. Note that we
could also use the category of bifibrant objects in 𝒞 together with homotopy classes of mor-
phisms, and we would still get an equivalence byWhitehead and the fact that 𝑋 → 𝑄(𝑅(𝑋))
is a weak equivalence.

2.1.23 Example (Some algebra, [Qui67], [DS95]). Let 𝑅 be a ring. We can define a model
structure on the category of bounded chain complexes Ch≥0(𝑅) such that:

• The weak equivalences are the quasi-isomorphisms.

• The fibrations are the levelwise epimorphisms.

• The cofibrations are the levelwise monomorphisms with a projective cokernel.

Thus, repeating the homotopy category construction we obtain a category that formally in-
verts the quasi-isomorphisms. In other words, we have defined the derived category 𝐷(𝑅)!

We now define the structure-preserving functors that we use to compare homotopy the-
ories presented by model categories. We mainly follow the exposition of [Lur09, Appendix
A].

2.1.24 Proposition. Let 𝒞 𝒟
𝐹

𝐺

⊣ be an adjoint pair between two model categories 𝒞,𝒟.

The following are equivalent:

1. 𝐹 preserves cofibrations and trivial cofibrations.

2. 𝐺 preserves fibrations and trivial fibrations.

3. 𝐹 preserves cofibrations and 𝐺 preserves fibrations.

4. 𝐹 preserves trivial cofibrations and 𝐺 preserves trivial fibrations.

Proof. See e.g. [Hir03, Proposition 8.5.3].

2.1.25 Definition. An adjunction (𝐹 ⊣ 𝐺) between model categories is a Quillen adjunc-
tion if any of the equivalent conditions in (2.1.24) are satisfied.

12



2.1.26 Lemma. Let (𝐹 ⊣ 𝐺) be a Quillen adjunction. Then:

1. 𝐹 takes weak equivalences between cofibrant objects to weak equivalences.

2. 𝐺 takes weak equivalences between fibrant objects to weak equivalences.

Then, if we have (co)fibrant replacement functors, we can compose with them to get in-
duced functor

2.1.27 Definition. Let (𝐹 ⊣ 𝐺) be a Quillen adjunction. We define

1. The (total) left derived functor 𝕃𝐹 ∶ Ho(𝒞) → Ho(𝒟),

𝕃𝐹 ≔ Ho(𝒞) Ho(𝑄)−−−−→ Ho(𝒞) Ho(𝐹)−−−−→ Ho(𝒟)

2. The (total) right derived functor ℝ𝐺 ∶ Ho(𝒟) → Ho(𝒞),

ℝ𝐺 ≔ Ho(𝒟) Ho(𝑅)−−−−→ Ho(𝒟) Ho(𝐺)−−−−→ Ho(𝒞)

2.1.28 Remark. For functors 𝐹 ∶ 𝒞 ⟷ 𝒟 ∶ 𝐺 between model categories, we can define
derived functors by a characterizing universal property: In particular, we can define L𝐹 ∶
Ho(𝒞) → 𝒟 as the right Kan extension of𝐹 along𝒞 → Ho(𝒞) andR𝐺 as the left Kan extension
of 𝐺 along 𝒟 → Ho(𝒟) (which may not exist for arbitrary 𝐹, 𝐺). Then compose with the
projections to the homotopy categories to get total derived functors as above.

2.1.29 Proposition. Let (𝐹 ⊣ 𝐺) be a Quillen adjunction. Then the derived functors 𝕃𝐹 ∶
Ho(𝒞) → Ho(𝒟) and ℝ𝐺 ∶ Ho(𝒟) → Ho(𝒞) form an ajoint pair

Ho(𝒞) Ho(𝒟)
𝕃𝐹

ℝ𝐺

⊣

2.1.30 Proposition. Let 𝒞 𝒟
𝐹

𝐺

⊣ be a Quillen adjunction between two model categories

𝒞,𝒟. The following are equivalent:

1. The left derived functor 𝕃𝐹 ∶ Ho(𝒞) → Ho(𝒟) is an equivalence of categories.

2. The right derived functor ℝ𝐺 ∶ Ho(𝒟) → Ho(𝒞) is an equivalence of categories.

3. For every cofibrant object 𝐶 ∈ 𝒞 and every fibrant object 𝐷 ∈ 𝒟, a morphism 𝐶 → ℝ𝐷
is a weak equivalence in 𝒞 precisely when the adjunct morphism 𝕃𝐶 → 𝐷 is a weak
equivalence in𝒟.

4. The unit and counit of the induced adjunction (𝕃𝐹 ⊣ ℝ𝐺) are weak equivalences.

Proof. See e.g. [Lur09, Proposition A.2.5.1].

2.1.31 Definition. A Quillen adjunction (𝐹 ⊣ 𝐺) between model categories is a Quillen
equivalence if any of the equivalent conditions in (2.1.30) are satisfied.
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2.2. Simplicial Objects and Homotopy Theory

A Reminder on Simplicial Objects

We begin by defining the objects that will concern us for the rest of this chapter. It is not
immediately clear why this is the way to go when trying to define structures that adequately
replace classical homotopy theory; We will spend the next few sections to motivate this cor-
respondence and make some of it precise.

2.2.1 Definition.

1. We denote by Δ the simplex category with objects [𝑛] ≔ {0,… , 𝑛} for all 𝑛 ∈ ℕ and
morphisms all non-decreasing maps.

2. Let 𝒞 be a category. The category of simplicial objects in 𝒞 is the functor category
Fun(Δ𝑜𝑝, 𝒞).

We will mainly be concerned with two special cases: The category 𝑠Set ≔ Fun(Δ𝑜𝑝, Set)
of simplicial sets and the category of simplicial spaces

𝑠𝒮 ≔ Fun(Δ𝑜𝑝, 𝑠Set)

We identify 𝑠𝒮 with the category of bisimplicial sets, i.e., the functor category

Fun(Δ𝑜𝑝 × Δ𝑜𝑝, Set)

For a simplicial space 𝑋 and 𝑛 ∈ ℕ, the simplicial set 𝑋𝑛 itself consists of sets 𝑋𝑛𝑚 ≔
𝑋𝑛(𝑚).

2.2.2 Definition. In Δ, we define the coface 𝛿𝑖𝑛 ∶ [𝑛 − 1] → [𝑛] to be the unique strictly
monotone map that skips 𝑖, and the codegeneracy 𝜎𝑗𝑛 ∶ [𝑛 + 1] → [𝑛] to be the map that
repeats 𝑗 in positions 𝑗 and 𝑗 + 1.

We can form their induced maps in any simplicial object 𝑋 :
We get face maps

𝑑𝑛𝑖 ≔ (𝛿𝑖𝑛)∗ ∶ 𝑋𝑛 → 𝑋𝑛−1
and degeneracy maps

𝑠𝑛𝑗 ≔ (𝜎𝑗𝑛)∗ ∶ 𝑋𝑛 → 𝑋𝑛+1
We usually skip the 𝑛 for convenience whenever it is implied.

2.2.3 Remark. It is easy to check that 𝑑𝑛+1𝑖 ∘ 𝑠𝑛𝑖 = 𝑖𝑑𝑋𝑛 for any simplcial object 𝑋 . Geomet-
rically, we will see that we interpret face maps as projections to a face and degeneracies as
creating “trivial” higher-dimensional edges.

We now provide some combinatorial computations to give a more concrete description of
a simplicial object.
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2.2.4 Proposition (cosimplicial identities).

𝛿𝑗 ∘ 𝛿𝑖 = 𝛿𝑖 ∘ 𝛿𝑗−1 if 𝑖 < 𝑗
𝜎𝑗 ∘ 𝜎𝑖 = 𝜎𝑖 ∘ 𝜎𝑗+1 if 𝑖 ≤ 𝑗
𝜎𝑗 ∘ 𝛿𝑗 = 𝜎𝑗 ∘ 𝛿𝑗+1 = 𝑖𝑑
𝜎𝑗 ∘ 𝛿𝑖 = 𝛿𝑖−1 ∘ 𝜎𝑗 if 𝑖 > 𝑗 + 1
𝜎𝑗 ∘ 𝜎𝑖 = 𝜎𝑖 ∘ 𝜎𝑗+1 if 𝑖 ≤ 𝑗

Then, in any simplicial object, the 𝑑𝑖 and 𝑠𝑖 satisfy the duals of these identities, which we
call the simplicial identities (See [GJ99, 1.2, 1.3]).

2.2.5 Proposition. Every morphism in Δ can be uniquely written as a composition of cofaces
and codegeneracies.

Proof. See e.g. [Mac98, Section II.5].

Let us now take a closer look at simplicial objects: A functor 𝑋 ∶ Δ𝑜𝑝 → 𝒞 consists of
an object 𝑋𝑛 ≔ 𝑋(𝑛) for every 𝑛 ∈ ℕ, and, on morphisms, (2.2.5) tells us that it is enough
to specify the behavior of 𝑋 on the coface and codegeneracies, i.e., its face and degeneracy
maps.

2.2.6 Remark. Using (2.2.5), it is easy to show that the definition of a simplicial set as a func-
tor is, in fact, equivalent to specifying such a sequence of objects and morphisms satisfying
the simplicial identities. In particular, Δ itself is completely determined by the cosimplicial
identities.

2.2.7 Example (Nerve of a category). Let 𝒞 be a category. Consider the posets [𝑛], 𝑛 ∈ ℕ,
as categories (0 → 1 → ⋯ → 𝑛). Define the nerve 𝑁𝒞 of 𝒞 to be the simplicial set by setting

𝑁𝒞𝑘 ≔ Fun([𝑘], 𝒞)

(meaning that 𝑁𝒞𝑘 consists of tuples of composable morphisms 𝐴0
𝑓0−−→ 𝐴1

𝑓1−→ ⋯
𝑓𝑘−1−−−→ 𝐴𝑘)

and letting the face 𝑑𝑛𝑖 be the map removing 𝐴𝑛 and composing the remaining maps if 𝑛 ≠
0, 𝑘, and the degeneracy 𝑠𝑛𝑖 be the map duplicating 𝐴𝑛 with an identity map in between.

2.2.8 Remark. One nice property of functor categories Fun(𝒟, 𝒞) is that (co)limits exist and
can be computed pointwise if they exist in 𝒞. Thus 𝑠Set and 𝑠𝒮 are (co)complete.

We now introduce some notation for the representable functors in 𝑠Set.

2.2.9 Definition. Let 𝑛 ∈ ℕ. The standard 𝑛-simplex Δ𝑛 is the functor Hom(−, [𝑛]).

Then, an immediate consequence of the Yoneda lemma is that there is a natural bijection

Hom𝑠Set(Δ𝑛, 𝑋) ≅ 𝑋𝑛

for every simplicial set X. We call a map Δ𝑛 → 𝑋 (or, equivalently, an element of 𝑋𝑛) an
𝑛-simplex of 𝑋 .
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2.2.10 Example. Note that there is only one map [𝑛] → [0] for every 𝑛, thus Δ0 is a final
object of 𝑠Set. Knowing this, it makes sense to think of the 0-simplices of a simplicial sets as
its points.

To what extent can we repeat this for simplicial spaces? There are two ways that we can
think of a simplicial set 𝑋 as a simplicial space:

• The vertical embedding 𝑖𝐹(𝑋)𝑛𝑚 ≔ 𝑋𝑛, and

• The horizontal embedding 𝑖Δ(𝑋)𝑛𝑚 ≔ 𝑋𝑚
2.2.11 Definition. For 𝑛 ∈ ℕ we define 𝐹(𝑛) ≔ 𝑖𝐹(Δ𝑛) and Δ[𝑛] ≔ 𝑖Δ(Δ𝑛).

We now recall an important fact about presheaf categories.

2.2.12 Proposition. Let𝒟 be a small category. Then the category Fun(𝒟𝑜𝑝, Set) is cartesian
closed, with exponential given by the formula

𝐵𝐴(𝑥) = Nat(Hom𝒟(−, 𝑥) × 𝐴, 𝐵) (*)

for any functors 𝐴, 𝐵 ∶ 𝒟𝑜𝑝 → Set and 𝑥 ∈ Obj(𝒟).

Proof. See, for example, [MM92, I.6, Proposition 1]

Let us first apply this to 𝑠Set: (*) tells us precisely that

(𝑌𝑋)𝑛 = Hom𝑠Set(Δ𝑛 × 𝑋, 𝑌)

For 𝑠𝒮, things get a little more complicated: If 𝑍 and𝑊 are simplicial spaces, we first have to
look at them as bisimplicial sets to have a category where (*) applies. The exponential turns
out to be

(𝑊 𝑍)𝑛𝑚 = Hom𝑠𝒮(𝐹(𝑛) × Δ[𝑚] × 𝑍,𝑊)
We define its 0-th level to be themapping space

Map𝑠𝒮(𝑍,𝑊) = (𝑊 𝑍)0 ≅ Hom𝑠𝒮(Δ[•] × 𝑍,𝑊)

Note that this is a simplicial set.
We can now reapply the Yoneda lemma to this mapping space and get an isomorphism of

simplicial sets
Map𝑠𝒮(𝐹(𝑛),𝑊) ≅ 𝑊𝑛

Topology and Some Special Simplicial Sets

Having all the necessary notation worked out, it is now time to give a geometric interpreta-
tion of all the notions we introduced and work out how simplicial sets relate to homotopy
theory. First, we will define a way to go from topological spaces to simplicial sets and back
again.
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2.2.13 Definition. Let 𝑛 ∈ ℕ. The topological 𝑛-simplex is the space

|Δ𝑛| ≔ {(𝑡0, 𝑡1,… , 𝑡𝑛) ∈ [0, 1]𝑛+1 ∶ 𝑡0 + 𝑡1 +⋯+ 𝑡𝑛 = 1}

with the subspace topology inherited from ℝ𝑛+1.

|Δ𝑛| is a contractible space, the boundary of which has 𝑛 + 1 vertices.
We can define a covariant functor Δ → 𝒯op in the following way:

• On objects, [𝑛] ↦ |Δ𝑛|.

• On morphisms, 𝑓 ∶ [𝑛] → [𝑚] is sent to 𝑓∗ ∶ |Δ𝑛| → |Δ𝑚| defined by

𝑓∗(𝑡0,… 𝑡𝑛) = ( ∑
𝑗∈𝑓−1(0)

𝑡𝑗 ,… , ∑
𝑗∈𝑓−1(𝑛)

𝑡𝑗)

where sums over empty sets are taken to be 0.

To go from 𝒯op to 𝑠Set, we have a familiar construction from algebraic topology:

2.2.14 Definition. Let 𝑇 be a topological space. Its singular simplicial set Sing•(𝑇) is de-
fined by

• Sing𝑛(𝑇) ≔ Hom𝒯op(|Δ𝑛|, 𝑇)

• For 𝑔 ∶ [𝑛] → [𝑚] in Δ, Sing(𝑔) ∶ Sing𝑚(𝑇) → Sing𝑛(𝑇) is given by precomposition
with 𝑔∗ as defined above.

We now want a way to go back. First, observe that we can have a mapping [𝑛] ↦ |Δ𝑛|
by labelling the vertices of |Δ𝑛|. To extend this, we recall one more fact about presheaf cate-
gories:

2.2.15 Theorem (Density Theorem). Every presheaf is a colimit of representables. Concretely,
given a small category𝒟 and a functor 𝐹 ∶ 𝒟𝑜𝑝 → Set,

𝐹 ≅ colim(𝒟/𝐹 → 𝒟 𝒴−→ Fun(𝒟𝑜𝑝, Set))

Applying the density theorem to 𝑠Set results in an isomorphism

𝑋 ≅ colimΔ𝑛→𝑋 in Δ/𝑋
Δ𝑛

for any simplicial set 𝑋 .

2.2.16Definition. Let𝑋 be a simplcial set. Its geometric realization is the topological space

|𝑋| ≔ colimΔ𝑛→𝑋 in Δ/𝑋
|Δ𝑛|

In other words, we are extending the functor that sends Δ𝑛 to |Δ𝑛| to colimits of this par-
ticular form.
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2.2.17 Proposition. The geometric realization functor is left adjoint to the singular simplicial
set.

Proof. We look at the induced maps on hom-sets:

Hom𝒯op(|𝑋|, 𝑌) ≅ lim
Δ𝑛→𝑋 in Δ/𝑋

Hom𝒯op(|Δ𝑛|, 𝑌)

Hom𝑠Set(𝑋, Sing(𝑌)) ≅ lim
Δ𝑛→𝑋 in Δ/𝑋

Hom𝑠Set(Δ𝑛, Sing(𝑌))

and the limits on the right are naturally isomorphic.

2.2.18 Proposition. Let 𝑋 be a simplicial set. Then |𝑋| is a CW-complex.

Proof sketch. One can define the simplicial sets sk𝑛(𝑋) by iteratively gluing copies of Δ𝑛 and
prove that their geometric realization defines a CW-filtration (see [Lur18, Tag 0010] for a
detailed discussion of the skeletal filtration).

Now that we have this correspondence, we shift our focus to two more special simplicial
sets.

2.2.19 Definition. Let 𝑛 ∈ ℕ.

1. We define the boundary of Δ𝑛 to be the simplicial set 𝜕Δ𝑛 with its set of 𝑘-simplices
being the set of non-surjective maps [𝑘] → [𝑛].

2. For 0 ≤ 𝑖 ≤ 𝑛, we define the 𝑖-th horn to be the simplicial set Λ𝑛
𝑖 with its set of 𝑘-

simplices being the set of maps [𝑘] → [𝑛] for which there exists a 𝑗 ≠ 𝑖 that is not
contained in their image.

We call the horns defined for 1 < 𝑖 < 𝑛 − 1 the inner horns.

In other words, the boundary is the union of all faces and the 𝑖-th horn is the union of all
faces except the 𝑖-th one.
Since the standard 𝑛-simplex contains all of the maps considered above, we have inclu-

sions
Λ𝑛
𝑖 ↪ 𝜕Δ𝑛 ↪ Δ𝑛

Finally, to motivate the definitions that we have been building up to for this section, let
us study how these simplicial sets behave using some familiar constructions from before. In
particular, we are interested in the following question: Knowing that a map from Δ𝑛 to 𝑋 is
equivalently an element of 𝑋𝑛, what can the maps from Λ𝑛

𝑖 to 𝑋 be said to represent?

2.2.20 Example. Consider the nerve 𝑁𝒞 of a small category 𝒞. Unfolding the definition of
the horn, amap fromΛ𝑛

𝑖 is really a collection of 𝑛−1-simpliceswith compatibility conditions
wherever they are connected. In the case of the nerve, an 𝑛 − 1-simplex is a chain of 𝑛 − 1
composable morphisms in 𝒞. We split into two cases:
Assume that 1 ≤ 𝑖 ≤ 𝑛 − 1. The missing i-th face is now the composite of the morphisms

in that place. Thus, we can always extend a map from Λ𝑛
𝑖 to 𝑁𝒞 to a full 𝑛-simplex of 𝑁𝒞!
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Now assume that 𝑖 is 0 or 𝑛. What happens now is that instead of trying to fill in the
composite, we are given one morphism and the possible ”composite” and we are trying to
fill in the gap. There is one case where this is always possible: 𝒞 being a groupoid.

In this example, note that the extension of an inner horn map to a simplex is unique: A
category has unique compositions.

2.2.21 Definition. Let X be a simplicial set.

1. X is a Kan complex if all horn maps admit a filling, i.e., a map completing a commu-
tative triangle

Λ𝑛
𝑖 𝑋

Δ𝑛

∃

2. X is a quasicategory if the above property is satisfied for all inner horns.

The Homotopy Theory of Kan Complexes

The idea behind this section can be summarized like this: Kan complexes model homotopy
types. The exposition for the first part is mainly based on [Lan21].

2.2.22 Proposition. Let 𝑌 be a topological space. Then Sing(𝑌) is a Kan complex.

Proof sketch. Using the adjunction from (2.2.17), solve the analogous lifting problem in𝒯op.

