
Demazure operators and
Lean

Óscar Álvarez Sánchez

Born 25th October 2000 in Boadilla del Monte, Spain

25th October 2024

Master’s Thesis Mathematics

Advisor: Prof. Dr. Catharina Stroppel

Second Advisor: Dr. Johannes Flake
Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 2

2 Preliminaries 3

2.1 Groups . 3

2.2 Symmetric group . 6

2.3 Polynomials . 7

3 Demazure Operators 10

3.1 Definition . 10

3.2 Basic results . 15

3.3 Alternative definition . 20

3.4 Combinatorial results . 27

4 Coxeter groups 33

4.1 Definition . 33

4.2 Basic properties and facts . 35

4.3 Alternating words . 39

4.4 Length of words . 43

4.5 Reflections and inversions . 45

4.6 Coxeter lifts . 51

4.7 The Strong Exchange Theorem . 59

4.8 Coxeter moves and Matsumoto’s theorem . 64

5 Demazure operators over Sn+1 84

5.1 Sn+1 as a Coxeter group . 84

5.2 Extending the definition . 88

1

1 Introduction

Lean is a computer formalization software developed by Leonardo de Moura in 2013 [Lea].
It enables the formalization of mathematical proofs into machine-verifiable code, ensuring
that every assumption is explicitly stated and eliminating the possibility of unnoticed errors.
Lean stands out from other proof assistants by incorporating modern features, which make
it more accessible and easier to use.

A key component of Lean’s ecosystem is mathlib [Mata], its standard mathematical
library. Mathlib is an open-source project that houses a wide variety of results from different
areas of mathematics, and its collaborative nature allows contributions from anyone in the
community. Some of the work presented in this thesis on Coxeter groups is intended to be
included in future versions of mathlib.

In this thesis, we leverage Lean to formalize results concerning Demazure operators.
Introduced by Demazure in 1974[Dem74], these operators have become essential tools in
representation theory, particularly in the study of highest weight modules and Schubert
calculus. They offer a combinatorial perspective for understanding the structures of these
mathematical objects.

The primary objective of this work is to provide a rigorous, machine-verifiable formal-
ization of Demazure operators and their key properties within a generalized setting. This
formalization is designed to serve as a foundation that future work can build upon.

We begin in Section 2 by introducing the necessary mathematical concepts and the
specific Lean functions that will be utilized throughout the thesis.

In Section 3, we present an initial definition of Demazure operators, which, while func-
tional, proves cumbersome for certain combinatorial arguments. We then introduce an
alternative, more practical definition and demonstrate its equivalence to the initial one.
This leads naturally to a generalization of the definition. To support this work, we develop
the theory of Coxeter groups in Section 4, formalizing results not only essential for our
purposes but also applicable to various other domains in mathematics. The formalization
of Matsumoto’s theorem in a specific case, using relatively elementary methods, is the core
result of this thesis.

In Section 5, we apply our Coxeter group theory to the symmetric group, Sn, by con-
structing a sketch of the proof that it satisfies the conditions of a Coxeter group. We then
use this to define Demazure operators on Sn and prove their well-definedness.

Throughout this document, Lean code will be highlighted with a gray background to
distinguish it from the surrounding mathematical text. We will explicitly clarify how the
Lean code corresponds to the mathematical concepts being formalized. While we provide
an overview of the libraries used and discuss some advanced features of Lean, readers are
encouraged to familiarize themselves with the basics of Lean beforehand. We recommend
the introductory text Mathematics in Lean[Mil] as a starting point.

The full code can be accessed via the attached CD or the GitHub repository [Ála]. It
includes documentation for all the results discussed here, along with additional formaliza-
tions not covered in this thesis. An online version of the documentation is available at [Álb],
or it can be built from the provided source code. Instructions on how to use the Lean code

2

and generate the documentation can be found in the repository’s README.md.

Any results already included in mathlib will be clearly identified with a corresponding
header in the Lean code, like this:

mathlib

theorem one_add_one_eq_two {α : Type u_1} [AddMonoidWithOne α] :

1 + 1 = 2

They can be checked in the online mathlib documentation[Matb]. All other results presented
here are original contributions, either derived independently or following cited references.
The only non-formalized assumption we make is that Sn is a Coxeter group, which is fully
explained in Section 5.