2.2.23 Definition. Let 𝑓, 𝑔 ∶ 𝐾 → 𝑋 be morphisms of simplicial sets. A simplicial homo-
topy from 𝑓 to 𝑔 is a map 𝐻 ∶ 𝐾 × Δ1 → 𝑋 that restricts to 𝑓 and 𝑔 on the two endpoints of
Δ1, i.e. 𝐻|𝜕Δ1 = (𝑓, 𝑔).

2.2.24 Proposition. Let𝑋 be aKan complex. Then simplicial homotopy defines an equivalence
relation onHom𝑠Set(𝐾, 𝑋) for any simplicial set 𝐾.

Proof. See e.g. [GJ99, I.6, I.7].

2.2.25 Definition. Let (𝑋, 𝑥0) be a pointed Kan complex, meaning that 𝑥0 ∶ Δ0 → 𝑋 . For
𝑛 ≥ 1 we define its simplicial homotopy groups as sets of pointed homotopy classes

𝜋𝑛(𝑋, 𝑥0) ≔ [(Δ𝑛, 𝜕Δ𝑛), (𝑋, 𝑥0)]∗
2.2.26 Proposition. Simplicial homotopy groups of Kan complexes are indeed groups for𝑛 ≥ 1
and are abelian for 𝑛 ≥ 2.

2.2.27 Remark. We can also define the set of path components of any simplicial set 𝑋 as

𝜋0(𝑋) = colim{ 𝑋1 𝑋0
𝜕10

𝜕11
} which fits into the same definition, only without a group

structure.
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Topologically, the definition of simplicial homotopy groupsmatches one of the equivalent
definitions of the homotopy groups of a pointed space, seen as [([0, 1]𝑛, 𝜕[0, 1]𝑛), (𝑌 , 𝑦0)]∗.
In fact:

2.2.28 Theorem. The simplicial homotopy groups of a pointed Kan complex coincide with the
homotopy groups of its geometric realization.

We now describe how the objects we have constructed fit in two nice model structures,
the latter of which will be very important in justifying how we treat both quasi-categories
and complete Segal spaces as equivalent notions of ”∞-categories”.

2.2.29 Definition. A map of simplicial sets 𝑓 ∶ 𝑋 → 𝑌 is a (inner) Kan fibration if any
commutative square of the form

Λ𝑛
𝑖 𝑋

Δ𝑛 𝑌

𝑓∃?

admits a lift for all (inner) horn inclusions.

2.2.30 Proposition (Classical model structure on simplcial sets, [Qui67]). There is a model
structure on 𝑠Set such that

• The fibrations are the Kan fibrations.

• The cofibrations are the maps that are levelwise injective.

• The weak equivalences are the maps that induce weak equivalences after applying the
geometric realization.

We denote this model structure by 𝑠SetQuillen.

2.2.31 Proposition. A Kan fibration 𝑓 ∶ 𝑋 → 𝑌 is trivial if and only if every fiber

𝑓−1(𝑦) 𝑋

Δ0 𝑌

⌟
𝑓

𝑦

is contractible.

Proof. See e.g. [Joy, Proposition 8.23].

2.2.32 Remark (The ∞-category of spaces). So far, we have not defined any ∞-category
that is not a nerve, so we have not made use of the homotopical structure. The most no-
table example of a homotopically interesting∞-category is given by the homotopy coherent
nerve, which takes a simplicially enriched category to an∞-category. Applying the homo-
topy coherent nerve to the simplicially enriched category Kan of Kan complexes, we get the
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∞-category of spaces (or anima!) 𝒮 (or 𝒜𝑛). This category is the “higher replacement” of
the category of Sets, which we use for representable functors.
This is the categorywhere a lot ofmodernhomotopy theory takes place. In particular, note

that by the facts we have mentioned so far, 𝒮 has its own Whitehead theorem, making it a
hypercomplete topos. Detailed discussions of everything said above can be found in [Lur09]
or [Lan21] (for the homotopy coherent nerve).

2.2.33 Remark. Note that the condition for a Kan fibration is extending the same diagram
used for the definition of a Kan complex. Thus if we use the terminal object ∗ as the target,
we see that the fibrant objects in 𝑠SetQuillen are precisely the Kan complexes.

This model structure allows us to make the relationship between simplicial sets and topo-
logical spaces precise. Recall the standard model structure on 𝒯op with the usual weak
equivalences, Serre fibrations as fibrations and retracts of relative cell complexes as cofibra-
tions. Then we have:

2.2.34 Theorem ([Qui67]). The adjoint functors

𝒯op 𝑠Set
Sing(−)

|−|

induce a Quillen equivalence between the classical model structures on 𝒯op and 𝑠Set.

We described a model structure centered on Kan complexes, and now we turn our atten-
tion to quasicategories:

2.2.35 Proposition (Joyal model structure, [Joy]). There is a model structure on 𝑠Set such
that

• The cofibrations are the monomorphisms.

• The fibrant objects are precisely the quasicategories.

We denote this model structure by 𝑠SetJoyal.

The Reedymodel structure on simplicial spaces

We now define a model structure that guarantees “good” homotopical properties for simpli-
cial spaces.

2.2.36 Proposition (Reedy model structure). There is a model structure on 𝑠𝒮 such that

• The fibrations are the maps 𝑓 ∶ 𝑋 → 𝑌 for which the morphism of simplicial sets

Map𝑠𝒮(𝐹(𝑛), 𝑋) → Map𝑠𝒮(𝜕𝐹(𝑛), 𝑋) ×Map𝑠𝒮(𝜕𝐹(𝑛),𝑌) Map𝑠𝒮(𝐹(𝑛), 𝑌)

is a Kan fibration for all 𝑛 ≥ 0.

• The weak equivalences are the maps that are levelwise weak equivalences in 𝑠SetQuillen.
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2.2.37 Remark. Although themodel structure on simplicial space is all that we need for the
rest of this thesis, this is just a special case of a very general construction, with Δ being an
example of a Reedy category. Reedy categories and the Reedy model structure originally ap-
pear in [Ree]. Not everything we will mention for the Reedymodel structure on 𝑠𝒮 holds for
model structures on arbitrary Reedy categories, also see [Hir03, chapter 15] for the general
theory.

The following proposition allows us to get a better grip on the definition:

2.2.38 Proposition ([BR12, 3.15+4.5]). The Reedy and injective model structures on 𝑠𝒮 coin-
cide. Equivalently, the cofibrations in 𝑠𝒮𝑅𝑒𝑒𝑑𝑦 are precisely the monomorphisms.

What we are really interested in are the fibrant objects in this model structure. Unfolding
the definition, we get that a simplicial space 𝑋 is Reedy fibrant if the map

Map𝑠𝒮(𝐹(𝑛), 𝑋) → Map𝑠𝒮(𝜕𝐹(𝑛), 𝑋)

is a Kan fibration for all 𝑛 ≥ 0.
We finish with some fundamental properties.

2.2.39 Lemma. Let 𝑋 be a Reedy fibrant simplicial space. Then:

1. The “source-target” map 𝑋1
(𝑑1,𝑑0)−−−−−→ 𝑋0 × 𝑋0 is a Kan fibration.

2. 𝑋𝑛 is a Kan complex for all 𝑛 ∈ ℕ.

Proof sketch. (1.) Recall that 𝜕Δ1 is just two points, so this is precisely the resulting Kan
fibration in the Reedy fibrancy condition.

(2.) Work inductively: For 𝑛 = 0 we get that 𝑋0 is Kan fibrant (the same thing as a Kan
complex), and for the induction steps use that compositions and pullbacks of Kan
fibrations are Kan fibrations.

2.2.40 Remark. Note that the projection 𝑋0 × 𝑋0 → 𝑋0 is also a Kan fibration, so we get
that 𝑑0 and 𝑑1 are also Kan fibrations.

2.2.41 Proposition ([Rez01, Proposition 2.5]). The Reedy model structure is cartesian closed:
If 𝑖 ∶ 𝐴 → 𝐵 is a cofibration and 𝑓 ∶ 𝑋 → 𝑌 is a fibration, then the induced map

𝑌𝐵 → 𝑌𝐴 ×𝑋𝐴 𝑋𝐵

is a fibration, and additionally a weak equivalence if either 𝑖 or 𝑓 is.

In particular, 𝑋𝐵 is Reedy fibrant for any Reedy fibrant 𝑋 and any simplicial space 𝐵.
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2.3. Segal Spaces

The Segal Maps

Let𝑊 ∈ 𝑠𝒮. We want to relate the higher levels of𝑊 to𝑊1. Fix an 𝑛 ∈ ℕ. For 0 ≤ 𝑖 ≤ 𝑛−1
Consider the maps

𝛼𝑖 ∶ [1] → [𝑛]
0 ↦ 𝑖
1 ↦ 𝑖 + 1

in Δ. Note that these fit into a commutative diagram

[𝑛]

[1] [0] [1] … [1] [0] [1]

𝛼0

1 0

𝛼1

1 0

𝛼𝑛−2

01

𝛼𝑛−1

so the maps of 𝛼𝑖 ∶= (𝛼𝑖)∗ ∶ 𝑊𝑛 →𝑊1 induce a morphism of simplicial sets

𝜑𝑛 ∶ 𝑊𝑛 →𝑊1 ×𝑊0 ⋯×𝑊0 𝑊1

where𝑊1 ×𝑊0 ⋯×𝑊0 𝑊1 is the limit of the diagram

𝑊1
𝑑1−→ 𝑊0

𝑑0←− 𝑊1
𝑑1−→ … 𝑑0←− 𝑊1

𝑑1−→ 𝑊0
𝑑0←− 𝑊1

induced from the horizontal level of the above diagram in Δ. The maps 𝜑𝑛 we just con-
structed are called the Segal maps.
To understand what these maps try to capture, let us look at the case of the discrete nerve

of a small category (note that this turns out to not satisfy all the homotopical conditions we
will specify later, but it provides good intuition for the structure we are looking for).
2.3.1 Example. Let 𝒞 be a small category and define its discrete nerve 𝑁𝒞 by

𝑁𝒞𝑘𝑙 ∶= Fun([𝑘], 𝒞)
i.e., Then 𝑁𝒞𝑘 contains commutative diagrams of 𝑘 composable morphisms. We can then
see that 𝑁𝒞1 ×𝑁𝒞0 ⋯ ×𝑁𝒞0 𝑁𝒞1 consists of exactly the same data and the Segal maps are
bijections: 𝑑0 and 𝑑1 are the source and target maps, so this limit again contains composable
morphisms.
We want homotopical data to be preserved in a similar way, and thus we reach the defi-

nition of a Segal space:
2.3.2 Definition. Let𝑊 be a Reedy fibrant simplicial space. 𝑊 is called a Segal space if the
Segal maps

𝑊𝑛
𝜑𝑛−−→ 𝑊1 ×𝑊0 ⋯×𝑊0 𝑊1

are weak equivalences for all 𝑛 ≥ 2.
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Why (not) homotopy pullbacks?

What we are trying to define is an object in which we can do both category theory and ho-
motopy theory. Thus the fact that the definition of a Segal space contains a strict pullback
diagram raises some concerns:

2.3.3 Example. For spaces, the notion of a limit is not homotopy-invariant. In the diagram

∗ ∗

∅ 𝐼

∗ ∗

{2} ℝ

∼

∼ ∼

the front and the back squares are pullbacks, but ∅ ≄ ∗.
In this situation, an adequate replacement for these strict fibers would be the homotopy

fiber, defined for a map 𝑓 ∶ 𝑋 → 𝑌 as the pullback

hofib𝑥(𝑓) 𝑃(𝑓)

∗ 𝑌

⌟
𝑒𝑣0

𝑥

where 𝑃(𝑓) ∶= 𝑋𝐼 ×𝑋 𝑌 , this time along the 𝑒𝑣1 map.
We now want to do the same for limits in 𝑠𝒮. In general, we can define the concept of

a homotopy (co)limit in a model category: A homotopy (co)limit of a diagram should be a
version of a (co)limit that is invariant under natural transformations of diagrams that are
objectwise equivalences.

2.3.4 Remark. The universal property should be similarly adjusted such that it is satisfied,
up to homotopy, for diagrams that are compatible up to homotopy (see e.g. [Dug08, Section
9.5] for a discussion in simplicial topological spaces). For arbitrarymodel categories, we can
define the homotopy limit functor to be the derived functor of the limit functor lim ∶ 𝒞𝐼 → 𝒞
(if it exists), as in [Rie14, Chapter 5]. Note: this means that the homotopy limit is not just a
limit in the homotopy category.
The difficulty of working with structures like limits in a homotopy-coherent way is one

of the reasons that working with∞-categories, where everything works up to homotopy by
definition, is so useful. In turn, we will see homotopy type theory replicates this behaviour
using identity types, without needing the difficult constructions one encounters in the the-
ory of quasicategories.

For our Segal space𝑊 , this is where Reedy fibrancy comes in. We have the following fact:

2.3.5 Proposition. Let 𝐴 → 𝐶 ←− 𝐵 be a diagram in a model category 𝒞 such that 𝐴, 𝐵, 𝐶
are fibrant and one of the two morphisms is a fibration. Then the pullback 𝐴 ×𝐶 𝐵 is also a
homotopy pullback.
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Proof. See e.g. [Dug08, Chapter 14] for the dual proposition for homotopy colimits.

Apply this to the Segal maps: If𝑊 is Reedy fibrant, then𝑊1 and𝑊0 are Kan complexes,
i.e., Kan fibrant, and the maps 𝑑1, 𝑑0 ∶ 𝑊1 → 𝑊0 are fibrations (2.2.39), so the iterated
pullback𝑊1 ×𝑊0 ⋯×𝑊0 𝑊1 is actually a homotopy pullback!
2.3.6 Remark (The nerve theorem in 𝑠Set). On simplicial sets, the Segal condition is not
very interesting; it is an observation going back to Grothendieck that, because of the lack of
higher structure on the levels themselves, a simplicial set satisfying the Segal condition is
isomorphic to the nerve of a small category.

Morphisms and Homotopies

Let𝑊 be a Segal space. Since our aim is to provide a model for a higher category, we first
need to define, inside𝑊 :

• A set of objects in𝑊 .

• For any two objects, a space ofmorphisms between them.

• For tuples of morphisms with compatible sources and targets, compositions (unique
up to some notion of homotopy) of those morphisms.

Let us begin with objects and morphisms. In a simplicial set 𝑋 , the set of objects would
be 𝑋0. Here, we apply this to the simplicial set at the 0-th level of𝑊 .
2.3.7 Definition. Define the set of objects in𝑊 to be the set Obj(𝑊) ≔ 𝑊00.
For morphisms, note that an object, i.e., an element of 𝑊00, is, equivalently, a map of

simplicial sets Δ0 → 𝑊0. Now, let 𝑥, 𝑦 ∈ Obj(𝑊). We similarly represent (𝑥, 𝑦) as a map
(𝑥, 𝑦) ∶ Δ0 →𝑊0×𝑊0. Thinking of𝑊1 as the space of all possible morphisms in𝑊 , we just
want to pick out all the morphisms that have source 𝑥 and target 𝑦.
2.3.8 Definition. We define themapping spaceMap𝑊 (𝑥, 𝑦) ∈ 𝑠Set to be the pullback

Map𝑊 (𝑥, 𝑦) 𝑊1

Δ0 𝑊0 ×𝑊0

(𝑑1,𝑑0)

(𝑥,𝑦)

⌟

2.3.9 Proposition. For any Reedy fibrant simplicial space𝑊 and 𝑥, 𝑦 ∈ Obj(𝑊), themapping
spaceMap𝑊 (𝑥, 𝑦) is a Kan complex.
Proof. As we saw in (2.2.39), Reedy fibrancy of 𝑊 implies that 𝑊1 → 𝑊0 × 𝑊0 is a Kan
fibration. For any 0 ≤ 𝑖 ≤ 𝑘, consider the diagram

Λ𝑘
𝑖 Map𝑊 (𝑥, 𝑦) 𝑊1

Δ𝑘 Δ0 𝑊0 ×𝑊0(𝑥,𝑦)

(𝑑1,𝑑0)
⌟

∃?
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Since pullbacks preserve fibrations, there exists a lift Δ𝑘 → Map𝑊 (𝑥, 𝑦).

Having a mapping space (as opposed to just a mapping set) provides us with a way to
express (higher) homotopical relations in the following way:
We think of the set Map𝑊 (𝑥, 𝑦)0 as the set of maps between 𝑥 and 𝑦. Then Map𝑊 (𝑥, 𝑦)1

corresponds to the set of homotopies between these maps, Map𝑊 (𝑥, 𝑦)2 to homotopies be-
tween homotopies, and so on for all higher levels. We now focus on the first two and for-
mulate the notion of homotopy in a Segal space.

2.3.10 Definition. The homotopy category Ho(𝑊) of a Segal space𝑊 is the category with

• Obj(Ho(𝑊)) = Obj(𝑊) = 𝑊00

• HomHo(𝑊)(𝑥, 𝑦) = 𝜋0(Map𝑊 (𝑥, 𝑦))

and with composition defined by the Segal map 𝑊2
∼−→ 𝑊1 ×𝑊0 𝑊1. For 𝑥 ∈ Obj(𝑊), we

define the identity 𝑖𝑑𝑥 ∶= [𝑠0(𝑥)], where 𝑠0 ∶ 𝑊00 →𝑊10 is the degeneracy map.
We say that two maps 𝑓, 𝑔 ∈ Map𝑊 (𝑥, 𝑦)0 are homotopic (𝑓 ∼ 𝑔) if they lie in the same

path component.

To understand this (and verify that 𝐻𝑜(𝑊) is actually a category), let us take a more de-
tailed look at homotopies and compositions:
Recall that for a simplicial set 𝑋 , we have

𝜋0(𝑋) = colim{ 𝑋1 𝑋0
𝑑0

𝑑1
}

which, applied to our mapping space, means that two maps 𝑓, 𝑔 are homotopic if and only
if there exists an 𝐻 ∈ Map𝑊 (𝑥, 𝑦)1 with 𝑑1(𝐻) = 𝑓, 𝑑0(𝐻) = 𝑔.
We now show how to use the Segal condition to find compositions of tuples of maps.

Using the Segal maps and the fact that we are pulling back along fibrations, we can define
generalized mapping spaces and relate them to spaces of compatible maps as sketched in
the diagram

𝑀𝑎𝑝𝑊 (𝑥0, 𝑥1) ×⋯ ×𝑀𝑎𝑝𝑊 (𝑥𝑛−1, 𝑥𝑛) 𝑊1 ×𝑊0 ⋯×𝑊0 𝑊1

𝑀𝑎𝑝𝑊 (𝑥0,… , 𝑥𝑛) 𝑊𝑛

Δ0 𝑊𝑛+1
0

⌟

⌟

∼ ∼

Specialize this to 𝑛 = 2: For any 𝑥, 𝑦, 𝑧 ∈ 𝑊00 and two maps 𝑓 ∶ 𝑥 → 𝑦, 𝑔 ∶ 𝑦 → 𝑧, there
is a map from the space of compositions

Comp𝑊 (𝑓, 𝑔) ∶= Map𝑊 (𝑥, 𝑦, 𝑧) ×Map𝑊 (𝑥,𝑦)×Map𝑊 (𝑦,𝑧) Δ0 → Map𝑊 (𝑥, 𝑧)

induced by 𝑑1 ∶ 𝑊2 →𝑊1. This picks a composition of 𝑓 and 𝑔. Is this choice arbitrary?
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2.3.11 Proposition. Composition is unique up to homotopy (i.e., Comp𝑊 (𝑓, 𝑔) is contractible)
andHo(𝑊) is a category.

2.3.12Remark. Segal objects can bemore generally defined as simplicial objects in arbitrary
combintatorial model categories, using the same Segal condition as the starting point (see
e.g. [DK19, Chapter 5]).

We call 𝑓 ∈ Map𝑊 (𝑥, 𝑦)0 a homotopy equivalence if it is an isomorphism in Ho(𝑊), i.e.,
if it is invertible up to homotopy. Already from ordinary category theory, we know that f has
a homotopy inverse if and only if it has a left and a right homotopy inverse.

2.3.13 Lemma ([Rez01, Lemma 5.8]). Any vertex that is connected to a homotopy equivalence
is a homotopy equivalence.

Taking advantage of this homotopical structure, we define, analogously to the case of
simplicially enriched categories:

2.3.14 Definition ([Rez01, Definition 7.4]). A map 𝑓 ∶ 𝑉 → 𝑊 of Segal spaces is called a
Dwyer-Kan equivalence if:

1. The induced map Ho(𝑓) ∶ Ho(𝑉) → Ho(𝑊) is an equivalence of categories.

2. for any pair of objects 𝑥, 𝑦 in 𝑉 , the induced map Map𝑉 (𝑥, 𝑦) → Map𝑊 (𝑓𝑥, 𝑓𝑦) is a
weak equivalence of simplicial sets.

2.4. Complete Segal Spaces

Let𝑊 be a Segal space and 𝑥 ∈ Obj(𝑊). Observe that by mapping 𝑥 to 𝑖𝑑𝑥 ∈ Map𝑊 (𝑥, 𝑥)0,
we always get a homotopy equivalence. The motivating question is the following: Since we
are doingmathematics up to homotopy, how dowemake sure that this categorical construc-
tion treats, in some way, equivalence-as-equality?
In particular, we want a condition that translates the relationship of objects being con-

nected by paths to them being equivalent.
Define the space of homotopy equivalences𝑊hoequiv to be the subspace of𝑊1 consisting

of all components whose points (i.e., 0-simplices) are homotopy equivalences.
The degeneracy 𝑠0 induces a map 𝑠0 ∶ 𝑊0 → 𝑊hoequiv. The question for before can now

be reformulated in the following definition:

2.4.1 Definition. A Segal space𝑊 is complete if 𝑠0 ∶ 𝑊0 → 𝑊hoequiv is a weak equivalence
of simplicial sets.

Complete Segal spaces (finally!) exhibit all the desirable homotopical and categorical
properties we need. In fact, the homotopical structure defined in the previous section now
determines the homotopy theory of the space, as is made precise by the following results.

2.4.2 Theorem. Let𝑊 be a complete Segal space and letObj(𝑊)⧸∼ denote the set of homotopy
equivalence classes of objects inHo(𝑊). Then 𝜋0(𝑊0) ≃ Obj(𝑊)⧸∼.
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2.4.3 Theorem. Let 𝑓 ∶ 𝑉 → 𝑊 be a map of complete Segal spaces. Then 𝑓 is a Reedy
equivalence if and only if it is a Dwyer-Kan equivalence.

Recall that this is equivalent to 𝑓 being a levelwise weak equivalence of simplicial sets.
Moreover, there is a model structure on 𝑠𝒮 which is obtained as a particular localization of
the Reedy model structure, with the following properties:

2.4.4 Theorem (Model Structure for Complete Segal Spaces [Rez01, Proposition 7.2]). There
is a simplicial model structure on 𝑠𝒮 such that

• The cofibrations are the monomorphisms.

• The fibrant objects are the Complete Segal Spaces.

• The weak equivalences are the maps 𝑓 such thatMap𝑠𝒮(𝑓,𝑊) is a weak equivalence of
simplicial sets for any complete Segal space W.

A Reedy weak equivalence is always an equivalence in this model structure. For a map of com-
plete Segal spaces, the converse also holds.

Examples

2.4.5 Example. Let 𝑋 be a Kan complex. As this is our notion of ”space”, there should be
a sensible way of turning this into a complete Segal space. Note that just turning 𝑋 into a
constant simplicial space does not work: Reedy fibrancy would require 𝑋 → 𝑋 × 𝑋 to be a
Kan fibration, which is not true.
We can, however, turn to a familiar topological construction: Recall that maps admit a

path space factorization into a weak equivalence followed by a fibration. We thus define the
𝑛-th level of our simplicial space to be 𝑋Δ𝑛 . Since Δ𝑛 is always contractible, 𝑋Δ𝑛 is always
equivalent to 𝑋 and additionally, {𝑋Δ𝑛}𝑛 is now a (Reedy fibrant) complete Segal space.
Note that since 𝑋 is a Kan complex, every map in this Segal space is a homotopy equiva-

lence, making our space a Segal groupoid. In fact:

2.4.6 Proposition ([Rez01, Proposition 6.6]). Let𝑊 be a complete Segal space. ThenHo(𝑊)
is a groupoid if and only if𝑊 is Reedy weakly equivalent to a constant simplicial space.

2.4.7 Example (CSS out of a Category). Let 𝒞 be a (small) category. The discrete nerve 𝑁𝒞
of 𝒞, taken to be the nerve simplicial set on every level, does not satisfy the completeness
condition, as the categorical equivalence of two objects inside 𝒞 does not always translate to
a homotopical equivalence (or example, consider the nerve of the category with two objects
and isomorphisms between them).
To get around this problem, we have to take equivalences into account at the vertical level

as well. With this intuition inmind, we outline nerve construction, the classifying diagram
(or Rezk nerve), denoted𝒩𝒞.
The classifying diagram is defined as a simplicial space by

𝒩𝒞𝑚 ∶= 𝑁(Fun([𝑚], 𝒞)≃)
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For a more explicit description (now as a bisimplicial set), let 𝐼[𝑛] be the category with
𝑛 + 1 objects and equivalences between them. Then

(𝒩𝒞)𝑚𝑛 = 𝐹𝑢𝑛([𝑚] × 𝐼[𝑛], 𝒞)

Using this, we sketch the proof that𝒩𝒞 is a complete Segal space:
We have𝒩𝒞0 = 𝑁((𝒞[0])≃) ≅ 𝑁(𝒞≃), an equivalence of categories 𝒞≃ ∼−→ 𝐹𝑢𝑛(𝐼[1], 𝒞)≃

and𝒩𝒞ℎ𝑜𝑒𝑞𝑢𝑖𝑣 ≅ 𝑁(𝐹𝑢𝑛(𝐼[1], 𝒞)≃). Combining these,𝒩𝒞0
∼−→ 𝒩𝒞ℎ𝑜𝑒𝑞𝑢𝑖𝑣.

2.4.8 Remark. We can repeat this construction in a more general setting, where we replace
the groupoid core by an appropriate class of “weak equivalences” (for example, weak equiv-
alences in a model category). The resulting nerve will not be a complete Segal space in
general, but its Reedy fibrant replacement is! [Rez01, 8.3]

2.4.9 Proposition. Let 𝐹 ∶ 𝒞 → 𝒟 be a functor. The following are equivalent:

1. 𝐹 is an equivalence of categories.

2. 𝒩𝐹 ∶ 𝒩𝒞 → 𝒩𝒟 is a Reedy equivalence.

2.4.10 Example (CSS out of a quasicategory). Finally, we can present the comparison be-
tween quasicategories and complete Segal spaces, originally due to Joyal and Tierney [JT07].
As we mentioned in the first section, comparing these models means comparing the appro-
priate model structures, in our case the ones defined in (2.2.35) (for quasicategories) and in
(2.4.4) (for complete Segal spaces). We will define two adjoint pairs:
Consider the functor 𝑖1 ∶ Δ → Δ × Δ given by [𝑛] ↦ ([𝑛], [0]). Dualizing, this turns into

a functor
𝑖∗1 ∶ 𝑠𝒮 → 𝑠Set , (𝑖∗1 (𝑊))𝑛 ≔ 𝑊𝑛0

Now do the same for the right adjoint of 𝑖1, the first projection functor 𝑝1 ∶ Δ×Δ → Δ given
by ([𝑚], [𝑛]) ↦ [𝑚]. Passing to presheaves again, we now get a left adjoint to 𝑖∗1 , the functor

𝑝∗1 ∶ 𝑠Set→ 𝑠𝒮 , (𝑝∗1 (𝑋))𝑚𝑛 ≔ 𝑋𝑚
with the adjunction unit being the identity functor on 𝑠Set and the counit being the inclusion
(via degeneracies)𝑊𝑚0 ↪𝑊𝑚𝑛.

2.4.11 Theorem ([JT07]). 𝑝∗1 maps quasicategories to complete Segal spaces, 𝑖∗1 maps complete
Segal spaces to quasicategories, and the adjoint pair

𝑠Set 𝑠𝒮
𝑝∗1

𝑖∗1

⊣

is a Quillen equivalence between the Joyal model structure for quasicategories and the model
structure for complete Segal spaces.

Moreover, there is another Quillen equivalence 𝑠𝒮 𝑠Set
𝑡!

𝑡!

⊣ in the opposite direction.
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3. Homotopy Type Theory
This chapter is intended to be an expository introduction to the basicmechanics of homotopy
type theory, starting from scratch. We first introduce dependent type theory and focus on
the path space interpretation of intensional identity types, drawing analogies with topology
and the higher structure of Kan complexes as defined in the previous chapter.
As we will be working with formal mathematics, we start with an axiomatic approach,

and also devote some sections to the logical aspects of homotopy type theory: In its full ver-
sion with univalence and higher inductive types, it is a fundamentally constructive theory,
allowing us to do classical logic after truncating types to “forget the higher structure”.

3.1. Syntax and Axioms of Martin‑Löf Type Theory

In this section, we present an overview of the basic Syntax of a specific type theory. To
specify a system of type theory, we need a collection of structural rules and type-forming
rules. The type theory that is of interest to us isMartin-Löf dependent type theory (MLTT).
For a complete formal presentation of MLTT (and HoTT), we point to [Uni13, Appendix A].

3.1.1 Definition.

• A context is a finite list of declarations of the form 𝑥𝑖 ∶ 𝐴𝑖. We add an empty context
() with no declarations.

• A judgement is of the form Γ ⊢ 𝒥, where Γ is a context. In MLTT, the possible forms
of judgements are

Γ ctx Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑎 ≡ 𝑎′ ∶ 𝐴

In a context, the 𝑥𝑖 are variables, but in the judgement Γ ⊢ 𝑎 ∶ 𝐴, 𝑎 is a specific term of
type 𝐴 that can depend on the declarations in Γ.
Note the symbol “≡” : This expresses the notion of judgemental equality, which will be

the formal specification of equality by definition. We will revisit this later, as we will also
present a different notion of equality, having inhabited identity types. Whether or not these
coincide is the difference between extensional and intensional type theories.

3.1.2 Notation. To specify the allowed steps in type-theoretic constructions and proofs, we
express our inference rules in the form

𝒥1 … 𝒥𝑛
𝒞

where all the 𝒥 𝑖 and 𝒞 are judgements.
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Structural Rules

First of all, consider the context 𝑎 ∶ 𝐴. We want𝐴 itself to have a type. We thus assume a hi-
erarchy of universes 𝒰𝑖, 𝑖 ∈ ℕ, with the extra assumption that the universes are cumulative,
i.e., a type in a universe is also in the next one. In formal terms, we have two rules:

Γ ctx
Γ ⊢ 𝒰𝑖 ∶ 𝒰𝑖+1

Γ ⊢ 𝐴 ∶ 𝒰𝑖
Γ ⊢ 𝐴 ∶ 𝒰𝑖+1

3.1.3 Notation. Usually, We will not need the entire hierarchy to do our type constructions.
When all of our types are in the same universe, we just use some fixed universe denoted by
𝒰.

3.1.4 Remark. In other formulations of Type Theory, we might see the additional judge-
ments Γ ⊢ 𝐴 type and Γ ⊢ 𝐴 ≡ 𝐵 type. This is rendered obsolete if we work with universes
from the start, as they can replaced by Γ ⊢ 𝐴 ∶ 𝒰 and Γ ⊢ 𝐴 ≡ 𝐵 ∶ 𝒰 respectively.

0. Rules for contexts. We already gave a definition of a context, and now we can make
it precise with three inference rules. For the first part, we need to say that we can introduce
both the empty context and the extension of a finite number of declarations with one more
variable:

() ctx
𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 ⊢ 𝐴𝑛+1 ∶ 𝒰
(𝑥1 ∶ 𝐴1,… , 𝑥𝑛+1 ∶ 𝐴𝑛+1) ctx

ctx − EXT

We then state that we can actually use the declarations in the context, or, in other words,
that they genuinely capture variables:

(𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛) ctx
𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 ⊢ 𝑥𝑖 ∶ 𝐴𝑖

Vble

Before we deal with any actual type constructions, we have to provide rules outlining the
basic structure of our system. It is important to note that, unlike classical logic, the deductive
system of type theory is on the same level as the specified type theory itself, so we now have
to ensure that everything works in a “sensible” way. We split these rules in the following
categories:

1. Rules for judgemental equality. We start in a similar way to any axiomatization
of classical logic and set theory: Equality is an equivalence relation. We can express
reflexivity, symmetry and transitivity as we usually would:

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑎 ≡ 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴
Γ ⊢ 𝑏 ≡ 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 Γ ⊢ 𝑏 ≡ 𝑐 ∶ 𝐴
Γ ⊢ 𝑎 ≡ 𝑐 ∶ 𝐴

but there is more that we have to say: Since everything is now done inside some type,
we also have to state that judgemental equality between terms is preserved by judge-
mental equality between types:

Γ ⊢ 𝐴 ≡ 𝐵 ∶ 𝒰 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑎 ∶ 𝐵

Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 ∶ 𝒰
Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐵
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2. Variable conversion. This describes the interplay between judgemental equality and
variables. Namely, we can freely exchange between types that are judgementally equal:

Γ ⊢ 𝐴 ≡ 𝐴′ ∶ 𝒰 Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝒥
Γ, 𝑥 ∶ 𝐴′, Δ ⊢ 𝒥

3. Substitution. Here, we have rules for replacing a variable with a specific term, as
we would in classical mathematics. We first require that that such substitutions are
possible

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑏 ∶ 𝐵
Γ, Δ[𝑎/𝑥] ⊢ 𝑏[𝑎/𝑥] ∶ 𝐵[𝑎/𝑥]

and then that they respect judgemental equalities

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑏 ≡ 𝑐 ∶ 𝐵
Γ, Δ[𝑎/𝑥] ⊢ 𝑏[𝑎/𝑥] ≡ 𝑐[𝑎/𝑥] ∶ 𝐵[𝑎/𝑥]

Γ ⊢ 𝑎 ≡ 𝑎′ ∶ 𝐴 Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑏 ∶ 𝐵
Γ, Δ[𝑎/𝑥] ⊢ 𝑏[𝑎/𝑥] ≡ 𝑏[𝑎′/𝑥] ∶ 𝐵[𝑎/𝑥]

4. Weakening. Finally, we say that we can add more declarations to a context, without
affecting the judgement in any other way:

Γ ⊢ 𝐴 ∶ 𝒰 Γ, Δ ⊢ 𝑏 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑏 ∶ 𝐵

Γ ⊢ 𝐴 ∶ 𝒰 Γ, Δ ⊢ 𝑏 ≡ 𝑐 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑏 ≡ 𝑐 ∶ 𝐵

Type Forming Rules

One can think of inference rules as in classical logic, but they are more general than that:
They define all the possible ways we can produce elements in any given type that our axioms
allow.
To provide the axioms for a specific type, we put our deductive rules into the following

categories, each one specifying a different aspect of the behavior of our desired type. We
have:

1. Formation rules, which specify the conditions under which our type exists.

2. Introduction rules, i.e., ways to construct terms in the type.

3. Elimination rules, describing how to use a term of the type.

4. Computation rules, describing how elimination rules act when applied to introduc-
tion rules.

5. Uniqueness principles (optionally), imposing uniqueness conditions on mapping in
or out of the type. These usually involve judgmental equalities, but some types have
provable uniqueness principles involving intensional identity types.

3.1.5 Remark. There is one set of axioms that we assume but do not explicitly state: With
every intro rule comes a rule saying that it respects ≡.
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Going another way, we will see examples of how these rules can have direct analogues to
universal properties in category theory.
In this section, we fix a universe 𝒰. We begin with a fundamental definition which will

add the ”dependent” in dependent type theory.

3.1.6 Definition. A type family over 𝐴 ∶ 𝒰 in context Γ is of the form

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) ∶ 𝒰

In plain language, this means that a type family assigns a type 𝐶(𝑥) ∶ 𝒰 to every term of
𝐴.

3.1.7 Remark. If one has a working definition of a function type, then a type family is just
a function 𝐶 ∶ 𝐴 → 𝒰

We can now begin to axiomatically describe Martin-Löf Type Theory. Let us start with
two very simple fundamental cases:

3.1.8 Example (Empty and unit type). As the names suggest, we want to provide rules for
a type analogous to the empty and one-point sets, respectively. To begin with, there is no
reason for the existence of these types to depend on anything else, so the formation rules are
simple, allowing any context:

Γ ctx
Γ ⊢ 0 ∶ 𝒰

Γ ctx
Γ ⊢ 1 ∶ 𝒰

On the category-theoretic end, the appropriate generalization is the initial and terminal ob-
jects, characterized by mapping properties. Looking at our type-forming rules, this is where
the elimination rules come in. Note that contexts play a role here: In categorical semantics
of type theory, contexts themselves are interpreted as objects.
We first consider the empty type: We have an elimination rule

Γ, 𝑥 ∶ 0 ⊢ 𝐶 ∶ 𝒰 Γ ⊢ 𝑎 ∶ 0
Γ ⊢ ind0(𝑥.𝐶, 𝛼) ∶ 𝐶[𝑎/𝑥]

and no introduction or computation rules. This makes sense: There should be no way to
construct a term in the empty type.
Let us now try to interpret this elimination rule: Assume we have a type 𝐴 and a context

Γ (i.e., the type family 𝑥 ∶ 0 ⊢ 𝐶 is the constant family 𝐴). Applying weakening, we have a
well-formed judgement

Γ, 𝑥 ∶ 0 ⊢ 𝐴 ∶ 𝒰
where 𝐴 is a constant type family over 0. Then, applying the elimination rule we get a term
in 𝐴 for every term in 0, i.e., a function

0→ 𝐴

Switching to a categorical perspective, this is part of the condition for 0 to be initial: there
exist a map to any other object. Moreover, if we think of the empty type as representing the
logical statement false, then we have the ex falso rule: Anything can be derived from false.
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We now move to the unit type. For the introduction rule, the unit type comes with one
term: Γ ctx

Γ ⊢ ⋆ ∶ 1
For the elimination and computation rules, we want a description of how to map out of the
type. Getting some intuition from set theory, we expect that the only thing we need to do is
specify the term where ⋆ gets sent to. Indeed, we have an elimination rule

Γ, 𝑥 ∶ 1 ⊢ 𝐶 ∶ 𝒰 Γ ⊢ 𝑐⋆ ∶ 𝐶[⋆/𝑥] Γ ⊢ 𝑎 ∶ 1
Γ ⊢ ind1(𝑥.𝐶, 𝛼, 𝑐⋆) ∶ 𝐶[𝑎/𝑥]

saying that if we have a family of types parameterized by terms of 1, a term 𝑐⋆ corresponding
to ⋆ and a term in 1, we can have an element ind1(𝑥.𝐶, 𝛼, 𝑐⋆) in the appropriate type. What
we have not yet said is that ind1(𝑥.𝐶, −, 𝑐⋆) is actually 𝑐⋆ when evaluated at ⋆. To do that,
we have our first example of a computation rule

Γ, 𝑥 ∶ 1 ⊢ 𝐶 ∶ 𝒰 Γ ⊢ 𝑐⋆ ∶ 𝐶[⋆/𝑥]
Γ ⊢ ind1(𝑥.𝐶, ⋆, 𝑐⋆) ≡ 𝑐⋆

Similarly to 0 being our form of initial object, we would like 1 to somehow be terminal,
or, in terms of logic, the statement true. That requires all types to map into the unit type,
which we can do by taking everything to ⋆, but also requires some uniqueness condition.
Instead of assuming that every term of 𝛼 ≡ ⋆ for every 𝛼 ∶ 1 judgmentally as an axiom (a
uniqueness rule for 1), we will later show that another form of such a statement is provable
using intensional identity types. We will also see that this is reasonable under our homo-
topy interpretation, as uniqueness conditions in higher category theory are specified up to
homotopy.