2 Preliminaries

We will introduce mathematical structures as needed throughout, but it’s helpful to cover
some fundamental concepts up front.

2.1 Groups

A monoid is a set M equipped with a binary operation

· : M ×M →M

that satisfies the following properties:

• Associativity: For all a, b, c ∈M , we have

(a · b) · c = a · (b · c).

• Identity element: There exists an element e ∈M such that for all a ∈M ,

e · a = a · e = a.

We also consider for every n ∈ N the exponentiation as

mn = m ·m · · ·m︸ ︷︷ ︸
n times

This can be defined inductively by making m0 = e and mn+1 = m ·mn.

mathlib

class Monoid(M : Type u) extends Semigroup , One : Type u

mul : M → M → M

mul_assoc : ∀ (a b c : M), a * b * c = a * (b * c)

one : M

3

one_mul : ∀ (a : M), 1 * a = a

mul_one : ∀ (a : M), a * 1 = a

npow : N → M → M

npow_zero : ∀ (x : M), Monoid.npow 0 x = 1

npow_succ : ∀ (n : N) (x : M), Monoid.npow (n + 1) x = Monoid.npow n x * x

Definition 2.1. A group is a monoid G in which every element has an inverse. Specifically,
for each a ∈ G, there exists an element a−1 ∈ G such that

a · a−1 = a−1 · a = e,

where e is the identity element.

This enables us to define division as g/h = g · h−1 for every g, h ∈ G, and extend the
exponentiation to the integers with g−n = (g−1)n = (gn)−1

mathlib

class Group(G : Type u) extends DivInvMonoid :

Type u

. . . (Properties of a Monoid)

inv : G → G

div : G → G → G

div_eq_mul_inv : ∀ (a b : G), a / b = a * b−1

zpow : Z → G → G

zpow_zero’ : ∀ (a : G), DivInvMonoid.zpow 0 a = 1

zpow_succ’ : ∀ (n : N) (a : G), DivInvMonoid.zpow (↑n.succ) a =

DivInvMonoid.zpow (↑n) a * a

zpow_neg’ : ∀ (n : N) (a : G), DivInvMonoid.zpow (Int.negSucc n) a =

(DivInvMonoid.zpow (↑n.succ) a)−1

inv_mul_cancel : ∀ (a : G), a−1 * a = 1

Notice that we define these mathematical objects with the class keyword. Let’s show
how this mechanism works with an example.

Definition 2.2. A permutation of a set X is a bijection from X to X. The set of all
permutations of X forms a group under function composition.

In mathlib, permutations of a type α are defined as:

mathlib

abbrev Equiv.Perm (α : Sort*) := Equiv α α

It’s easy to prove that permutations form a group under composition. To formalise
this, we show that Equiv.Perm is an instance of Group, by proving that it satisfies all of its
properties. In our case this is already done in mathlib.

mathlib

instance Equiv.Perm.permGroup{α : Type u} :

Group (Equiv.Perm α)

4

This has several benefits over alternative ways of formalizing that this object is a group.
If we declared Group as a structure, every group would have to be constructed as such, and
we could only use its properties and that of sub-structures like monoids.

On the other hand, a single object can be an instance of multiple classes that have
nothing to do with each other. For example, we state that permutations can be seen as
embeddings in a different instance statement.

mathlib

instance Equiv.Perm.coeEmbedding{α : Sort u} :

Coe (Equiv.Perm α) (α α)

The reason we use instances instead of usual definitions is that it makes the process of
finding an object’s properties automatic.

For example, let’s say that we stated that permutations are a group with a definition.

def permGroup{α : Type u} :

Group (Equiv.Perm α)

And we want to build on top of the group structure of permutations. Let’s say that we
define the operation of squaring an element, which can be defined in general for groups.

def square {α : Type} (isGroup : Group α) (s : α) : α :=

isGroup.mul s s

Then to use it in our example, we need to pass the fact that Equiv.Perm is a group to the
square definition explicitly.

def p : Equiv.Perm α := . . .
def p_squared : Equiv.Perm α := square permGroup p

This gets quickly cumbersome, especially when there is a lot of structure, say that we
need to use that Equiv.Perm is a group but also that it’s non-empty, can be seen as a
collection of embeddings and has a default element (the identity).

But when declaring it as an instance, we can use it directly on theorems that require
that class instance with square brackets. With our previous example:

def square {α : Type} [Group α] (s : α) : α :=

s * s

def p_squared := square p

As you can see, we don’t have to explicitly indicate that Equiv.Perm is a group to use
square. Lean automatically searches for instances of Group and detects that Equiv.Perm is
one of them. This process is called type class inference and it’s one of the most useful
and interesting capabilities of Lean.

The built-in classes also have the benefit of providing custom notation. For example,
after declaring the Group instance for Equiv.Perm, we can multiply two elements p and q of
this structure with p * q, as you saw in the definition of square.

5

2.2 Symmetric group

The specific set X is not important, since any other set in bijection with it leads to the
same group. Therefore, when X is finite we only care about its cardinality. This motivates
the following definitions:

Definition 2.3. Let n ∈ N. We define the finite set of n elements as

[n] := [n]

mathlib

structure Fin (n : Nat) where

/-- Creates a ‘Fin n‘ from ‘i : Nat‘ and a proof that ‘i < n‘. -/

mk ::

/-- If ‘i : Fin n‘, then ‘i.val : N‘ is the described number. It can also be

written as ‘i.1‘ or just ‘i‘ when the target type is known. -/

val : Nat

/-- If ‘i : Fin n‘, then ‘i.2‘ is a proof that ‘i.1 < n‘. -/

isLt : LT.lt val n

So can create elements of [n] with an element i ∈ N and a proof h that i < n as ⟨ i, h ⟩.

A lot of times, we will want to go from [n] to [n+ 1]. Two really useful shorthands are
i.castSucc, which sends i ∈ [n] to i ∈ [n+1] and i.succ, which sends i ∈ [n] to i+1 ∈ [n+1].

Definition 2.4. The symmetric group Sn is the group of all permutations of the finite
set [n], i.e.,

Sn := {f : [n]→ [n] | f is bijective}.

abbrev S (n : N) := Equiv.Perm (Fin n)

Definition 2.5. Let n ∈ N. We say that σ := (i0, i1, . . . , ip−1) ∈ Sn for some p < n and
ik ∈ [n] ∀0 < k < p is a cycle of length k if it sends

(i ∈ [n]) 7→


ij+1 if i = ij with j < p− 1

i0 if i = ip−1

i otherwise

We are specially interested in cycles of length two:

Definition 2.6. Let n ∈ N. Then transpositions or swaps are the cycles of order/length
two, that is, the elements

si,j := (i, j) ∀ 0 ≤ i, j < n

mathlib

def Equiv.swap [DecidableEq α] (a : α) (b : α) :

Equiv.Perm α

Remark 2.1. For simplicity, we sometimes refer to the transposition si for 0 ≤ i < n− 1
as just si.

6

Also, it’s a well known fact that this family of transpositions {si : 0 ≤ i < n − 1}
generates Sn. To formalise what this means, let’s explain what subgroups are.

Definition 2.7. A subgroup of a group G is a subset H ⊆ G that is closed under the
group operation and contains the inverse of each of its elements and the identity.

mathlib

structure Subgroup(G : Type u_5) [Group G] extends Submonoid :

Type u_5

carrier : Set G

mul_mem’ : ∀ {a b : G}, a ∈ self.carrier → b ∈ self.carrier → a * b ∈
self.carrier

one_mem’ : 1 ∈ self.carrier

inv_mem’ : ∀ {x : G}, x ∈ self.carrier → x−1 ∈ self.carrier

But to create a subgroup from scratch we have to provide the underlying set (carrier). To
talk about the subgroup generated by a set, we proceed as follows:

Definition 2.8. Let G be a group and k ⊆ G a subset. The subgroup generated by k,
denoted by ⟨k⟩, is defined as the smallest subgroup of G containing k, that is,