Dependent function types

Given a type family 𝐵 over 𝐴, a term of the type∏𝑥∶𝐴 𝐵(𝑥) assigns to every term 𝑥 ∶ 𝐴 a
term of 𝐵(𝑥). We have a formation rule

Γ ⊢ 𝐴 ∶ 𝒰 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) ∶ 𝒰
Γ ⊢ ∏𝑥∶𝐴 𝐵(𝑥) ∶ 𝒰

and an introduction rule
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵(𝑥)

Γ ⊢ 𝜆(𝑥 ∶ 𝐴).𝑏 ∶ ∏𝑥∶𝐴 𝐵(𝑥)
stating formally what we just described. In particular, the rule 𝜆(𝑥 ∶ 𝐴).𝑏 is our equivalent
of 𝑓(𝑥) ≔ 𝑏, and we similarly want 𝑥 to be bound in 𝑏.
The elimination rule is there to make sure that we always end up in the right type:

Γ ⊢ 𝑓 ∶ ∏𝑥∶𝐴 𝐵(𝑥) Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑓(𝑎) ∶ 𝐵[𝑎/𝑥]
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and the computation and uniqueness rules make precise what we said above: Assigning
𝑏(𝑥) to every 𝑥 results in the function with these exact values.

Γ𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ (𝜆(𝑥 ∶ 𝐴).𝑏)(𝑎) ≡ 𝑏[𝑎/𝑥] ∶ 𝐵[𝑎/𝑥]

Γ ⊢ 𝑓 ∶ ∏𝑥∶𝐴 𝐵(𝑥)
Γ ⊢ 𝑓 ≡ 𝜆𝑥.𝑓(𝑥) ∶ ∏𝑥∶𝐴 𝐵(𝑥)

3.1.9 Remark. Consider the casewhere the family is constant, i.e., a type𝐵. Then, we obtain
the ordinary function type

𝐴 → 𝐵 ∶≡∏
𝑥∶𝐴

𝐵

In our formal system, this will be the definition of the function type. In other presentations
we can also define this function type without using families, so we can instead take the
definition of a type family to be a term of type 𝐴 → 𝒰.
3.1.10 Remark. Using the (ordinary) function type, we can express functions with multiple
parameters: A function𝑓 ∶ 𝐴×𝐵 → 𝐶 corresponds precisely to a function𝑓 ∶ 𝐴 → (𝐵 → 𝐶).
This operation is called currying and is the preferred way of denoting such types.
3.1.11 Notation. We usually skip the parenthesis on the right when there is no ambiguity,
writing 𝐴 → 𝐵 → 𝐶 for 𝐴 → (𝐵 → 𝐶).

Dependent sum types

The “classical equivalent” of these would be an indexed disjoint union. Let’s take a look
at the details: The formation rule works as with the dependent function type. Again, we
highlight the introduction rule

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) ∶ 𝒰 Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐵[𝑎/𝑥]
Γ ⊢ (𝑎, 𝑏) ∶ ∑𝑥∶𝐴 𝐵(𝑥)

Note the difference from the rule of the∏-type: Here, we only require some term 𝑎 ∶ 𝐴 to
“produce” a term of 𝐵, and, if this is the case, we get a pair in the∑-type.
The elimination rule
Γ, 𝑧 ∶ ∑𝑥∶𝐴 𝐵(𝑥) ⊢ 𝐶 ∶ 𝒰 Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵(𝑥) ⊢ 𝑔 ∶ 𝐶[(𝑥, 𝑦)/𝑧] Γ ⊢ 𝑝 ∶ ∑𝑥∶𝐴 𝐵(𝑥)

Γ ⊢ ind∑𝑥∶𝐴 𝐵(𝑥)(𝑧.𝐶, 𝑥.𝑦.𝑔, 𝑝) ∶ 𝐶[𝑝/𝑧]

and computation rule
Γ, 𝑧 ∶ ∑𝑥∶𝐴 𝐵(𝑥) ⊢ 𝐶 ∶ 𝒰 Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵(𝑥) ⊢ 𝑔 ∶ 𝐶[(𝑥, 𝑦)/𝑧] Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐵[𝑎/𝑥]

Γ ⊢ ind∑𝑥∶𝐴 𝐵(𝑥)(𝑧.𝐶, 𝑥.𝑦.𝑔, (𝑎, 𝑏)) ≡ 𝑔[(𝑎, 𝑏)/(𝑥, 𝑦)] ∶ 𝐶[(𝑎, 𝑏)/𝑧]

provide an inductive mapping property for∑-types: if we have a family 𝐶 over the∑-type
and ways to map into 𝐶 from 𝐴 and 𝐵, then this extends to a dependent function of type

∏
𝑝∶∑𝑥∶𝐴 𝐵(𝑥)

𝐶(𝑝)

We will see more such cases of inductive definitions interpreted in natural language, and
will use them in this form to provide readable proofs. For example:
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3.1.12 Construction (Projections). We use induction to define maps that single out the first
and second coordinates of pairs respectively.

• The first projectionpr1 ∶ (∑𝑥∶𝐴 𝐵(𝑥)) → 𝐴 is defined inductively by settingpr1(𝑎, 𝑏) ∶≡
𝑎 on pairs.

• As 𝐵 can be any family over 𝐴, the second projection has to be a dependent function,
since the type we will end up in depends on the first coordinate. We define

pr2 ∶ ∏
𝑝∶∑𝑥∶𝐴 𝐵(𝑥)

𝐵(pr1(𝑝))

once again using induction and setting pr2(𝑎, 𝑏) ∶≡ 𝑏 on pairs.

3.1.13 Remark. As with the ∏-type and the ordinary function type, we have a case that
falls out of the definition of∑-types: If the family 𝐵 is constant, then we define the product

𝐴 × 𝐵 ∶≡ ∑
𝑥∶𝐴

𝐵

and, applying the previous construction to the constant case, we have the usual projection
maps pr1 ∶ 𝐴 × 𝐵 → 𝐴, pr1(𝑎, 𝑏) ∶≡ 𝑎 and pr2 ∶ 𝐴 × 𝐵 → 𝐵, pr2(𝑎, 𝑏) ∶≡ 𝑏.

3.1.14 Remark. As the case of the product and the interpretation of the elimination and
computation rules might hint at, we can define∑-types as inductive types satisfying a form
of the universal property of the product for dependent functions. This type of definition is
what we use in practice, and it will become especially important in the case of identity types.
This is also how we will define coproducts:

Coproducts

We saw that products exist in type theory as a special case of dependent sum types. Here,
we present the axioms for the existence of coproduct types as well. As usual, we have a
formation rule

Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝐵 ∶ 𝒰
Γ ⊢ 𝐴 + 𝐵 ∶ 𝒰

Analogously to the coproduct in category theory, there should be inclusions𝐴 inl−→ 𝐴+𝐵 and
𝐵 inr−→ 𝐴 + 𝐵, which are presented by the introduction rules

Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝐵 ∶ 𝒰 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ inl(𝑎) ∶ 𝐴 + 𝐵

Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝐵 ∶ 𝒰 Γ ⊢ 𝑏 ∶ 𝐵
Γ ⊢ inr(𝑏) ∶ 𝐴 + 𝐵

meaning that we can construct terms in 𝐴 + 𝐵 in two ways, using terms in 𝐴 or 𝐵.
The rest of the axioms for coproducts can be packaged into an inductive definition out-

lining the universal property of the coproduct:
Given a type family

Γ, 𝑥 ∶ 𝐴 + 𝐵 ⊢ 𝑃(𝑥) ∶ 𝒰
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there is a function

ind+ ∶ (∏
𝑎∶𝐴

𝑃(inl(𝑎))) → ((∏
𝑏∶𝐵

𝑃(inr(𝑏))) → ∏
𝑥∶𝐴+𝐵

𝑃(𝑥))

satisfying the computation rules

ind+(𝑓, 𝑔, inl(𝑎)) ≡ 𝑓(𝑎)
ind+(𝑓, 𝑔, inr(𝑏)) ≡ 𝑔(𝑏)

In natural language, the coproduct 𝐴+ 𝐵 comes with a function that sends pairs of (depen-
dent) functions out of 𝐴 and 𝐵 that are compatible with the respective inclusion to (depen-
dent) functions out of 𝐴 + 𝐵.
Recall that, in category theory the universal property of the coproduct requires that maps

out of 𝐴+𝐵 are uniquely determined by maps out of 𝐴 and 𝐵 that commute with the inclu-
sions. The uniqueness part of the definitionwill again be propositional and not judgemental.

3.2. Logical aspects, part I: Curry‑Howard

Since we are developing type theory as its own deductive system, there should be a way of
expressing type-theoretic analogues to statements written in the language of propositional
logic. In this section we describe the intuition behind the propositions-as-types interpreta-
tion, and later we will make the different “levels” of logic in our types precise, using propo-
sitional truncations.

• We beginwith our notion of a true statement: Giving a proof in type theorymeans con-
structing a term in a corresponding type. Thus we can say that the type corresponding
to ⊤ is 1 and the type corresponding to ⊥ is 0.
A type expressing a true statement is thus an inhabited type. By themapping property
determined by the type-forming rules for 1, a type 𝐴 is inhabited precisely when there
exists a function 1→ 𝐴.

• Functions work like implications: Providing a function 𝐴 → 𝐵 means constructing a
term in 𝐵 for every term in 𝐴. Thus, if 𝐴 is inhabited and there exists 𝑓 ∶ 𝐴 → 𝐵, then
𝐵 is inhabited.
Applying this to 1 and 0, we get the usual properties of ⊤ and ⊥ respectively: We have
0→ 𝐴 and 𝐴 → 1 for any 𝐴, just as every statement is implied by ⊥ implies ⊤.

• We now create our negations: For a type 𝐴, set

¬𝐴 ≔ (𝐴 → 0)

Since there are no introduction rules for 0, we should not be able to produce a term in
0 given a term in 𝐴.
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Note that we can prove 𝐴 → ¬(¬𝐴): Under this interpretation, given 𝑎 ∶ 𝐴 and
𝑓 ∶ 𝐴 → 0, applying 𝑓 we can produce 𝑓(𝑎) ∶ 0. This is one side of the law of
excluded middle, but there is no reason why the other should hold:
¬(¬𝐴) → 𝐴 is saying that there is some 𝑀 ∶ (𝐴 → 0) → 0 → 𝐴, i.e., that having a
function 𝑔 ∶ (𝐴 → 0) → 0 should be enough to produce a term in 𝐴. Assuming the
full axiomatic system of homotopy type theory, this cannot be true!

• Continuing our motivation from category-theoretic mapping properties, we express ∧
as × and ∨ as the coproduct +. To check that the properties are satisfied, we can look
at the maps

𝐴 × 𝐵

𝐴 𝐵
pr1 pr2

𝐴 + 𝐵

𝐴 𝐵
inl inr

On dependent types

Type families aspredicates. Wehave already interpreted types are propositions and func-
tions as implications. From this viewpoint, a type family Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶(𝑥) ∶ 𝒰 assigns, to
every term 𝑥 ∶ 𝐴, the statement “𝐶(𝑥) is inhabited”. We can now interpret dependent func-
tion and pair types:

• We start with∏-types. Since an inhabited function type can be seen as a logical im-
plication, we can revisit our explanation of the introduction rule and interpret it as
such: For every 𝑥 ∶ 𝐴, we have a witness of 𝐵(𝑥).We have thus found our analogue of
the statement: for all 𝑥 ∶ 𝐴, 𝐵(𝑥) holds, or ∀𝑥𝐵(𝑥).

• Now do the same for dependent sum types: This time, constructing a term of type
∑𝑥∶𝐴 𝐵(𝑥) means that we have provided at least one term of 𝐴 such that there is a
term in 𝐵(𝑥). We have the analogue of: there exists some 𝑥 ∶ 𝐴 for which 𝐵(𝑥) holds, or
∃𝑥𝐵(𝑥).
Note that the ∑-type is (at least) the collection of all such pairs of terms 𝑥 ∶ 𝐴 and
proofs of 𝐵(𝑥). The analogy here is, once again, not classical: We will need proposi-
tional truncations to do classical logic.

The type of booleans and decidability

Using the existence of the coproduct and the unit type, we now construct a type of booleans
or “truth values”: We set

bool ∶≡ 1 + 1

For the sake of clarity, denote the two specified points by false ∶ bool and true ∶ bool.
Applying the inductive definition of the coproduct for a family 𝑃 ∶ bool → 𝒰 results in a
recursor

recbool ∶ 𝑃(false) → (𝑃(true) → ∏
𝑥∶bool

𝑃(𝑥))
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or, assigning a term to false ∶ bool and a term to true ∶ bool is enough to map out of the
whole type. In other words, the induction principle for bool is just case analysis.
However, this does not mean that we can do case analysis for any desired type-theoretic

construction! Assumewewant to construct a function in the type𝐴 → 𝐵 using case analysis
on a predicate 𝑃 ∶ 𝐴 → 𝒰. The strategy would be to use recbool ∶ 𝐵(false) → (𝐵(true) →
(bool → 𝐵)) in the case of the constant family 𝐵. Then, we need to find a way to construct
a map 𝐴 → bool, deciding whether a term 𝑎 ∶ 𝐴 gets sent to true if 𝑃(𝑎) or false if ¬𝑃(𝑎).
This is where we get stuck: There is no axiom that says such a function should exist for any
predicate.

3.2.1 Definition. 1. A type𝑋 is decidable if𝑋+¬𝑋 is inhabited, i.e., the law of excluded
middle holds for 𝑋 .

2. A family 𝑃 ∶ 𝑋 → 𝒰 is decidable if∏𝑥∶𝑋(𝑃(𝑥) + ¬𝑃(𝑥)).

Assuming 𝑃 is decidable, case analysis can be performed: Given a dependent function
𝑐 ∶ ∏𝑥∶𝐴(𝑃(𝑥) + ¬𝑃(𝑥)), define

̃𝑐 ∶ 𝐴 → bool , 𝜆𝑥.𝑡𝑃,𝑥(𝑐(𝑥))

where 𝑡𝑃,𝑥 ∶ (𝑃(𝑥) +¬𝑃(𝑥)) → bool is defined by sending 𝑦 ∶ 𝑃(𝑥) to true and 𝑦 ∶ ¬𝑃(𝑥) to
false.

3.3. Identity types

It is now time to look at identifications internal to our type theory. The key conceptual
difference is that an identity type contains all possible identifications of two terms of a given
type (there can bemore than one!). For two terms 𝑥, 𝑦 ∶ 𝐴 the identity type 𝑥 =𝐴 𝑦 is defined
inductively: We have a formation rule

Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑥 ∶ 𝐴 Γ ⊢ 𝑦 ∶ 𝐴
Γ ⊢ 𝑥 =𝐴 𝑦 ∶ 𝒰

For the introduction rule, there is only one termwe can construct by default in the identity
type: The term refl𝑥 ∶ 𝑥 =𝐴 𝑥 corresponding to a trivial identification of a term with itself.
Formally, the rule is

Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑥 ∶ 𝐴
Γ ⊢ refl𝑥 ∶ 𝑥 =𝐴 𝑥

If one checks the rest of the formal presentation, the elimination and computation rules
are quite complicated. However, they are outlining a powerful defining property, called path
induction.
The statement is as follows [Uni13, 1.12.1]:

Assume we have a family
Φ ∶∏

𝑥∶𝐴
∏
𝑦∶𝐴

(𝑥 =𝐴 𝑦) → 𝒰
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and a (dependent) function
𝜑 ∶∏

𝑥∶𝐴
Φ(𝑥, 𝑥, reflx)

Then there is a function
𝑓 ∶∏

𝑥∶𝐴
∏
𝑦∶𝐴

∏
(𝑝∶𝑥=𝐴𝑦)

Φ(𝑥, 𝑦, 𝑝)

that “extends” 𝜑:
𝑓(𝑥, 𝑥, refl𝑥) = 𝜑(𝑥)

In terms of proof tactics, this is saying: If I want to prove something for all 𝑥, 𝑦 ∶ 𝐴 and
all paths between them, it is enough to consider the case in which both elements are 𝑥 and
the path is refl𝑥! Or, from an informal categorical perspective, we have lifts

𝐴 𝐸

𝑃𝐴 𝐵

∃

where 𝑃𝐴 is the path space corresponding to the “total identity type” and the map on the
right is a fibration (this will makemore sense using our interpretations in the next sections).
Warning: This is not saying that these are the only terms in the identity type. In fact,

identity types can be complicated enough to allow us to reason about homotopy theory in
HoTT. Of course, it is not immediately clear why we would actually want these types to
have that kind of structure. This is the first point where the classical and the homotopical
perspective diverge.

3.4. Identity Types and Homotopy Theory

We now present a topological interpretation (and some facts) to justify the statement that
intensional identity types provide types in Martin-Löf type theory with a higher homotopi-
cal structure. Consider a term 𝑝 ∶ 𝑥 =𝐴 𝑦 in some identity type. This first proposition states
that we can really think of such terms as paths, in the sense that they satisfy the same fun-
damental properties that paths do (up to homotopy) in topological spaces, or, in the model
we are going for, Kan complexes.

3.4.1 Proposition. Let 𝐴 be a type. There is a concatenation operator of type

∏
𝑥,𝑦,𝑧∶𝐴

(𝑥 =𝐴 𝑦 → (𝑦 =𝐴 𝑧 → 𝑥 =𝐴 𝑧))

and an inverse operator of type

∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦 → 𝑦 =𝐴 𝑥)

satisfying the relevant associativity, unit and inverse laws, with the unit being refl𝑥.
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Proof sketch. We prove this by path induction: Both types are inhabited when 𝑥 ≡ 𝑦 and the
paths are refl𝑥.

Let us now look at the type
∑

𝑥,𝑦∶𝐴
(𝑥 =𝐴 𝑦)

This is analogous to the concept of the free path space, i.e. the path space of a topological
space not bound by any endpoints. In such a space, any path is homotopic to the constant
path at one of its endpoints. The analogous principle of based path induction corresponds
to the behavior of the based path space.
We now shift our focus to functions. The next proposition states that there is a functorial

way to apply a function to a path.

3.4.2 Proposition. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 be functions. there is an operation (action on
paths)

ap𝑓 ∶ ∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦 → 𝑓(𝑥) =𝐵 𝑓(𝑦))

together with operations

ap-id𝐴 ∶ ∏
𝑥,𝑦∶𝐴

∏
(𝑝∶𝑥=𝐴𝑦)

𝑝 =(𝑥=𝐴𝑦) apid𝐴(𝑝)

ap-comp(𝑓, 𝑔) ∶ ∏
𝑥,𝑦∶𝐴

∏
(𝑝∶𝑥=𝐴𝑦)

ap𝑔(ap𝑓(𝑝)) =(𝑔∘𝑓(𝑥)=𝐶𝑔∘𝑓(𝑦)) ap𝑔∘𝑓(𝑝))

Moreover, we have a dependent version: If 𝑓 ∶ ∏𝑥∶𝐴 𝐶(𝑥), then there is an operation

apd𝑓 ∶ ∏
(𝑝∶𝑥=𝐴𝑦)

(𝑓(𝑥) =𝐶(𝑥) 𝑓(𝑦))

Once again, the key here is to iteratively define the operators, each time in the case where
the relevant path is refl, and use path induction.
We can have an analogous operator in the dependent function type, for which we need:

3.4.3 Proposition (Transport). Let 𝐴 be a type and 𝐶 a type family over 𝐴. There is an opera-
tion

tr𝐶 ∶ ∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦 → (𝐶(𝑥) → 𝐶(𝑦))

3.4.4 Notation. Let 𝑝 ∶ 𝑥 =𝐴 𝑦. We denote by 𝑝∗ ∶ (𝐶(𝑥) → 𝐶(𝑦)) the function tr𝐶(𝑥, 𝑦, 𝑝).

3.4.5 Definition. A type 𝐴 is called contractible if the type

isContr(𝐴) ≔ ∑
𝑥∶𝐴

∏
𝑦∶𝐴

(𝑦 =𝐴 𝑥)

is inhabited.
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Unfolding this definition, we can see a subtle change in our previous logical interpretation
of dependent types: Here the dependent function taking any point to a path to the center of
contraction has to be interpreted as being continuous in some way, otherwise the notion we
would be describing would be that of a space being path connected. We will later modify
this definition so that continuity is not guaranteed using propositions.