⟨k⟩ =
⋂
{K ⊆ G | K is a subgroup of G and k ⊆ K}.

mathlib

def Subgroup.closure (k : Set G) : Subgroup G :=

sInf { K | k ⊆ K }

The fact that si generate Sn is formalized in mathlib as:

⟨{si : 0 ≤ i < n}⟩ = Sn+1

mathlib

theorem mclosure_swap_castSucc_succ (n : N) :

Submonoid.closure (Set.range fun i : Fin n 7→ swap i.castSucc i.succ) =

Equiv.Perm (Fin n)

2.3 Polynomials

An initial distinction to be made is between univariate polynomials and multivariate poly-
nomials, which are found in the Polynomial package and MvPolynomial package, correspond-
ingly.

Let’s start with Polynomial since it’s way simpler. We define a uni-variate polynomial
(semi-)ring as Polynomial R, where R is a (semi-)ring. Semirings have the same properties
as rings, except they are not guaranteed to have an inverse w.r.t. addition.

mathlib

structure Polynomial(R : Type u_1) [Semiring R] : Type u_1

7

We will just consider the ring case from now on. This corresponds to the usual polynomial
ring R[x]. But as we said before, we can consider polynomials as instances of multiple classes.
This corresponds with the fact that we can see polynomials as groups, rings, modules, and
when R is a field, R-vector spaces and R− algebra, among others. We will mostly consider
it as a R−module but keep in mind the rest of possible structures.

mathlib

instance Polynomial.module{R : Type u} [Semiring R]

{S : Type u_1} [Semiring S] [Module S R] :

Module S (Polynomial R)

The simplest polynomials will be the constant ones, that is, elements of R. Lean is
strongly typed so we can’t just consider an element of R as a polynomial. We have to
explicitly convert it to one with the function Polynomial.C. It is a ring homomorphism
from R to R[x]. For example, the polynomial 3 ∈ Z[x] could be constructed in Lean as
Polynomial.C 3. You may have noticed that we haven’t specified that the coordinate ring
is Z to Lean. That’s because Lean can figure it by itself given that 3 ∈ Z. If we look at the
definition:

mathlib

def Polynomial.C{R : Type u} [Semiring R] :

R →+* Polynomial R

The argument R is inside curly brackets. That means it’s an implicit argument. Since
this function’s domain is R, we can figure out what ring is R from the type of the argument.

You can see another example of type class inference with the argument [Semiring R].
It means that Lean must know from some previous theorem that the type R has all the
properties of a semi-ring (similar to a ring but lacks an additive inverse). In our example,
we use the ring Z which is constructed in mathlib, so we don’t even have to prove it
beforehand.

We can access the polynomial variable using the definition Polynomial.X. The type isn’t
explicitly mentioned here, but Lean can deduce it—for instance, when we multiply it by a
constant in R, the expected type can guide the inference. For the sake of simplicity, we’ll
omit some implicit arguments moving forward.

To save time, we can use the following construction:

mathlib

def Polynomial.monomial (n : N) :

R →[R] Polynomial R

This enables one to get the monomial axn as Polynomial.monomial n a.

In uni-variate polynomials, evaluation at an element of the ring is simple enough. We
have the following definition:

mathlib

def Polynomial.eval :

R → Polynomial R → R

8

In Lean the functions are grouped from the right, so R → Polynomial R → R means R

→ (Polynomial R → R). That is, Polynomial.eval takes a ∈ R and returns the evaluation
function eva : R[x]→ R.

So for example, if we have the polynomial p = 3x2 − x + 1 ∈ Z[x] and we want to get
p(2), we do it with Polynomial.eval 2 p, but we can also prove facts about the evaluation
function Polynomial.eval 2 as a map.

This is enough for a lot of proofs but what if we want to evaluate a polynomial at an
expression? For example, if we want to compute p(x2). Then this definition is not enough,
and we have to use eval2

mathlib

def Polynomial.eval2 (f : R →+* S) (a : S) (p : Polynomial R) : S

As before, p ∈ R[x] is the polynomial we want to evaluate at some expression. But now
instead of having some a ∈ R we have a parameter a in some other ring S. This lets us
evaluate a polynomial outside of the coefficient ring. But we have to define an embedding
of R into S to be able to perform this operation, and this is exactly what ƒ is. For example,
to compute p(x2) we would have to do:

mathlib

\lstinline{Polynomial.eval2 (Polynomial.C) (Polynomial.monomial 2 1) p}

The function f is in this case Polynomial.C, which embeds the coefficient ring R in R[x].
That way, we can supply the element Polynomial.monomial 2 1, which corresponds to x2,
and evaluate p at it.

The previous configuration corresponds to the function

eva : R[x]→ R[x], p 7→ p(a),where a ∈ R[x]

In the case where S (here denoted A) is an R−algebra, there is a simpler definition that
does the same, namely:

mathlib

def Polynomial.aeval [Algebra R A] (x : A) :

Polynomial R →a[R] A

In this case the function f is left implicit since it’s just the embedding R ↪→ A.

Things get more complicated for multivariate polynomials.

mathlib

def MvPolynomial(σ : Type u_1) (R : Type u_2) [CommSemiring R] :

Type (max u_1 u_2)

The way to create the ring is similar, just including the amount of variables n as a para-
meter, with MvPolynomial (Fin n) R.We put Fin n instead of n because we can in fact
work with any index set, not just natural indices, but in this case it would correspond to

9

Pn := R[x0, x1, . . . , xn−1]. To evaluate multi-variate polynomials, we don’t do so inductively.
Instead, we have:

mathlib

def MvPolynomial.eval(f : σ → R) :

MvPolynomial σ R →+* R

Basically, instead of passing an element of the coefficient ring like in the uni-variate case,
we pass a function that contains the value at every index. As before, it returns a function
from the polynomial ring to the coefficient ring.

For example, to get the expression p(−1, 5, 3) for some p ∈ Z[x0, x1, x2] we would use

mathlib

MvPolynomial.eval f p

Where f : Fin 3→ Z and f(0) = −1, f(1) = 5, f(2) = 3

The evaluation outside of the coefficient ring is also similar to the univariate case, with:

mathlib

def MvPolynomial.eval2 (f : R →+* S1) (g : σ → S1) (p : MvPolynomial σ R) :

S1

Again, we have a function f that ”augments” the coefficients, and now the valuation g

can take values in the bigger ring. In mathematical language, and with f = R ↪→ S, where
we assume f to be the natural embedding, this is the function

ẽvSg : Pn → Pn, p 7→ p(g(0), g(1), . . . , g(n− 1))

for some g : {0, 1, . . . , n− 1} → Pn

And as before, with this use case it suffices with the simplified version

mathlib

def MvPolynomial.aeval [Algebra R S1] (f : σ → S1) :

MvPolynomial σ R →a[R] S1

Where we don’t have to supply g. However, for most of this thesis, the theorems that
we use are dependant on eval2 (since it’s the most general), so we will focus the most on it.

3 Demazure Operators

3.1 Definition

We can consider the action of Sn on the ring of polynomials by swapping variables. For
simplicity sake, we are going to assume we are working over the complex numbers, that is,

10

R = C.

Definition 3.1. Let σ ∈ Sn be a permutation and p ∈ Pn be a (multivariate) polynomial.
Then, σ induces a ring isomorphism (over R)

σ : Pn −→ Pn sending p(x0, x1, . . . xn−1) 7→ p(xσ(0), xσ(1), . . . xσ(n−1))

For example, if we take σ = (0, 2, 3) ∈ S4, then

σ(x20 − 2x1x2 + x30x
2
3x1) = x22 − 2x1x3 + x32x

2
0x1

Proving that it’s a ring isomorphism is not difficult. It’s already implemented in mathlib
as:

mathlib

def MvPolynomial.renameEquiv (R : Type u_4) [CommSemiring R] (f : σ ≃ τ) :

MvPolynomial σ R ≃a[R] MvPolynomial τ R

Again, we are specially interested in the transposition case, so we define swaps for that
specific case to simplify proofs in the future.