3.4.6 Definition.

• Let 𝑓, 𝑔 ∶ 𝐴 → 𝐵 be two functions. A homotopy between 𝑓 and 𝑔 is a dependent
function of type

(𝑓 ∼ 𝑔) ∶≡∏
𝑥∶𝐴

(𝑓(𝑥) = 𝑔(𝑥))

• A function 𝑓 ∶ 𝐴 → 𝐵 is an equivalence if there is an element in the type (actually
proposition!)

isequiv(𝑓) ∶≡ ( ∑
𝑔∶𝐵→𝐴

(𝑓 ∘ 𝑔 ∼ id𝐵)) × ( ∑
ℎ∶𝐵→𝐴

(ℎ ∘ 𝑓 ∼ id𝐵))

3.4.7 Definition. Let 𝑓 ∶ 𝐴 → 𝐵 be a function and 𝑏 ∶ 𝐵. We define the fiber of 𝑓 at 𝑏 to be
the type

fib𝑓(𝑏) ∶≡ ∑
𝑥∶𝐴

(𝑓(𝑥) = 𝑏)

3.4.8 Theorem. A function 𝑓 ∶ 𝐴 → 𝐵 is an equivalence if and only if it has contractible
fibers, i.e., if there is an element of the type

∏
𝑏∶𝐵

isContr(fib𝑓(𝑏))

Type families as fibrations

Let 𝐶 ∶ 𝐴 → 𝒰 be a type family. Given that we have given a homotopical interpretation to
paths, we should be aple to interpret∑ and∏ types in a similarway. Webeginwith∑-types:
Recall that we can define the first projection pr1 ∶ ∑𝑥∶𝐴 𝐶(𝑥) → 𝐴. In the following results,
wewill providemotivation for thinking of∑𝑥∶𝐴 𝐶(𝑥) as the total space of the fibration pr1 ∶
∑𝑥∶𝐴 𝐶(𝑥) → 𝐴, with 𝐶(𝑥) being the fiber over 𝑥.
For now, recall the notion of a fiber bundle of topological spaces, a particular kind of Serre

fibration 𝑞 ∶ 𝐸 → 𝐵 where the fibers 𝑝−1(𝑏) locally look like products 𝐸 × 𝐹 such that 𝑞
locally looks like the projection.
Moving to∏-types, consider a dependent function 𝑓 ∶ ∏𝑥∶𝐴 𝐶(𝑥). For 𝑥 ∶ 𝐴, observe

that we can define a function
̃𝑓 ∶≡ 𝜆𝑥.(𝑥, 𝑓(𝑥)) ∶∏

𝑥∶𝐴
( ∑
𝑦∶𝐴

𝐶(𝑦))

and now pr1( ̃𝑓(𝑥)) ≡ 𝑥 ∶ 𝐴. We thus think of ∏𝑥∶𝐴 𝐶(𝑥) as the type of sections of the
fibration∑𝑥∶𝐴 𝐶(𝑥)

pr1−−→ 𝐴.
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This discussion can be packaged into this syntactically highly informal, but semantically
accurate pullback diagram (assuming 𝑎 ∶ 𝐴 and 𝑓 ∶ ∏𝑥∶𝐴 𝐶(𝑥)):

𝐶(𝑎) ∑𝑥∶𝐴 𝐶(𝑥)

1 𝐴

pr1
𝑎

̃𝑓

We now state some more results that describe the behavior of ∑-types; we start with a
characterization of paths in∑-types that states that they are made up precisely of pairs of
paths in the base and compatible paths in the fibers.

3.4.9 Theorem ([Uni13, Theorem 2.7.2]). Let 𝐶 ∶ 𝐴 → 𝒰 be a type family and 𝑢, 𝑣 ∶
∑𝑥∶𝐴 𝐶(𝑥). There is an equivalence

(𝑢 =∑𝑥∶𝐴 𝐶(𝑥) 𝑣) ≃ ∑
(𝑝∶pr1(𝑢)=𝐴pr1(𝑣))

𝑝∗(pr2(𝑢)) =𝐶(pr1(𝑣)) pr2(𝑣)

Next, we present the path lifting property for∑-types. This can be thought of as the defin-
ing property of fibrations:

3.4.10 Lemma ([Uni13, Lemma 2.3.2]). Let𝐶 ∶ 𝐴 → 𝒰 be a type family, 𝑎 ∶ 𝐴 and 𝑧 ∶ 𝐶(𝑎).
For any 𝑝 ∶ 𝑎 =𝐴 𝑏, we have a lifting function

lift(𝑧, 𝑝) ∶ (𝑎, 𝑧) =∑𝑥∶𝐴 𝐶(𝑥) (𝑏, 𝑝∗(𝑎))

such that pr1(lift(𝑧, 𝑝)) =(𝑎=𝑏) 𝑝.

3.5. The Univalence Axiom

The notion of univalence comes from the observation that mathematical structures that are
equivalent in some relevant sense tend to be identified. In classical mathematics, this is an
informal process; one has to prove that the corresponding equivalece preserves any prop-
erties we care about. In type theory, univalence allows us to make this identification using
identity types.

3.5.1 Construction. Let 𝒰 be a universe. For any two types 𝐴, 𝐵 ∶ 𝒰 we can define a map

idtoequiv ∶ (𝐴 =𝒰 𝐵) → (𝐴 ≃𝒰 𝐵)

given by sending refl𝐴 to id𝐴 and applying transport and path induction.

3.5.2 Definition. A universe𝒰 is univalent if, for all types 𝐴, 𝐵 ∶ 𝒰, the function idtoequiv
is an equivalence.

One very powerful result implied by univalence is the following type-theoretic analogue
of the Grothendieck construction:
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3.5.3 Theorem. For any type 𝐴 ∶ 𝒰 where𝒰 is a univalent universe, the map

( ∑
𝑋∶𝒰

(𝑋 → 𝐴)) → (𝐴 → 𝒰)

(𝑋, 𝑓) ↦ fib𝑓

is an equivalence.

Recall that we can see 𝐴 → 𝒰 as the type of type families indexed by 𝐴. Then this result
is saying that the full homotopical structure of such families is encoded in the type of maps
into 𝐴.

3.5.4 Theorem ([Uni13, Section 4.9]). Univalence implies the function extensionality axiom:
In a univalent universe 𝒰, for any type family 𝐶 ∶ 𝐴 → 𝒰 and any 𝑓, 𝑔 ∶ ∏𝑥∶𝐴 𝐶(𝑥), the
function

htpy−eq𝑓,𝑔 ∶ (𝑓 = 𝑔) → (𝑓 ∼ 𝑔)
defined by path induction is an equivalence.

3.6. Higher inductive types, truncations andmore homotopy
theory

Definitions of higher inductive types are a general schema of inductive definitions, where
we require the existence of nontrivial paths in some higher level of identity types. For the
purposes of this section, we will give an overview of the case of the circle.

3.6.1 Example ([Uni13, Section 6.4]). The circle 𝕊1 is the type generated by:

• A point base ∶ 𝕊1.

• A path loop ∶ base =𝕊1 base.

together with the induction principle that constructs maps out of the circle: For a family
𝑃 ∶ 𝕊1 → 𝒰, a point 𝑏 ∶ 𝑃(base) and a dependent path 𝑙 ∶ 𝑏 =𝑃

loop 𝑏 over loop, there is a
dependent function 𝑓 ∶ ∏𝑥∶𝕊1 𝑃(𝑥) with 𝑓(𝑏𝑎𝑠𝑒) ≡ 𝑏 and apd𝑓(loop) = 𝑙.

Using the loop space construction that we will define below, we can also define higher-
dimensional spheres.

Wewill nowdiscuss operations that “forget the higher structure” of types. This serves both
a logical and a homotopy-theoretic perspective: In homotopy theory, recall the Postnikov
truncations of a space, which kill its homotopy groups at some level and above. Focusing
on the lowest levels, we can only remember if a type is inhabited or not (propositions), or
remove all higher paths (sets). In the next section, we will use propositional truncations to
do classical logic in homotopy type theory.
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3.6.2 Definition. Let 𝑛 ≥ −2. We say that a type 𝑋 is an 𝑛-type if the type is-𝑛-type(𝑋) is
inhabited, defined recursively as

is-(−2)-type(𝑋) ≔ isContr(𝑋)
is-(𝑛 + 1)-type(𝑋) ≔ ∏

𝑥,𝑦∶𝑋
is-𝑛-type(𝑥 =𝑋 𝑦)

We say that a map 𝑓 ∶ 𝑋 → 𝑌 𝑛-truncated if all its fibers are 𝑛-types.

3.6.3 Definition. In particular, we call (−1)-types propositions, and 0-types sets.

We mention the following important results about sets:

3.6.4 Theorem ([Uni13, Theorem 7.2.1]). A type 𝑋 is a set if and only if it satisfies Axiom K:
For any 𝑎 ∶ 𝑋 and any 𝑝 ∶ 𝑎 =𝑋 𝑎, we have path 𝑝 =(𝑎=𝑋𝑎) refl𝑎

3.6.5 Theorem (Hedberg’s theorem). If 𝑋 has decidable equality (meaning that all identity
types are decidable), then 𝑋 is a set.

3.6.6 Theorem ([Uni13, Theorem 7.1.7]). Every 𝑛-type is an 𝑛 + 1-type.

Proof. Let 𝑥 be an 𝑛-type. Induction on 𝑛:

𝑛 = −2. 𝑋 is contractible, so assume 𝑥0 ∶ 𝑋 is the center of contraction. We want to
show that every identity type 𝑥 =𝑋 𝑦 is contractible. By contractibility of 𝑋 , we have
paths contr𝑥 ∶ 𝑥 =𝑋 𝑥0 and contr𝑦 ∶ 𝑦 =𝑋 𝑥0. Choose the path concat(contr𝑥, contr−1𝑥 )
to be the center of contraction for𝑥 =𝑋 𝑦 anduse path induction and the fact that there
is a path in concat(contr𝑥, contr−1𝑥 ) =(𝑥=𝑋𝑥) refl𝑥.

𝑛 = 𝑚 + 1. We want to show that every identity type 𝑥 =𝑋 𝑦 is an 𝑚-type, which is
true by the induction hypothesis.

3.6.7 Theorem ([Uni13, 7.1.8, 7.1.9]). Let 𝐶 ∶ 𝐴 → 𝒰 be a type family and assume that all
fibers 𝐵(𝑎) are 𝑛-types. Then:

1. ∏𝑥∶𝐴 𝐶(𝑥) is an 𝑛-type.

2. If 𝐴 is also an 𝑛-type,∑𝑥∶𝐴 𝐶(𝑥) is an 𝑛-type.

3.6.8 Theorem ([Rij22, Theorem 12.4.7]). Amap 𝑓 ∶ 𝑋 → 𝑌 is (𝑛+ 1)-truncated if and only
if for every 𝑥, 𝑦 ∶ 𝑋 , the map ap𝑓 ∶ (𝑥 =𝑋 𝑦) → (𝑓(𝑥) =𝑌 𝑓(𝑦)) is 𝑛-truncated.

3.6.9 Definition (Universal property of the truncation). Let 𝑋 be a type. A map 𝑓 ∶ 𝑋 → 𝑌
satisfies the universal property of the 𝑛-truncation if, for any 𝑛-type 𝑍, the precomposition
map − ∘ 𝑓 ∶ (𝑌 → 𝑍) → (𝑋 → 𝑍) is an equivalence.

3.6.10 Theorem (Existence of 𝑛-truncations, [Uni13, Section 7.3]). There is an 𝑛-truncation
function || − ||𝑛 for every 𝑛.
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In particular, we have the propositional truncation || − ||−1 and the set truncation || − ||0.

3.6.11 Construction. We can use truncations as well as the higher groupoidal structure of
identity types to define homotopy groups of types: For a type𝐴 and a chosen basepoint𝑎 ∶ 𝐴,
we can define the loop space

Ω(𝐴, 𝑎) ≔ 𝑎 =𝐴 𝑎
togetherwith the chosen basepoint refl𝑎, and iteratively define higher loop spacesΩ𝑛+1(𝐴, 𝑎) ≔
Ω(Ω𝑛(𝐴, 𝑎)). Now set

𝜋𝑛(𝐴, 𝑎) ≔ ||Ω𝑛(𝐴, 𝑎)||0
3.6.12 Remark. Since this definition of homotopy groups uses this looping construction
as its core, let us do a quick sanity check and convince ourselves that it captures the same
information as the usual constructions in spaces or Kan complexes.
For a Kan complex 𝑋 with a fixed vertex 𝑥0, define its path space to be the pullback

𝑃𝑋 ≔ 𝑋1 ×𝑋 Δ0

i.e., the fiber of 𝑋1
𝑑0−→ 𝑋 along 𝑥0. We can then define the loop space

Ω𝑋 𝑃𝑋

𝑋1

Δ0 𝑋

⌟

𝑑1𝑥0

To show that this definition is equivalent to the one we gave in chapter 2, we can iteratively
use the fact that the suspension-loop adjunction carries over to Kan complexes. Then, since
(Δ𝑛+1, 𝜕Δ𝑛+1) ≃ (ΣΔ𝑛, Σ𝜕Δ𝑛), taking path components results in the corresponding homo-
topy group.

Note that some sources even define homotopy groups of Kan complexes this way, see for
example [Cis19, 3.8].

3.7. Logical aspects, part II: Propositions and comparisons with
ZFC

Now that we have the propositional truncation of a type, we can make a precise analogy to
classical logic. Applying || − ||−1 to a type keeps track of whether the type is inhabited or
not. We then translate first-order logic as follows: Assume that 𝑃 and 𝑄 are propositions
and 𝑅 ∶ 𝐴 → 𝒰 is a family of propositions over a type 𝐴. We define the correspondence

𝑃 ∨ 𝑄 ||𝑃 + 𝑄||−1
∃(𝑥 ∶ 𝐴)𝑅(𝑥) ∑𝑥∶𝐴 ||𝑅(𝑥)||−1
∀(𝑥 ∶ 𝐴)𝑅(𝑥) ∏𝑥∶𝐴 𝑅(𝑥)
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Note that 𝑃 × 𝑄 and∏𝑥∶𝐴 𝑅(𝑥) are already propositions, so no modifications have to be
made!
We refer to∑𝑥∶𝐴 ||𝑅(𝑥)||−1 as “there merely exists 𝑥 ∶ 𝐴 such that 𝑅(𝑥)”.

3.7.1 Remark. The statement “there merely exists (...)” can be interpreted as “there exists,
but not in a continuous/uniformmanner”. For example, recall the definition of a type being
contractible. If we change the the analogous statement 𝜎𝑎0∶𝐴∏𝑥∶𝐴 ||(𝑎0 =𝐴 𝑥)||−1, this
statement now means that 𝐴 is path connected.

In that interpretation of logic, we may assume the axiom of choice or the law of excluded
middle for propositions. However, in the full type theory, the law of excluded middle is false
[Uni13, Theorem 3.2.2], but a constructive version of the axiom of choice is true, as, the
choice function is given to us by default. We will see that “axiom” (actually a theorem) in a
different setting in Chapter 5.
Assuming the full type theory we have defined so far, types with higher structure have to

exist:

3.7.2 Proposition. Assuming𝒰 is univalent, it is not a set.

Proof sketch. We can define two different self-equivalences of the type of bool: the identity
and the map 𝜆true.false, 𝜆false.true. If 𝒰 is a set, then univalence implies that there is a
path between these two equivalences, which means that false = true, contradicting the
basic theory of coproducts.
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4. Interlude: On Univalence and Rezk
Completeness

In this chapter, we present a survey of examples and relations of univalence and the condi-
tion of an object being Rezk-complete. The goal is to highlight how these notions provide the
means for a coherent theory of various forms of equivalence that, by adding extra structure,
can be made to behave as an identification of two elements.

4.1. Flagged categories and 2‑categorical equivalences

Recall that in 1-category theory, we are usually not working up to strict isomorphism of
categories, but up to the weaker notion of an equivalence of categories: A functor together
with an inverse up to natural isomorphism. We can make the difference precise using 2-
categories, as a special case of work in [AF18]:
4.1.1 Definition. The (2, 1)-category 𝒞at is defined by the following data:

• Objects are categories.

• Morphisms are functors.

• 2-morphisms are natural isomorphisms.
4.1.2 Definition. A flagged (2, 1)-category is an essentially surjective functor𝐺 → 𝐶 of cat-
egories where the domain is a groupoid. They assemble naturally into a (2, 1)-category 𝑓𝒞𝑎𝑡
with objects flagged categories, morphisms functors that make the evident square commute
and 2-morphisms natural isomorphisms that fit into a commutative diagram

𝐺1 𝐺2

𝒞1 𝒞2

𝐹1

𝑎

𝐹2𝑏

𝑙

𝑘

𝜇

𝜈

4.1.3 Lemma. Let 𝐹1 ∶ 𝐺1
𝐹1−−→ 𝒞1, 𝐹2 ∶ 𝐺2

𝐹2−−→ 𝒞2 be two objects in 𝑓𝒞𝑎𝑡, such that 𝐺1, 𝐺2
are discrete and 𝐹1, 𝐹2 are surjective on objects, then the groupoidHom(𝐹1, 𝐹2) is discrete.
Proof. Let (𝑎, 𝑘), (𝑏, 𝑙) and (𝜇, 𝜈) be as in the diagram above. where 𝜇 and 𝜈 are natural
isomorphisms. Since there are no non-identity morphisms in 𝐺2, we get that 𝑎 = 𝑏 and
𝜇 is the identity. Now let 𝑔 be an object of 𝐺1. Since 𝑎 = 𝑏, the diagram now says that
𝑖𝑑𝐹2𝑎(𝑔) = 𝑖𝑑𝑙𝐹1(𝑔) = 𝜈𝐹1(𝑔). Thus 𝑘(𝑔) = 𝑙(𝑔). Since 𝐹1 is surjective, we get our result.
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4.1.4 Proposition. There are fully faithful (2, 1)-embeddings

CAT
𝑖𝑆
↪−→ 𝑓𝒞𝑎𝑡 𝒞at

𝑖𝑊
↪−→ 𝑓𝒞𝑎𝑡

𝒞 ↦ (Obj(𝒞) → 𝒞) 𝒞 ↦ (𝒞≃ → 𝒞)

where CAT is the (1, 1)-category of categories, taking a category to the inclusion of the set of
objects, and the (2, 1)-category of categories, taking a category to its groupoid core inclusion.

Proof sketch. In the case of the first embedding, we use the fact that hom-groupoids are
discrete by the previous lemma.
For the second embedding, let 𝐹1, 𝐹2 ∶ 𝒞 → 𝒟, we have to show that Nat(𝐹1, 𝐹2) is in

bijection (induced by 𝑖𝑊 ) with the set of morphisms between (𝐹≃1 , 𝐹1) and (𝐹≃2 , 𝐹2). This is
equivalent to saying that for a natural isomorphism 𝜈, the only natural isomorphism that re-
stricts to 𝜈 between groupoid cores is 𝜈 itself, which is true since 𝜈 consists of isomorphisms.
For a commmutative square

𝒞≃ 𝒟≃

𝒞 𝒟

𝑎

𝑏

we immediately get that 𝑎 is the restriction 𝑏≃, so this is precisely the image of 𝒞 𝑏−→ 𝒟.

With these embeddings into 𝑓𝒞𝑎𝑡, we now have a unified framework that contains both
strict categories (the image of CAT, where equivalences are isomorphisms of categories) and
“univalent” categories (the image of𝒞at, where equivalences are equivalences of categories).
In that case, the Rezk completion functor is the functor 𝑖𝑆(CAT) → 𝑖𝑊 (𝒞at) induced by

the inclusion Obj(𝒞) ↪ 𝒞≃.

4.2. Warmup: univalent 1‑categories in homotopy type theory

We outline the approach to do 1-category theory in homotopy type theory, as laid out in
[AKS15]. Here, we can define a 1-category without any extra theory, as we require types
of morphisms to have no higher structure. Moreover, a “local univalence”/Rezk complete-
ness condition will again play a role, with the property that, as with Segal spaces, there is a
completion functor turning a precategory into a univalent 1-category.

4.2.1 Definition ([AKS15, Definition 3.1]). A precategory 𝐴 consists of:

1. A type of objects 𝐴0. We write 𝑎 ∶ 𝐴 for 𝐴 ∶ 𝐴0.

2. For each 𝑎, 𝑏 ∶ 𝐴, a set hom𝐴(𝑎, 𝑏) of morphisms or arrows.

3. For each 𝑎 ∶ 𝐴, an identity morphism 1𝑎 ∶ hom𝐴(𝑎, 𝑎).

4. For each 𝑎, 𝑏, 𝑐 ∶ 𝐴 and 𝑓 ∶ hom𝐴(𝑎, 𝑏), 𝑔 ∶ hom𝐴(𝑏, 𝑐), a composition function

− ∘ − ∶ hom𝐴(𝑎, 𝑏) → hom𝐴(𝑏, 𝑐) → hom𝐴(𝑎, 𝑐)
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5. Witnesses for the properties of composition:
• For each 𝑎, 𝑏 ∶ 𝐴, functions of type

∏
(𝑓∶hom𝐴(𝑎,𝑏))

(𝑓 = 𝑓 ∘ 1𝑎) and ∏
(𝑓∶hom𝐴(𝑎,𝑏))

(𝑓 = 1𝑏 ∘ 𝑓)

• For each 𝑎, 𝑏, 𝑐, 𝑑 ∶ 𝐴 and 𝑓 ∶ hom𝐴(𝑎, 𝑏), 𝑔 ∶ hom𝐴(𝑏, 𝑐), ℎ ∶ hom𝐴(𝑐, 𝑑), a
witness for associativity: ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.

We can define functors between precategories and natural transformations in the same
way. For precategories 𝐴, 𝐵, we define by 𝐵𝐴 the correspoding category of functors from 𝐴
to 𝐵.

4.2.2 Definition. 1. For 𝑓 ∶ hom𝐴(𝑥, 𝑦) define the type

isiso(𝑓) ≔ ( ∑
𝑔∶hom𝐴(𝑦,𝑥)

𝑔 ∘ 𝑓 = 1𝑥) × ( ∑
ℎ∶hom𝐴(𝑦,𝑥)

𝑓 ∘ ℎ = 1𝑦)

𝑓 is an isomorphism if isiso(𝑓) is inhabited.

2. For fixed 𝑥, 𝑦 ∶ 𝐴, denote by

(𝑥 ≅𝐴 𝑦) ≔ ∑
𝑓∶hom𝐴(𝑥,𝑦)

isiso(𝑓)

the type of all isomorphisms between 𝑥 and 𝑦.

We now express Rezk completeness: Here, we want to unify identities and isomorphisms,
as we just defined them.

4.2.3 Construction. Let 𝐴 be a precategory and 𝑎, 𝑏 ∶ 𝐴. By path induction, we can con-
struct a map

idtoiso𝑎,𝑏 ∶ (𝑎 = 𝑏) → (𝑎 ≅ 𝑏) , idtoiso(refl𝑎) ∶≡ 1𝑎

4.2.4 Definition. A precategory 𝐴 is a category if, for all 𝑎, 𝑏 ∶ 𝐴, idtoiso𝑎,𝑏 is an equiva-
lence.

For an example of why the category property is needed, we can prove that for categories,
all notions of equivalence that we can define coincide (see [AKS15, Section 6]).

4.2.5 Proposition ([AKS15, Theorem 4.5]). If 𝐵 is a category and 𝐴 is a precategory, then 𝐵𝐴
is a category.

4.2.6 Example (The category of sets). Fix a universe𝒰. The type Set𝒰 of sets assembles into
a precategory with homSet𝒰 (𝐴, 𝐵) ∶≡ (𝐴 → 𝐵). Then, if 𝒰 is univalent, Set𝒰 is a category.
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Now that we have a category of sets, we can define a Yoneda embedding. Fix a precategory
𝐴 with 𝐴0 ∶ 𝒰. By [AKS15, Lemma 7.3], the hom-functor hom𝐴(−,−) ∶ 𝐴 × 𝐴𝑜𝑝 → Set𝒰
induces the yoneda embedding

𝒴 ∶ 𝐴 → (Set𝒰)𝐴
𝑜𝑝

which, by the Yoneda lemma [AKS15, Lemma 7.4], is fully faithful. We finally arrive at the
Rezk completion for precategories:

4.2.7 Theorem (The Rezk completion for precategories [AKS15, Theorem 8.5]). Let 𝐴 be a
precategory with 𝐴0 ∶ 𝒰. Let

̂𝐴 ∶≡ {𝐹 ∈ (Set𝒰)𝐴
𝑜𝑝 |∃(𝑎 ∶ 𝐴).𝒴(𝐴) ≅ 𝐹}

be the full subcategory of representables in (Set𝒰)𝐴
𝑜𝑝 . Then ̂𝐴 is a category and the yoneda

embedding 𝐴 → ̂𝐴 is a weak equivalence.

4.2.8 Remark. This construction works only when assuming enough univalent universes,
as ̂𝐴 lives in a higher universe than 𝒰. For that reason, no such construction is provided
in simplicial type theory (yet!), even though we have a completion functor for Segal spaces
[Rez01, Section 14]. In the context of homotopy type theory, a concrete construction that
takes care of the universe issue is provided in [Uni13, Section 9.9].

Unlike our discussion so far, univalence and completeness can be related in precise ways.
For suchhigher categorical interpretations, wepoint to [Ste23] (in the setting of type-theoretic
fibration categories, where type theories can be interpreted) and [Ras21].
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5. Simplicial Type Theory

5.1. Introduction

To say that an extension of homotopy type theory has a model in Segal spaces, we first need
to make sure that we can interpret HoTT itself in such a model. We therefore start with this
result:

5.1.1 Theorem ([Shu15, Theorem 6.4]). The category 𝑠𝒮 of simplicial spaces with the Reedy
model structure (actually, every category of the formFun(𝒞𝑜𝑝, 𝑠Set)where𝒞 is an elegant Reedy
category) supports amodel of intensional type theory with dependent sums and products, iden-
tity types, and as many univalent universes as inaccessible cardinals (greater than |𝒞|).

Interpreting types as fibrant objects in the Reedy model structure allows us to simplify
the Segal condition enough so that it can be expressed in type theory. By combinatorial
arguments (based on work of Joyal [Joy]), the Segal condition can be reduced as follows:

5.1.2 Theorem ([RS17, Theorem A.21]). A Reedy fibrant simplicial space𝑊 is Segal if and
only if the map

𝑊 𝐹(2) →𝑊 𝐿(2)1

is a trivial Reedy fibration.

We can now fully define the type theory we will be working with, where it is possible
to express the property of a type being a pre-∞-category (Segal) and an∞-category (Rezk).
Benefitting from the fact that types are interpreted as fibrant objects in the first place, for
the Segal condition we need only check that the analogous map is an equivalence. Having
guaranteed uniqueness of composition up to homotopy for Segal types, the Rezk condition
can then be defined in the same way as in the previous “warmup” chapter (4.2.4).

The main foundational step is to define a theory of simplices that can extract types of ob-
jcets, morphisms, etc., as in set-based simplicial homotopy theory. The process goes roughly
as follows:

1. Start with a simple logical layer, aiming to define simplices by “geometric” relations.

2. Provide axioms for a directed interval type 2, maps out of which represent directed
arrows (the analogue of Δ1).

3. Define simplices and their horns and boundaries by imposing conditions on cubes of
the form 𝟚 ×⋯× 𝟚.
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4. Introduce extension types, which represent lifting problems. Then, the horn-fillings
can be expressed as such lifting problems.

Of course, the hom-types that simplicial type theory adds will themselves be types! We
have, again, an analogue in simplicial spaces:

5.1.3Definition. Let𝑊 be a simplicial space and𝑥, 𝑦 ∶ 𝐹(0) → 𝑊 . Themapping simplicial
space Hom𝑊 (𝑥, 𝑦) is defined as the pullback of simplicial spaces

Hom𝑊 (𝑥, 𝑦) 𝑊 𝐹(1)

𝐹(0) 𝑊 ×𝑊(𝑥,𝑦)

The mapping Kan complex Map𝑊 (𝑥, 𝑦) in a Segal space is the 0-th level of Hom𝑊 (𝑥, 𝑦),
but the Segal condition guarantees that it already contains all the homotopical information.

5.1.4 Remark. Rezk types come in handy in various places where full control over equiva-
lences is needed, in particular when formalizing adjunctions ([RS17, Chapter 11]) and limits
([Mar23]) or when doing more general work with fibrations ([BW23]), but a lot of work can
be done with Segal types alone (for example, the ∞-categorical Yoneda lemma). In this
thesis, we have focused on properties of Segal types.

Statements from now on are accompanied by formalization in the Rzk proof assistant, de-
veloped specifically for simplicial type theory by Nikolai Kudasov. The main feature of Rzk
is its tope solver, allowing for automatic checking of the relevant restrictions when defining
shapes and terms in extension types.

5.2. Axioms for shape construction

The logical basis for defining simplices as shapes consists of two layers: cubes and topes.
Cubes are generated by the directed interval 𝟚 and topes impose relations on cubes, and
thus a shape will be defined as a cube (which the shape embeds into) together with a tope.
Geometrically, think of the topological 𝑛-simplex

|Δ𝑛| ≔ {(𝑥0,… , 𝑥𝑛) ∈ (ℝ≥0)𝑛+1 ||∑
𝑛
𝑖=0𝑥𝑖 = 1}

embedding into the cube [0, 1]𝑛+1. |Δ𝑛| is homeomorphic to the subspace

{(𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛 || 𝑥1 ≤ … ≤ 𝑥𝑛}

which is now generated only by inequality relations! Imposing further conditions, we can
define boundaries and horns, and this is exactly how we will proceed in simplicial type the-
ory.
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Cubes

We begin with a simple theory of cubes: To define these, we really only need a theory of
finite products, since cubes are all made up of products of other cubes. We first introduce
the primitive generators of the cube layer, 1 and 𝟚

Γ ctx
1 cube

Γ ctx
⋆ ∶ 1

Γ ctx
𝟚 cube

Γ ctx
0 ∶ 𝟚

Γ ctx
1 ∶ 𝟚

and we then present the theory of finite products, with a rule for constructing terms and
two projections:

(𝑡 ∶ 𝐼) ∈ Γ
Γ ⊢ 𝑡 ∶ 𝐼

𝐼 cube 𝐽 cube
𝐼 × 𝐽 cube

Γ ⊢ 𝑠 ∶ 𝐼 Γ ⊢ 𝑡 ∶ 𝐽
Γ ⊢ ⟨𝑠, 𝑡⟩ ∶ 𝐼 × 𝐽

Γ ⊢ 𝑟 ∶ 𝐼 × 𝐽
Γ ⊢ 𝜋1(𝑟) ∶ 𝐼

Γ ⊢ 𝑟 ∶ 𝐼 × 𝐽
Γ ⊢ 𝜋2(𝑟) ∶ 𝐽

5.2.1 Remark. Type-theoretically, there is nothing essential about cubes and shapes being
based on the directed interval 𝟚. In fact, in [RS17, Chapter 2], Riehl and Shulman provide
the general framework for a type theory with shapes before introducing the directed interval
or its theory.

Topes

The tope layer consists of axioms for logical formulas. In particular, it is an intuitionistic
logic consisting of:

• ⊤ and ⊥ symbols, with their usual behavior.

• For topes 𝜙, 𝜓, intuitionistic disjunction 𝜙 ∨ 𝜓 and conjunction 𝜙 ∧ 𝜓.

• For 𝐼 cube and 𝑠, 𝑡 ∶ 𝐼, a strict equality tope 𝑠 ≡ 𝑡.

• Euality respects substitution, cube products and projections: e.g. 𝑟 ∶ 𝐼 × 𝐽
𝑟 ≡ ⟨𝜋1(𝑟), 𝜋2(𝑟)⟩

Then, we have to describe the function of the generating cubes, i.e., the one-point cube 1
and the directed interval 𝟚. For 1, there is only one strict uniqueness rule

Γ ⊢ 𝑟 ∶ 1
Γ ⊢ 𝑟 ≡ ⋆

In order to axiomatize 𝟚 as a directed interval, it comes with an inequality tope
𝑥, 𝑦 ∶ 𝟚

(𝑥 ≤ 𝑦) tope
which comes with:
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• Reflexivity, symmetry (with respect to the equality tope) and transitivity axioms.

• Interaction of terms with the two specified endpoints 0 ∶ 𝟚 and 1 ∶ 𝟚.
Γ ⊢ 𝑥 ∶ 𝟚
Γ ⊢ 0 ≤ 𝑥

Γ ⊢ 𝑥 ∶ 𝟚
Γ ⊢ 𝑥 ≤ 1 0 ≡ 1 ⊢ ⊥

Shapes

We can now create shapes as topes together with topes. The introduction rule says exactly
that:

𝐼 cube 𝑡 ∶ 𝐼 ⊢ 𝜙 tope
{𝑡 ∶ 𝐼 | 𝜙} shape

The relations above are now enough to define simplices.

5.2.2 Definition. We define the 𝑛-simplex

Δ𝑛 ≔ {⟨𝑡1,… , 𝑡𝑛⟩ ∶ 𝟚𝑛 | 𝑡𝑛 ≤ … ≤ 𝑡1}

5.2.3 Example. Noticing that the condition on the right always holds for the first two sim-
plices, we can simplify to Δ0 = {𝑡 ∶ 1 | ⊤} and Δ1 = {𝑡 ∶ 𝟚 | ⊤}, i.e., the point and the
interval.

Adding more conditions to our topes, we can now define basic boundaries and horns as
subshapes of our simplices:

• 𝜕Δ1 ≔ {𝑡 ∶ 𝟚 | 𝑡 ≡ 0 ∨ 𝑡 ≡ 1} (“endpoints of 𝟚”)

• 𝜕Δ2 ≔ {⟨𝑡1, 𝑡2⟩ ∶ 𝟚 × 𝟚 | (0 ≡ 𝑡2) ∨ (𝑡1 ≡ 𝑡2) ∨ (𝑡1 ≡ 1)} (boundary defined by two sides
and the diagonal)

• Λ2
1 ≔ {⟨𝑡1, 𝑡2⟩ ∶ 𝟚 × 𝟚 | (0 ≡ 𝑡2) ∨ (𝑡1 ≡ 1)}

5.2.4 Remark. Note that we did not define horns and boundaries in general. However, in
practice we will only need low-dimensional simplices and boundaries, usually of dimension
at most 3.

Mapping out of shapes by∨‑recursion. For shapes {𝑡 ∶ 𝐼 | 𝜙}, we introduce an additional
dependent product type

∏
𝑡∶𝐼|𝜙

𝐴(𝑡)

Such a type will have its formation rules, which are recursive on ∨:
To construct a dependent function 𝑓 ∶ ∏𝑡∶𝐼|𝜙∨𝜓 𝐴(𝑡), all we have to do is to provide

functions out of {𝑡 ∶ 𝐼 | 𝜙} and {𝑡 ∶ 𝐼 | 𝜓} which agree when 𝜙 ∧ 𝜓 holds.

5.2.5 Remark. We do not yet provide a theory of universes. Rzk works with one universe
level (and no higher inductive types), but a lot of the basic theory can already be expressed
this way.
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5.3. Extension types

As is the case with all types we used before constructing shapes, one can define (dependent)
function types where the base type is a shape. Since the goal here is to express equivalents
of filling conditions, a theory of liftings is needed. Dependent function types out of shapes
therefore come with the more general notion of an extension type along a subspace inclu-
sion.

5.3.1 Notation. For a given cube 𝐼, we write {𝑡 ∶ 𝐼 | 𝜙} ⊆ {𝑡 ∶ 𝐼 | 𝜓} if 𝑡 ∶ 𝐼 | 𝜙 ⊢ 𝜓.

Then, for a shape inclusion {𝑡 ∶ 𝐼 | 𝜙} ⊆ {𝑡 ∶ 𝐼 | 𝜓}, we can introduce the extension type

{𝑡 ∶ 𝐼 | 𝜙} shape {𝑡 ∶ 𝐼 | 𝜓} shape 𝑡 ∶ 𝐼 | 𝜙 ⊢ 𝜓
Ξ|Φ ⊢ Γ ctx Ξ, 𝑡 ∶ 𝐼 | Φ, 𝜙 | Γ ⊢ 𝐴 type Ξ, 𝑡 ∶ 𝐼 | Φ, 𝜙 | Γ ⊢ 𝑎 ∶ 𝐴

Ξ|Φ|Γ ⊢ ⟨ ∏
𝑡∶𝐼|𝜓

𝐴(𝑡)|𝜙𝑎⟩ type

We think of an extension type ⟨∏𝑡∶𝐼|𝜓 𝐴|
𝜙
𝑎⟩ as the type of dependent functions that, when

restricted to the subshape {𝑡 ∶ 𝐼 | 𝜙} (i.e., when 𝜙 holds), map to 𝑎. Informally (and for a
constant family 𝐴) what we want is a type of lifting diagrams

{𝑡 ∶ 𝐼 | 𝜙} 𝐴

{𝑡 ∶ 𝐼 | 𝜓}

The rest of the type-forming rules for extension types are the same as the usual depen-
dent product types, adding the restriction condition (judgmentally) for elimination rules.
In formal terms:

{𝑡 ∶ 𝐼 | 𝜙} shape {𝑡 ∶ 𝐼 | 𝜓} shape 𝑡 ∶ 𝐼 | 𝜙 ⊢ 𝜓
Ξ | Φ | Γ ⊢ 𝑓 ∶ ⟨∏𝑡∶𝐼|𝜓 𝐴(𝑡)|

𝜙
𝑎⟩ Ξ ⊢ 𝑠 ∶ 𝐼 Ξ | Φ ⊢ 𝜙(𝑠)

Ξ | Φ | Γ ⊢ 𝑓(𝑠) ≡ 𝑎[𝑠/𝑡]
Semantically, under a chosen interpretation, extension types fit into a pullback diagram

as below:

⟨∏𝑡∶Ψ 𝐴(𝑡)|Φ𝑎 ⟩ 𝐴Ψ

Γ 𝐴Φ ×(Γ×Ψ)Φ (Γ × Ψ)Ψ

⌟

⟨�̃� , 𝑖𝑑Γ×Ψ⟩

Here, the bottom map says that we have 𝑎 ∶ ∏{𝑡∶𝐼 | 𝜙} 𝐴 in context Γ, which we want to
extend to 𝐴Ψ, or∏{𝑡∶𝐼 | 𝜓} 𝐴. For more on the semantics of shapes and extension types, see
[RS17, Theorem A.16] and [Wei22b].
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5.3.2Remark (Extension types up to homotopy, [BW23, Section 2.4]). Sincewehaveworked
with identity types so far, it is worthwhile to ask why the equality in the restriction part of
an extension type is judgmental, and if any homotopical information is lost. If one assumes
that shapes are themselves types (otherwise the statement does not make sense), Buchholtz
and Weinberger prove that the different ways to define such types are, in fact, equivalent.
Recall that in 3.4, we interpreted dependent functions as sections of the first projection

∑𝑥∶𝐴 𝐶(𝑥) → 𝐴. In particular, 𝑓 ∶ ∏𝑥∶𝐴 𝐶(𝑥) takes a point 𝑎 ∶ 𝐴 in the base to a point
𝑓(𝑎) ∶ 𝐶(𝑎) in the fiber over 𝑎. If {𝑡 ∶ 𝐼 | 𝜙} ⊆ {𝑡 ∶ 𝐼 | 𝜓} is a shape inclusion and
𝑓 ∶ ⟨∏𝑡∶𝐼|𝜓 𝐴(𝑡)|

𝜙
𝑎⟩, we can define a function of type

∏
𝑡∶𝐼|𝜙

(𝑎(𝑡) = 𝑓(𝑡))

with the witness being simply refl.
We can now define the homotopy extension type (not to be confused with the homotopy

extension property later on) as the ∑-type with the restriction condition appearing in the
fibers, which are intensional identity types. Then, we can prove the following equivalence
between the judgmental and homotopy extension type:

⟨ ∏
𝑡∶𝐼|𝜓

𝐴(𝑡)|𝜙𝑎⟩ ≃ ∑
(𝑓∶∏𝑡∶𝐼|𝜓𝐴(𝑡))

∏
(𝑡∶𝐼|𝜙)

(𝑎(𝑡) = 𝑓(𝑡))

The definition of homotopy extension types and this theorem have been formalized in Rzk
by Tashi Walde ( ).
Next, we restate results that hold for ordinary∏-types in the language of extension types.