Remark 3.1 (Variable swaps). Given some indices 0 ≤ i, j < n, then the induced C−algebra
isomorphism si,j : Pn → Pn sends:

xk 7→ xsi,j(k) =


xj if k = i

xi if k = j

xk otherwise

That is, it swaps the variables xi and xj of a polynomial.

def SwapVariablesFun (i j : Fin n) (p : MvPolynomial (Fin n) C) :(MvPolynomial

(Fin n) C) := (renameEquiv C (Transposition i j)) p

In Lean, one way to construct certain objects (like ring isomorphisms in this case) is
to first give the underlying function, then prove the properties of this type of object, and
finally put everything together into the final definition.

First, we need to find its inverse. We do this in Lean by supplying the function that is
going to be the inverse (itself, since we are working with a transposition) and two proofs,
one for it being the right inverse and another for being the left inverse.

Then, for the homomorphism part, we prove that it respects multiplication and addition,
and that it is commutative, all of which are quite trivial proofs that can be found in the
code repository.

def SwapVariables (i : Fin n) (j : Fin n) :

AlgEquiv C (MvPolynomial (Fin n) C) (MvPolynomial (Fin n) C) where

toFun := SwapVariablesFun i j

invFun := SwapVariablesFun i j

left_inv := by

simp[Function.LeftInverse]

11

right_inv := by

simp[Function.RightInverse]

intro p

exact swap_variables_order_two

map_mul’ := swap_variables_mul

map_add’ := swap_variables_add

commutes’ := swap_variables_commutes

To give an example of one of them, here we show that applying si,j twice doesn’t change
a polynomial. We apply the internal lemma Equiv.eq_symm_comp and rewrite every layer of
abstraction.

@[simp]

lemma swap_variables_order_two {i j : Fin n} {p : MvPolynomial (Fin n) C} :

SwapVariablesFun i j (SwapVariablesFun i j p) = p := by

simp[SwapVariablesFun, Equiv.swap_mul_self]

have : (Equiv.swap i j) ◦ (Equiv.swap i j) = Equiv.refl _ := by

exact (Equiv.eq_symm_comp (Equiv.swap i j) (Equiv.swap i j) (Equiv.refl (Fin

n))).mp rfl

rw[this]

apply MvPolynomial.rename_id

Remark 3.2. SwapVariables i j boils down to the expression

MvPolynomial.eval2 (MvPolynomial.C) (Equiv.swap i j) p

This is the term that will appear in proofs if we simplify every intermediate step. However,
we will try to use the lemmas we have proven about SwapVariables to make proofs shorter.

Finally, we are ready to give the initial definition of Demazure operators.

Definition 3.2 (Demazure operators). Given some index i ∈ [n], the corresponding De-
mazure operator ∂i : Pn+1 → Pn+1 maps

p 7→ p− si(p)

xi − xi+1

The result stays in the polynomial ring because xi − xi+1 divides p− si(p) as we will prove
shortly.

Or in Lean,

def DemazureNumerator (i : Fin n) (p : MvPolynomial (Fin (n + 1)) C) : Polynomial

(MvPolynomial (Fin n) C) :=

let i’ : Fin (n + 1) := Fin.castSucc i

let i’_plus_1 : Fin (n + 1) := Fin.succ i

let numerator := p - SwapVariables i’ i’_plus_1 p

let numerator_X_i_at_start : MvPolynomial (Fin (n + 1)) C := SwapVariables i’ 0

numerator

(finSuccEquiv C n) numerator_X_i_at_start

def DemazureDenominator (i : Fin n) : Polynomial (MvPolynomial (Fin n) C) :=

12

let X_i : MvPolynomial (Fin n) C := MvPolynomial.X i

let denominator_X : Polynomial (MvPolynomial (Fin n) C) := (Polynomial.X -

Polynomial.C X_i)

denominator_X

def DemazureFun (i : Fin n) (p : MvPolynomial (Fin (n + 1)) C) : MvPolynomial

(Fin (n + 1)) C :=

let numerator := DemazureNumerator i p

let denominator := DemazureDenominator i

let division := numerator.divByMonic denominator

let division_mv : MvPolynomial (Fin (n + 1)) C := (AlgEquiv.symm (finSuccEquiv C
n)) division

let i’ : Fin (n + 1) := Fin.castSucc i

SwapVariables i’ 0 division_mv

As you can see this is a quite complicated definition, specially compared to the mathem-
atical one. The main problem with this definition is the division. Division of multivariate
polynomials is not implemented in the current version of mathlib. However, notice that
we are dividing by a very simple polynomial. The trick to make this work is considering
the polynomials of n + 1 variables as uni-variate polynomials with coefficients in the ring
of polynomials in n variables. In Lean, this is done by ”picking” x0 as the new x (the
uni-variate variable). Basically, using

Φ : C[x0, x1, . . . , xn] ∼= C[y0, . . . , yn−1][y]

xi 7→

{
y if i = 0

yi−1 if i > 0

The definition is split between the numerator and the denominator, with the final defini-
tion combining them. The only parameter is i, which indicates the variables we swap. In the
Lean code, we work over polynomials in n + 1 variables. This makes it easier to ”extract”
one of them like we said before.

For the numerator, we first compute p− si(p) and store it in numerator. Then, we swap
the variables xi and x0 to prepare the polynomial for extracting xi as x. And finally, we do
so with the function finSuccEquiv.

This function is just a wrapper around the following expression:

MvPolynomial.eval2
(Polynomial.C.comp MvPolynomial.C)

(fun i 7→ Fin.cases

Polynomial.X

(fun k 7→ Polynomial.C (MvPolynomial.X k))

i

)

p

13

Which maps p to a polynomial in C[y0, . . . , yn−1][y] via the function Fin.cases Polynomial.X

(fun k 7→ Polynomial.C (MvPolynomial.X k)) i) p. It sends 0 to the first item (Polynomial.X)
and then proceeds by induction, so it sends k + 1 to Polynomial.C (MvPolynomial.X k). This
is the function that will actually appear in the proofs.

In mathematical terms, let Qn := C[y0, . . . , yn−1], and

g : Fin(n+ 1)→ Qn[y]

j 7→

{
y if j = 0

yj−1 if j > 0

Then, finSuccEquiv corresponds to ẽvQn[y]
g

To replace xi with y in the definition of the Demazure operator, first we swap the
variables xi and x0 and then we apply the aforementioned function;

ẽvQn[y]
g ◦ s0,i(p− si(p))

You may have noticed that with a similar function we could skip the swap between xi
and x0 and send directly xi to y. However, it’s difficult to define functions by cases that
are not 0 and the rest (we don’t have a lot of lemmas like with Fin.cases), so we ended up
choosing this approach because it translated into simpler proofs.

We apply the same transformation to the denominator, which becomes

ẽvQn[y]
g ◦ s0,i(xi − xi+1) = ẽvQn[y]

g (x0 − xi+1) = y − yi

And therefore we can define it directly like that.

Then to define the Demazure operator (DemazureFun in Lean), we take the numerator
and divide it by the (monic) numerator using divByMonic. Here it’s important to know that
divByMonic just returns the quotient of the division, regardless of whether it’s exact (with
zero remainder) or not. So to prove this definition coincides with the mathematical one, we
will show this division is in fact exact afterwards.

After computing the quotient of these uni-variate polynomials, we end up with another
polynomial in Qn[y]. But of course, we have defined the Demazure operators as functions
of Pn+1, so now we undo the process of distinguishing xi into the uni-variate polynomial
variable y. First we undo the effect of turning x0 to x by applying the inverse of finSuccEquiv
and finally swap x0 and xi to get them to their original positions.

So finally, the Demazure operator becomes:

s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)

14

Which can be shown to be equivalent to the original definition:

s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)
=

= (ẽvQn[y]
g ◦ s0,i)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

ẽvQn[y]
g ◦ s0,i(xi − xi+1)

)

= (ẽvQn[y]
g ◦ s0,i)−1 ◦ (ẽvQn[y]

g ◦ s0,i)
(
p− si(p)

xi − xi+1

)
=

p− si(p)

xi − xi+1

= ∂i(p)

3.2 Basic results

Proposition 3.3. For any polynomial p ∈ Pn+1, 1 ≤ i ≤ n the polynomial xi−xi+1 divides
p− si(p)

Proof. We use the alternative definition we just constructed,

∂i(p) = s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)

Since the variable swaps and evaluation are isomorphism, it suffices to prove that the

division
ẽv

Qn[y]
g ◦s0,i(p−si(p))

y−yi
is exact, that is, y − yi divides ẽv

Qn[y]
g ◦ s0,i(p− si(p)).