5.3.3 Theorem (“Axiom” of choice, [RS17, Theorem 4.3]). For a shape inclusion {𝑡 ∶ 𝐼 | 𝜙} ⊆
{𝑡 ∶ 𝐼 | 𝜓}, a family 𝑋 ∶ {𝑡 ∶ 𝐼 | 𝜓} → 𝒰, 𝑌 ∶ ∏𝑡∶𝐼|𝜓(𝑋 → 𝒰), and dependent functions
𝑎 ∶ ∏𝑡∶𝐼|𝜙 𝑋(𝑡), 𝑏 ∶ ∏𝑡∶𝐼|𝜙 𝑌(𝑡, 𝑎(𝑡)), there is an equivalence

⟨ ∏
𝑡∶𝐼|𝜓

( ∑
𝑥∶𝑋(𝑡)

𝑌(𝑡, 𝑥))||𝜙𝜆𝑡.(𝑎(𝑡),𝑏(𝑡))⟩ ≃ ∑
𝑓∶⟨∏𝑡∶𝐼|𝜓𝑋(𝑡)|

𝜙
𝛼⟩
⟨ ∏
𝑡∶𝐼|𝜓

𝑌(𝑡, 𝑓(𝑡))||𝜙𝑏⟩

Proof. We can explicitly define inverse equivalences
𝜆𝑔. (𝜆𝑡.𝑝𝑟1(𝑔(𝑡)), 𝜆𝑠.𝑝𝑟2(𝑔(𝑠)))

𝜆ℎ.𝜆𝐻. (𝜆𝑡.ℎ(𝑡), 𝜆𝑠.𝐻(𝑠))
and check that they compose precisely to identities.

The extension extensionality axiom. We assume the following modified version of func-
tion extensionality: For any shape inclusion {𝑡 ∶ 𝐼 | 𝜙} ⊆ {𝑡 ∶ 𝐼 | 𝜓} and any family
𝑋 ∶ {𝑡 ∶ 𝐼 | 𝜓} → 𝒰 such that each 𝑋(𝑡) is contractible, then, given an 𝑎 ∶ ∏𝑡∶𝐼|𝜙 𝑋(𝑡),
the type ⟨∏𝑡∶𝐼|𝜓 𝑋(𝑡)|

𝜙
𝑎⟩ is contractible.

The usual form of function extensionality follows from this, see [RS17, Proposition 4.8]
and the discussion in appendix A.2.
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5.3.4 Proposition (Homotopy extension property, [RS17, Proposition 4.10]). Let {𝑡 ∶ 𝐼 | 𝜙} ⊆
{𝑡 ∶ 𝐼 | 𝜓} be a shape inclusion. Assuming extension extensionality, for any𝑋 ∶ {𝑡 ∶ 𝐼 | 𝜓} → 𝒰,
𝑏 ∶ ∏𝑡∶𝐼|𝜓 𝑋(𝑡), 𝑎 ∶ ∏𝑡∶𝐼|𝜙 𝑋(𝑡), and 𝑒 ∶ ∏𝑡∶𝐼|𝜙(𝑎(𝑡) =𝑋(𝑡) 𝑏(𝑡)), we have a map 𝑎′ ∶

⟨∏𝑡∶𝐼|𝜓 𝑋(𝑡)|
𝜙
𝑎⟩ and a map 𝑒′ ∶ ⟨∏𝑡∶𝐼|𝜓(𝑎′(𝑡) = 𝑏(𝑡))|𝜙𝑒 ⟩ extending 𝑒.

The following proposition was originally stated in the context of Segal types ( ). We
present a version for general shape inclusions (no changes to the proof are required apart
from replacing the shapes ( )), which will enable us to prove that a function type into a
fiberwise 2-Segal family is 2-Segal later on.

5.3.5 Proposition (Generalization of [RS17, Corollary 5.6]). Let {𝑡 ∶ 𝐼 | 𝜙} ⊆ {𝑡 ∶ 𝐼 | 𝜓} be a
shape inclusion and assume that, for a type family 𝐶 ∶ 𝐴 → 𝒰, where 𝐴 is a type or shape, the
induced map ({𝑡 ∶ 𝐼 | 𝜓} → 𝐶(𝑎)) → ({𝑡 ∶ 𝐼 | 𝜙} → 𝐶(𝑎)) is an equivalence for every fiber 𝐶(𝑎).
Then ({𝑡 ∶ 𝐼 | 𝜓} → ∏𝑥∶𝐴 𝐶(𝑥)) → ({𝑡 ∶ 𝐼 | 𝜙} → ∏𝑥∶𝐴 𝐶(𝑥)) is an equivalence.

5.4. Segal and Rezk types

Now that there is a way to express extensions along shape inclusions, we can repeat the
mapping space construction from set-based higher category theory.

5.4.1 Definition. For a type 𝐴 and 𝑥, 𝑦 ∶ 𝐴, we define the type of arrows

hom𝐴(𝑥, 𝑦) ≔ ⟨Δ1 → 𝐴 |𝜕Δ1[𝑥,𝑦]⟩

Having a hom-type, the Segal condition is now expressed in terms of contractibility of
types consisting of 2-cells witnessing candidate compositions of two composable maps. We
first define the type of such 2-cells with boundaries three arrows 𝑓 ∶ hom𝐴(𝑥, 𝑦), 𝑔 ∶
hom𝐴(𝑦, 𝑧), ℎ ∶ hom𝐴(𝑥, 𝑧) as

hom2
𝐴(𝑓, 𝑔; ℎ) ≔ ⟨Δ2 → 𝐴 |𝜕Δ2[𝑥,𝑦,𝑧,𝑓,𝑔,ℎ]⟩

Hereℎ is a candidate composite of𝑓 and 𝑔. Note thatℎ is the precisely the result of evaluating
at the diagonal: For 𝛼 ∶ hom2

𝐴(𝑓, 𝑔, ℎ) and 𝑡 ∶ Δ1, we have ℎ(𝑡) ≡ 𝛼(𝑡, 𝑡).

5.4.2 Definition. 𝐴 is a Segal type if the type

∑
ℎ∶hom𝐴(𝑥,𝑧)

hom2
𝐴(𝑓, 𝑔; ℎ)

is contractible for all 𝑥, 𝑦, 𝑧 ∶ 𝐴, 𝑓 ∶ hom𝐴(𝑥, 𝑦), 𝑔 ∶ hom𝐴(𝑦, 𝑧).

Let 𝐴 be a Segal type and 𝑓 ∶ hom𝐴(𝑥, 𝑦), 𝑔 ∶ hom𝐴(𝑦, 𝑧). By the Segal condition, we get
a 2-cell 𝐻 ∶ Δ2 → 𝐴, restricting to 𝑓 and 𝑔 on Λ2

1. Then, evaluating on the diagonal 𝐻(𝑡, 𝑡)
for 𝑡 ∶ 𝟚 extracts the composite of 𝑓 and 𝑔: we write (𝑔 ∘ 𝑓)(𝑡) ∶≡ 𝐻(𝑡, 𝑡).
By the relevant hom2-type being contractible, we immediately get that 𝑔 ∘ 𝑓 is proposi-

tionally unique.
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5.4.3 Proposition. If𝐴 is a Segal type, the composition operation is associative up to homotopy.
With some extra combinatorics, we arrive at the characterization of Segal types as being

local with respect to horn inclusions:
5.4.4 Theorem. A type 𝐴 is Segal if and only if it is local with respect to the horn inclusion
Λ2
1 ⊆ Δ2, meaning that the induced map (Δ2 → 𝐴) → (Λ2

1 → 𝐴) is an equivalence.

Isomorphisms and the Rezk condition

Isomorphisms in hom-types can be characterized in the same way that equivalences are in
homotopy type theory.
5.4.5 Definition. 1. For 𝑓 ∶ hom𝐴(𝑥, 𝑦) define the type

isiso(𝑓) ≔ ( ∑
𝑔∶hom𝐴(𝑦,𝑥)

𝑔 ∘ 𝑓 = 𝑖𝑑𝑥) × ( ∑
ℎ∶hom𝐴(𝑦,𝑥)

𝑓 ∘ ℎ = 𝑖𝑑𝑦)

𝑓 is an isomorphism if isiso(𝑓) is inhabited.

2. For fixed 𝑥, 𝑦 ∶ 𝐴, denote by
(𝑥 ≅𝐴 𝑦) ≔ ∑

𝑓∶hom𝐴(𝑥,𝑦)
isiso(𝑓)

the type of all isomorphisms between 𝑥 and 𝑦.
Recall that this definition of isomorphisms is equivalent to 𝑓 having a single two-sided

inverse, but, as in homotopy type theory, we gain the following advantage:
5.4.6 Proposition. For all 𝑓 ∶ hom𝐴(𝑥, 𝑦), the type isiso(𝑓) is a proposition.
Proof. [RS17, Proposition 10.2]

5.4.7 Construction. By path induction, it is easy to convert paths into arrows: We can define
the map

idtoarr𝐴 ∶ ∏
𝑥,𝑦∶𝐴

((𝑥 =𝐴 𝑦) → (hom𝐴(𝑥, 𝑦))) , idtoiso𝐴(𝑎, 𝑎, refl𝑎) ∶≡ id𝑎

and, since we are mapping to identities, we can specialize to isomorphisms:

idtoiso𝐴 ∶ ∏
𝑥,𝑦∶𝐴

((𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)) , idtoiso𝐴(𝑎, 𝑎, refl𝑎) ∶≡ (id𝑎, ((id𝑎, refl), (id𝑎, refl)))

5.4.8 Remark. The idea behind the map idtoarr is the same as the map idtoequiv we con-
structedwhen defining univalent universes. One can thenwonder if a directed version of the
univalence axiom can occur in simplicial type theory, where instead of equivalences corre-
sponding to paths, “maps correspond to directed paths”. However, the base theory in which
we are working now does not include any extra axioms for universes, nor does it provide a
way of defining types with specified hom-types. Recently, an extension of simplicial type
theory that overcomes these problems [GWB24] was defined. We will discuss this further in
(5.5.6), once we have provided the necessary background.
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We can nonetheless apply the ideas from univalence and Rezk completeness to the map
idtoiso𝐴 internal to a type 𝐴 as a definition.

5.4.9 Definition. A Segal type 𝐴 is Rezk if the map idtoiso𝐴(𝑥, 𝑦, −) is an equivalence for
all 𝑥, 𝑦 ∶ 𝐴.

5.4.10 Remark. As this thesis is centered around a formal approach, it is worth writing
down the Segal and Rezk definitions our fully formally. Then, one can see how to extract
compositions, etc. using projections when formalizing simplicial type theory. For a type A,
we have

isSegal(𝐴) ≔ ∏
𝑥,𝑦,𝑧∶𝐴

∏
𝑓∶hom𝐴(𝑥,𝑦)

∏
𝑔∶hom𝐴(𝑦,𝑧)

isContr( ∑
ℎ∶hom𝐴(𝑥,𝑧)

⟨Δ2 → 𝐴 |𝜕Δ2[𝑥,𝑦,𝑧,𝑓,𝑔,ℎ]⟩ )

isRezk(𝐴) ≔ isSegal(𝐴) × ( ∏
𝑥,𝑦∶𝐴

isEquiv(idtoiso𝐴,𝑥,𝑦))

5.5. Dependent arrows and covariant families

Let𝐶 ∶ 𝐴 → 𝒰 be a type family over𝐴with the corresponding projection
∑𝑥∶𝐴 𝐶(𝑥)

𝐴

𝑝𝑟1 Now

let 𝑥, 𝑦 ∶ 𝐴 and 𝑢 ∶ 𝐶(𝑥), 𝑣 ∶ 𝐶(𝑦). Passing to hom-types gives rise to a projection map

hom∑𝑥∶𝐴 𝐶(𝑥)((𝑥, 𝑢), (𝑦, 𝑣))

hom𝐴(𝑥, 𝑦)

(𝑝𝑟1∘−) ∶≡ 𝜆𝐹.𝜆𝑡.𝑝𝑟1(𝐹(𝑡))

To study fibrations in this directed setting, we want to work with arrows in the fibers,
which should now be dependent on an arrow in the base type (For a comparison, think of
the second projection 𝑝𝑟2 ∶ ∏𝑧∶∑𝑥∶𝐴 𝐶(𝑥) 𝐶(𝑝𝑟1(𝑧)) which depends on the first).

5.5.1 Definition. Let 𝐶 ∶ 𝐴 → 𝒰 be a type family with 𝑥, 𝑦 ∶ 𝐴, 𝑢 ∶ 𝐶(𝑥), 𝑣 ∶ 𝐶(𝑦) and
𝑓 ∶ hom𝐴(𝑥, 𝑦). The type of dependent arrows over 𝑓 is defined to be

dhom𝐶(𝑓)(𝑢, 𝑣) ≔ ⟨∏
𝑡∶𝟚

𝐶(𝑓(𝑡))|𝜕Δ1[𝑢,𝑣]⟩

The same as above can be done for 2-cells:
For 𝑥, 𝑦, 𝑧 ∶ 𝐴, 𝑢 ∶ 𝐶(𝑥), 𝑣 ∶ 𝐶(𝑦), 𝑤 ∶ 𝐶(𝑧), 𝑓 ∶ hom𝐴(𝑥, 𝑦), 𝑔 ∶ hom𝐴(𝑦, 𝑧),

ℎ ∶ hom𝐴(𝑥, 𝑧), a 2-cell 𝛼 ∶ hom2(𝑓, 𝑔; ℎ) and dependent arrows ̃𝑓 ∶ dhom𝐶(𝑓)(𝑢, 𝑣),
̃𝑔 ∶ dhom𝐶(𝑓)(𝑣, 𝑤) and ̃ℎ ∶ dhom𝐶(𝑓)(𝑢, 𝑤) we define the type

dhom2
𝐶(𝛼)( ̃𝑓, ̃𝑔; ̃ℎ) ≔ ⟨∏

𝑡∶Δ2
𝐶(𝛼(𝑡))|𝜕Δ2[ ̃𝑓,�̃�, ̃ℎ]⟩
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We can straightforwardly prove that, as with paths (3.4.9), arrows in the total type corre-
spond to pairs of arrows and dependent arrows over them.

5.5.2Notation. For𝑓∶hom𝐴(𝑥, 𝑦) and ̃𝑓∶dhom𝐶(𝑓)(𝑢, 𝑣), we denote by (𝑓 ̃𝑓) themap𝜆𝑡.(𝑓(𝑡), ̃𝑓(𝑡)) ∶
hom∑𝑥∶𝐴 𝐶(𝑥)((𝑥, 𝑢), (𝑦, 𝑣)).
5.5.3 Proposition. We have equivalences:

1. hom∑𝑥∶𝐴 𝐶(𝑥)((𝑥, 𝑢), (𝑦, 𝑣)) ≃ ∑
𝑓∶hom𝐴(𝑥,𝑦)

dhom𝐶(𝑓)(𝑢, 𝑣)

2. ∑
𝐻∶hom∑𝑥∶𝐴 𝐶(𝑥)((𝑥,𝑢),(𝑧,𝑤))

(hom2
∑𝑥∶𝐴 𝐶(𝑥)((𝑓 ̃𝑓), (𝑔 ̃𝑔); 𝐻))

≃ ∑
ℎ∶hom𝐴(𝑥,𝑧)

( ∑
𝛼∶hom2(𝑓,𝑔;ℎ)

( ∑
̃ℎ∶dhom𝐶(𝑓)(𝑢,𝑤)

dhom2
𝐶(𝛼)( ̃𝑓, ̃𝑔; ̃ℎ)))

Proof. (1.) This is just a case of “choice” (5.3.3) for the shape inclusion 𝜕Δ1 ⊆ Δ1, constant
families 𝑋 ≔ 𝐴, 𝑌 ≔ (𝜆𝑥.𝐶(𝑥)) and 𝑎 ≔ [𝑥, 𝑦], 𝑏 ≔ [𝑢, 𝑣].

(2.) We can define inverse equivalences
𝜆(𝐻,𝒜).(𝜆𝑡.𝑝𝑟1(𝐻(𝑡)), (𝜆𝑠.𝑝𝑟1(𝒜(𝑠)), (𝜆𝑟.𝑝𝑟2(𝒜(𝑟, 𝑟)), 𝜆𝑏.𝑝𝑟2(𝒜(𝑏)))))

𝜆(ℎ, (𝛼, ( ̃ℎ, ̃𝒜))).((ℎ ̃ℎ), 𝜆𝑡.(𝛼(𝑡), ̃𝒜(𝑡)))

5.5.4 Definition. [RS17, Definition 8.2]. A type family 𝐶 ∶ 𝐴 → 𝒰 is covariant if for every
𝑓 ∶ hom𝐴(𝑥, 𝑦) and 𝑢 ∶ 𝐶(𝑥), the type

∑
𝑣∶𝐶(𝑦)

dhom𝐶(𝑓)(𝑢, 𝑣)

is contractible. Dually, C is contravariant if for every 𝑓 ∶ hom𝐴(𝑥, 𝑦) and 𝑣 ∶ 𝐶(𝑦) the type

∑
𝑢∶𝐶(𝑥)

dhom𝐶(𝑓)(𝑢, 𝑣)

is contractible.

5.5.5 Theorem. If 𝐴 is Segal and 𝐶 ∶ 𝐴 → 𝒰 is covariant, then the total type∑𝑥∶𝐴 𝐶(𝑥) is
Segal.

5.5.6Remark (Directedunivalent universes in triangulated type theory). In a recent preprint
[GWB24], Gratzer, Weinberger and Buchholtz extend simplicial type theory using modali-
ties and embedding simplicial types in more general cubical types built out of an interval 𝕀.
With the added structure, they are able to give examples of actual Segal and Rezk types. The
main construction of the paper is a “universe type of groupoids” 𝒮, which satisfies a directed
version of univalence: There is an equivalence

(𝕀 → 𝒮) ∼−→ ( ∑
𝐴,𝐵∶𝒮

hom𝒮(𝐴, 𝐵))
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Composition of dependent arrows

The goal of this section is to show that, if 𝐴 is Segal and 𝐶 ∶ 𝐴 → 𝒰 is covariant, dependent
arrows act like regular arrows. In particular, there is a composition operation for dependent
arrows, resulting in a map over the composite of the base maps. We have formalized this
result ( ) based on an outline provided by Emily Riehl.

5.5.7 Remark. In the original proof in [RS17], this result can be extracted from the proof
of (5.5.5). However, this proof is different in the formal Rzk library (which follows the
“category-theoretic proof”), and thus we present an easy way to prove this independently.

We now provide an outline of the formal proof, together with the names of the statements
in the Rzk file.

5.5.8 Lemma (is-contr-comp-horn-ext-is-covariant-family-is-segal-base). If 𝐶 ∶
𝐴 → 𝒰 is covariant and 𝐴 is Segal, then for any 𝑎 ∶ Λ2

1 → 𝐴 and 𝑐 ∶ ∏𝑡∶Λ2
1
𝐶(𝑎(𝑡)), the

type of dependent 2-cells extending 𝑐 is contractible.

5.5.9 Construction (Dependent horn, dhorn). Let 𝐶 ∶ 𝐴 → 𝒰 be a type family, 𝑓 ∶
hom𝐴(𝑥, 𝑦), 𝑔 ∶ hom𝐴(𝑦, 𝑧), ̃𝑓 ∶ dhom𝐶(𝑓)(𝑢, 𝑣), ̃𝑔 ∶ dhom𝐶(𝑓)(𝑣, 𝑤). We can define the
dependent map

[ ̃𝑓, ̃𝑔]𝐶([𝑓,𝑔]) ∶ ∏
𝑡∶Λ2

1

𝐶([𝑓, 𝑔](𝑡))

by ∨-recursion:
[ ̃𝑓, ̃𝑔]𝐶([𝑓,𝑔])⟨𝑡1, 𝑡2⟩ ∶≡ {

̃𝑓(𝑡1), 0 ≡ 𝑡2
̃𝑔(𝑡2), 𝑡1 ≡ 1

5.5.10 Lemma (dcompositions-are-dhorn-fillings). For a type family 𝐶 ∶ 𝐴 → 𝒰, ar-
rows 𝑓 ∶ hom𝐴(𝑥, 𝑦), 𝑔 ∶ hom𝐴(𝑦, 𝑧), ℎ ∶ hom𝐴(𝑥, 𝑧), a 2-cell 𝛼 ∶ hom2(𝑓, 𝑔; ℎ), and depen-
dent arrows ̃𝑓 ∶ dhom𝐶(𝑓)(𝑢, 𝑣), ̃𝑔 ∶ dhom𝐶(𝑓)(𝑣, 𝑤), there is an equivalence

∑
̃ℎ∶dhom𝐶(ℎ)

dhom2
𝐶(𝛼)( ̃𝑓, ̃𝑔; ̃ℎ) ≃ ⟨∏

𝑡∶Δ2
𝐶(𝛼(𝑡))|Λ

2
1

[ ̃𝑓,�̃�]𝐶([𝑓,𝑔])
⟩

Then, the theorem is-contr-dhom2-comp-is-covariant-family-is-segal-base com-
bines the two lemmas above to show that the type of dependent 2-cells extending a depen-
dent horn is contractible. Out of this, we immediately extract dependent composition as the
center of contraction (dcomp-is-covariant-family-is-segal-base).
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6. Formalization of 2‑Segal Spaces in
Simplicial Type Theory

Introduction

2-Segal spaces are a generalization of Segal spaces, defined by Dyckerhoff and Kapranov
[DK19]. In terms of category theory, while a (1-)Segal space is a “pre-category with com-
positions”, a 2-Segal space has no condition on the existence or the uniqueness of com-
positions, (and can be viewed as a (pre-)category with multivalued composition), but still
requires higher coherence conditions to be satisfied. Since 2-Segal spaces still have asso-
ciativity, they show up in many algebraic constructions, and the combination of algebraic
and homotopical information is of particular use to the field of higher algebra. Places where
2-Segal spaces make an appearance include:

• TheWaldhausen 𝑆•-construction, of particular importance to 𝐾-theory, produces a 2-
Segal space.

• One can associate Hall algebras to 2-Segal spaces, with applications in representation
theory [DK19, Chapter 8].

• An equivalence of∞-categories between 2-Segal spaces and invertible∞-operads, due
to work of Walde [Wal21].

The aim of this chapter is to use the work of Dyckerhoff-Kapranov and Feller [Fel23] to
introduce a meaningful definition of a 2-Segal type in simplicial type theory. The spaces
corresponding to 2-Segal types satisfy an a priori weaker condition than 2-Segal spaces, but
have certain higher horn fillings themselves.
From there, we hope that we can combine this with the modal extension of simplicial

type theory in [GWB24], which would allow for concrete constructions analogous to 2-Segal
spaces associated to spans, or characterizations via 1-Segal conditions for path spaces, aswell
as applications to higher algebra in simplicial type theory, for which a possible approach is
included in [GWB24].

6.1. Justification of the Semantics

Feller in [Fel23] introduces objects analogous to 2-Segal spaces in the category of simplicial
sets, characterized by higher horn-filling conditions. The paper includes several combina-
torial results relating these horns to the triangulations used by Dyckerhoff and Kapranov,
and additionally exhibits higher horn inclusions as retracts of 3-horn inclusions. This can be

63



straightforwardly generalized to 𝑠𝒮, meaning that 2-Segal types characterized as above re-
ally correspond to 2-Segal spaces. Analogous facts about 2-horns are used in the semantics
of Segal types in [RS17, Appendix A].

6.1.1 Definition ([DK19], [Fel23]). For 𝑛 ≥ 3 2-Segal spine is a union of 2-simplices in Δ𝑛
which gives a triangulation of the corresponding (𝑛 + 1)-gon.

6.1.2 Definition ([DK19]). AReedy fibrant simplicial space𝑊 is a 2-Segal space if 𝑋𝐹(𝑛) →
𝑋 𝑖𝐹(𝒯) is a trivial Reedy fibration for every 2-Segal spine inclusion 𝒯 ↪ Δ𝑛.

6.1.3 Definition ([Fel23, Definition 3.1]). For 𝑛 ≥ 3, a subset 𝑆 ⊆ [𝑛] is broken if there exist
0 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 𝑛 such that either 𝑖, 𝑘 ∈ 𝑆 and 𝑗, 𝑙 ∉ 𝑆 or vice versa.

6.1.4 Definition ([Fel23, Definition 3.3]). Let 𝑛 ≥ 3. A generalized 2-Segal horn is a sim-
plicial subset Λ𝑛

𝑖1,…𝑖𝑘 of Δ
𝑛 containing all faces of Δ𝑛 except those corresponding to 𝑖1,… 𝑖𝑘,

with the condition that {𝑖1,… 𝑖𝑘} is a broken subset of [𝑛].

6.1.5 Definition ([Fel23]). A simplicial space is quasi 2-Segal if 𝑋𝐹(𝑛) → 𝑋 𝑖𝐹(𝐾) is a trivial
Reedy fibration for every 2-Segal horn inclusion 𝐾 ↪ Δ𝑛.

6.1.6 Remark. Note that in dimension 3, the 2-Segal spaces and the 2-Segal horns coincide.
So, at the very least, we know that every 2-Segal space has fillers for the two 3-dimensional
2-Segal horns.

6.1.7 Notation. Let𝒜,ℬ be sets of morphisms in a category 𝒞. We write𝒜 ⋔ ℬ if𝒜 has the
left lifting property (LLP) against ℬ, i.e., there exist lifts for all commutative squares

𝐴 𝐵

𝐴′ 𝐵′
𝒜∋𝑓 𝑔∈ℬ

We also write 𝑓 ⋔ 𝑔 for individual morphisms 𝑓, 𝑔 such that 𝑓 has the LLP against 𝑔. We
denote by ⋔𝒜 (resp. 𝒜⋔) the class of morphisms having the left (resp. right) lifting property
against 𝒜.

6.1.8 Definition. Let 𝒞 be a category with small colimits and 𝑆 a class of morphisms in 𝒞.
We say that 𝑆 is a (weakly) saturated class if

1. 𝑆 contains all isomorphisms.

2. 𝑆 is closed under pushouts: If (𝑓 ∶ 𝐴 → 𝐵) ∈ 𝑆 and 𝑔 ∶ 𝐴 → 𝐶 is any morphism in 𝒞,
then (𝐶 → 𝐴∐𝐵 𝐶) ∈ 𝑆.

3. 𝑆 is closed under transfinite composition.

4. 𝑆 is closed under retracts: If 𝑔 ∈ 𝑆 and 𝑓 is a retract of 𝑔 in the sense of (2.1.1), then
𝑓 ∈ 𝑆.
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The saturation ̄𝒜 of a class of morphisms 𝒜 is the smallest saturated class containing 𝒜.

6.1.9 Proposition (Small object argument, special case). Assume𝒞 is 𝑠Set or 𝑠𝒮, and let𝒜,ℬ
be two sets of morphisms in 𝒞. Then ̄𝒜 = ⋔(𝒜⋔).

Additionally, we get 𝒜 ⋔ ℬ ⇔ ̄𝒜 ⋔ ℬ. This is the result we use to reduce conditions to
checking liftings with repsect to smaller classes of maps.
The main ingredient going into these results is the Joyal-Tierney calculus:

6.1.10 Definition ([JT07, Section 2]). Let 𝑋, 𝑌 be two simplicial sets. The box product 𝑋□𝑌
is the simplicial space obtained by setting

(𝑋□𝑌)𝑚𝑛 ≔ 𝑋𝑚 × 𝑌𝑛

In particular, we have 𝑖𝐹(𝑋) ≅ 𝑋□Δ0.

6.1.11 Definition. Let 𝒞 be a category with small (co)limits.

1. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐶 → 𝐷 be morphisms in 𝒞. The pushout product

𝑓□𝑔 ∶ 𝐴 × 𝐷 ∐
𝐴×𝐶

𝐵 × 𝐶 → 𝐵 × 𝐷

is the induced morphism

𝐴 × 𝐶 𝐵 × 𝐶

𝐴 × 𝐷 𝐴 × 𝐷∐𝐴×𝐶 𝐵 × 𝐶

𝐵 × 𝐷

𝑖𝑑𝐴×𝑔

𝑓×𝑖𝑑𝐶

𝑖𝑑𝐵×𝑔

𝑓×𝑖𝑑𝐷

⌜

𝑓□𝑔

2. Assume that 𝒞 is also cartesian closed. Let 𝑔 ∶ 𝐶 → 𝐷 and 𝑢 ∶ 𝑋 → 𝑌 be morphisms
in 𝒞. We then have the pullback exponential

exp(𝑔, 𝑢) ∶ 𝐷𝑋 → 𝑌𝐷 ×𝑋𝐶 𝑋𝐷

induced by the pullback

𝑋𝐷

𝑌𝐷 ×𝑋𝐶 𝑋𝐷 𝑌𝐷

𝑋𝐶 𝑌𝐶

exp(𝑔,𝑢)

𝑢𝐷

𝑋𝑔
⌟

𝑌𝑢

𝑢𝐶
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Using the adjunctions provided by the cartesian closedness of𝒞, we can prove that we can
interchange between lifting problems:

6.1.12 Proposition ([JT07, Proposition 7.6]). Let 𝒞 be a cartesian closed category with small
(co)limits and 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐶 → 𝐷, 𝑢 ∶ 𝑋 → 𝑌 be morphisms in 𝒞. Then

𝑓□𝑔 ⋔ 𝑢 ⇔ 𝑓 ⋔ exp(𝑔, 𝑢) ⇔ 𝑔 ⋔ exp(𝑓, 𝑢)

This means that we can reduce solving lifting problems to checking for certain generat-
ing morphisms, by interchanging between fibrations and cofibrations with the proposition
above.

6.1.13 Proposition ([Fel23, Proposition 5.5]). The class of 2-Segal horns in 𝑠Set has the same
saturated closure as the class

{(Λ3
0,2 ↪ Δ3)□(𝜕Δ𝑛 ↪ Δ𝑛)}𝑛≥0 ∪ {(Λ

3
1,3 ↪ Δ3)□(𝜕Δ𝑚 ↪ Δ𝑚)}𝑚≥0

This result is preserved by taking horizontal embeddings. In particular, Reedy fibrancy
gives us lifts on the right side of these puhsout products, so checking that the 3-dimensional
2-Segal horn inclusions induce trivial fibrations guarantees that a simplicial space is quasi
2-Segal. By 6.1.5, every 2-Segal space is quasi 2-Segal.

6.1.14 Remark (A problem). We have not completely determined the relationship between
2-Segal horns and 2-Segal spines in simplicial spaces yet. We do know that we are formal-
izing at least a generalization of 2-Segal spaces that has a lot of the desired properties in
common (for example, a path space criterion).

6.2. Basic definitions for 2‑Segal types

We can now rewrite this equivalent definitions in simplicial type theory. The definitions and
results in this section have been formalized in Rzk. One big advantage of reducing things
to shape inclusions in simplicial type theory is that all the proofs of statements presented in
this section are following the formal proofs for Segal types from [05-segal-types.rzk.md],
with the original work mainly lying in the combinatorial calculations regarding the data of
3-horns and 3-simplices.

6.2.1 Definition. Let 𝑤, 𝑥, 𝑦, 𝑧∶𝐴, together with arrows as shown below

𝑧

𝑤 𝑦

𝑥

ℎ𝑔𝑓

𝑔𝑓

𝑓

ℎ
ℎ𝑔

𝑔
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and 2-cells

𝛼3 ∶ hom2
𝐴(𝑓, 𝑔; 𝑔𝑓) 𝛼2 ∶ hom2

𝐴(𝑓, ℎ𝑔; ℎ𝑔𝑓) 𝛼1 ∶ hom2
𝐴(𝑔𝑓, ℎ; ℎ𝑔𝑓) 𝛼0 ∶ hom2

𝐴(𝑔, ℎ; ℎ𝑔)

We then define the type

hom3
𝐴(𝛼3, 𝛼2, 𝛼1, 𝛼0) ∶≡ ⟨Δ3 → 𝐴|𝜕Δ3[𝛼3,𝛼2,𝛼1,𝛼0]⟩

6.2.2 Remark. Here, the maps 𝑔𝑓, ℎ𝑔 and ℎ𝑔𝑓 are not necessarily the composites given by
some Segal condition on the type, rather it is a notational convention added to keep track of
our data (and in the context of simplicial type theory, originally appeared in the formaliza-
tion of adjunctions).

6.2.3 Definition (The 3-dimensional 2-Segal horns). We define the shapes

Λ3
0,2 ≔ {⟨𝑡1, 𝑡2, 𝑡3⟩ ∶ Δ3 | 𝑡3 ≡ 0 ∨ 𝑡1 ≡ 𝑡2}

Λ3
1,3 ≔ {⟨𝑡1, 𝑡2, 𝑡3⟩ ∶ Δ3 | 𝑡2 ≡ 𝑡3 ∨ 𝑡1 ≡ 1}

For a visualization, functions out of 2-Segal horns correspond to the following data :
𝑧

𝑤 𝑦

𝑥

ℎ𝑔𝑓

𝑔𝑓

𝑓

ℎ

𝑔

𝛼1

𝛼3

Arrows and 2-cells for a function Λ3
0,2 → 𝐴

𝑧

𝑤 𝑦

𝑥

ℎ𝑔𝑓

𝑓

ℎ

ℎ𝑔

𝑔

𝛼0𝛼2

Arrows and 2-cells for a function Λ3
1,3 → 𝐴

We can now define 2-Segal types by asking for unique fillers for both of these 2-Segal
horns.

6.2.4Definition. A type𝐴 is 2-Segal if, for all𝑤, 𝑥, 𝑦, 𝑧∶𝐴 and all𝑓∶hom𝐴(𝑤, 𝑥), 𝑔∶hom𝐴(𝑥, 𝑦)
and ℎ∶hom𝐴(𝑦, 𝑧), both of the following conditions hold:

1. For all 𝑔𝑓∶hom𝐴(𝑤, 𝑦), ℎ𝑔𝑓∶hom𝐴(𝑤, 𝑧),𝛼3∶hom2
𝐴(𝑓, 𝑔; 𝑔𝑓), and𝛼1∶hom

2
𝐴(𝑔𝑓, ℎ; ℎ𝑔𝑓),

the type

∑
ℎ𝑔∶hom𝐴(𝑥,𝑧)

( ∑
𝛼2∶hom2

𝐴(𝑓,ℎ𝑔;ℎ𝑔𝑓)
( ∑
𝛼0∶hom2

𝐴(𝑔,ℎ;ℎ𝑔)
hom3

𝐴(𝛼3, 𝛼2, 𝛼1, 𝛼0)))

is contractible.

2. For allℎ𝑔∶hom𝐴(𝑥, 𝑧), ℎ𝑔𝑓∶hom𝐴(𝑤, 𝑧),𝛼2 ∶ hom2
𝐴(𝑓, ℎ𝑔; ℎ𝑔𝑓), and𝛼0 ∶ hom2

𝐴(𝑔, ℎ; ℎ𝑔),
the type

∑
𝑔𝑓∶hom𝐴(𝑤,𝑦)

( ∑
𝛼3∶hom2

𝐴(𝑓,𝑔;𝑔𝑓)
( ∑
𝛼1∶hom2

𝐴(𝑔𝑓,ℎ;ℎ𝑔𝑓)
hom3

𝐴(𝛼3, 𝛼2, 𝛼1, 𝛼0)))

is contractible.
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6.2.5 Proposition. A type 𝐴 is 2-Segal if and only if it is local with respect to both 2-Segal
horn inclusions Λ3

0,2 ⊆ Δ3, Λ3
1,3 ⊆ Δ3, i.e., the functions (Δ3 → 𝐴) → (Λ3

0,2 → 𝐴) and
(Δ3 → 𝐴) → (Λ3

1,3 → 𝐴) are equivalences.

An obvious next step would be to formally prove the fact that 2-Segal types are indeed a
generalization of Segal types. For simplicial objects, a proof is given in [DK19, Proposition
2.3.4]. In our caase, the proof needs extra formalizationwork, showing that the 2-Segal horn
inclusions are anodyne maps, analogously to [RS17, Proposition 5.20].
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A. Formal Proofs Contributed to the
Rzk-HoTT library

Here, we briefly present two statements, the proofs of which were contributed to the Rzk
library as part of this project. We include them in a separate section, as they are standard
results from homotopy type theory that are needed for the formalization of simplicial type
theory later on.

A.1. Dependent pair type over a contractible base

A.1.1 Proposition. Let 𝑎 ∶ 𝐴, where 𝐴 is a contractible type, and let 𝐶 ∶ 𝐴 → 𝒰 be a type
family. Then there is an equivalence

∑
𝑥∶𝐴

𝐶(𝑥) ≃ 𝐶(𝑎)

This proof uses elementary facts about identity types and the transport operation (3.4.3).
We first prove that there exists an equivalence in the case that 𝑎 is the center of contraction
in 𝐴, and then we use the fact that transport gives rise to an equivalence in the fibers, as
shown below:
#def transport-equiv-center-fiber-total-type-is-contr-base

( A : U)
( is-contr-A : is-contr A)
( C : A → U)
( a : A)
: Equiv

( Σ ( x : A) , C x)
( C a)

:=
equiv-comp
( Σ ( x : A) , C x)
( C (center-contraction A is-contr-A))
( C a)
( equiv-center-fiber-total-type-is-contr-base A is-contr-A C)
( equiv-transport
( A)
( C)
( center-contraction A is-contr-A)
( a)
( homotopy-contraction A is-contr-A a))
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A.2. Equivalent forms of function extensionality

A.2.1 Theorem. Fix a universe𝒰. The following are equivalent:
1. Function extensionality: For any type family𝐶 ∶ 𝐴 → 𝒰 and any 𝑓, 𝑔 ∶ ∏𝑥∶𝐴 𝐶(𝑥), the

function htpy−eq𝑓,𝑔 ∶ (𝑓 = 𝑔) → (𝑓 ∼ 𝑔) defined by path induction is an equivalence.

2. Naive function extensionality: For any type family𝐶 ∶ 𝐴 → 𝒰 andany𝑓, 𝑔 ∶ ∏𝑥∶𝐴 𝐶(𝑥),
there is a function of type (𝑓 ∼ 𝑔) → (𝑓 = 𝑔).

3. Weak function extensionality: For any type family 𝐶 ∶ 𝐴 → 𝒰, if every fiber 𝐴(𝑥) is
contractible, then the type∏𝑥∶𝐴 𝐶(𝑥) is contractible.

[1 ⇒ 3] was formalized by Matthias Hutzler ( ). [1 ⇒ 2] and [2 ⇒ 3] were added
after comments by Emily Riehl and Tashi Walde, noting that [2 ⇒ 3] can be immediately
extracted from the proof of [1 ⇒ 3], as it only needs a map in the converse direction.
For [3 ⇒ 1], we follow the proof in [Rij22, Chapter 13], factoring through a form of the

fundamental theorem of identity types ( ).
Here are the three equivalent conditions from (A.2.1) written in Rzk code:

#def FunExt
: U
:=

( X : U)
→ ( A : X → U)
→ ( f : (x : X) → A x)
→ ( g : (x : X) → A x)
→ is-equiv (f = g) ((x : X) → f x = g x) (htpy-eq X A f g)

#def NaiveFunExt
: U
:=

( A : U) → (C : A → U)
→ ( f : (x : A) → C x)
→ ( g : (x : A) → C x)
→ ( p : (x : A) → f x = g x)
→ ( f = g)

#def WeakFunExt
: U
:=

( A : U) → (C : A → U)
→ ( is-contr-C : (a : A) → is-contr (C a))
→ ( is-contr ((a : A) → C a))

6.2.2 Remark. Analogous axioms are needed for extension types in simplicial type theory.
As we discussed in chapter 5, Riehl and Shulman assume the strongest form, which they
call extension extensionality, which corresponds to (A.2.1, part 2).
This axiom can be shown to imply the other possible forms in which function extension-

ality can be needed for extension types, but a full logical equivalence analogously to (A.2.1)
has not been proven.
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