Notice that the denominator is a monic polynomial in y, so by the remainder theorem,
the result is equivalent to proving that:

evyi ◦ ẽv
Qn[y]
g ◦ s0,i(p− si(p)) = 0

But here we can use the following theorem in Lean. Its statement is an equality, which
lets us replace one side with the other in any Lean expression (commonly the target of our
proof, but also our hypotheses or other propositions).

mathlib

theorem MvPolynomial.polynomial_eval_eval2 (f : R →+* Polynomial S)

(g : σ → Polynomial S) (p : MvPolynomial σ R)

:

Polynomial.eval x (MvPolynomial.eval2 f g p) =

MvPolynomial.eval2 ((Polynomial.evalRingHom x).comp f) (fun (s : σ) =>

Polynomial.eval x (g s)) p

Or in mathematical language,

Theorem 3.4. Let p ∈ Pn+1, a ∈ Qn and g : Finn → Qn. Then,

eva ◦ ẽvQn[y]
g (p) = ẽvQn

eva◦g(p) ∈ Qn

15

Let g′ := evyi ◦ g : Fin(n+ 1)→ C[y0, . . . , yn−1], which corresponds to:

j 7→

{
yi if j = 0

yj−1 if j > 0

We then need to prove:
ẽvQn

g′ ◦ s0,i(p− si(p)) = 0

Or equivalently;
ẽvQn

g′ ◦ s0,i(p) = ẽvQn

g′ ◦ s0,i ◦ si(p) (1)

First of all, we combine all the compositions inside the function of eval2 with the fol-
lowing theorem:

mathlib

theorem MvPolynomial.eval2_rename (f : R →+* S) (k : σ → τ)
(g : τ → S) (p : MvPolynomial σ R)

:

MvPolynomial.eval2 f g ((MvPolynomial.rename k) p) =

MvPolynomial.eval2 f (g ◦ k) p

When we take g = g’ and k = Transposition i j, then:

(MvPolynomial.rename k) = SwapVariables i j

So the theorem translates to:

Theorem 3.5. For any 0 ≤ i, j ≤ n,

ẽvQn

g′ ◦ si,j(p) = ẽvQn

g′◦τi,j (p)

Therefore, (1) is equivalent to:

ẽvQn

g′◦τ0,i(p) = ẽvQn

g′◦τ0,i◦τi,i+1
(p)

Let g1 = g′ ◦ τ0,i and g2 = g′ ◦ τ0,i ◦ τi,i+1. The proof now just boils down to the evaluation
of a polynomial being equal with these two functions. Lean provides a useful theorem to
prove this fact:

mathlib

theorem MvPolynomial.eval2_congr {p : MvPolynomial σ R} (f : R →+* S1) (g1 : σ →
S1) (g2 : σ → S1)

(h : ∀ {j : σ} {c : σ →0 N},
j ∈ c.support → MvPolynomial.coeff c p ̸= 0 → g1 j = g2 j

)

:

MvPolynomial.eval2 f g1 p = MvPolynomial.eval2 f g2 p

So we just need to prove

h : ∀ {j : σ} {c : σ →0 N},
j ∈ c.support → MvPolynomial.coeff c p ̸= 0 → g1 j = g2 j

16

That is, that for every index j and every monomial with exponents given by the function c,
if j is one of the non-null exponents and the monomial has a non-zero coefficient in p, then
the evaluation of j at g1 and g2 must coincide.

For our case, we don’t actually use all these hypotheses since it’s easy to see that
g1 = g2 as it is. In the following tables we compute the result of applying g1 = g′ ◦ τ0,1 and
g2 = g′ ◦ τ0,1 ◦ τi,i+1 step by step, at every element 0 ≤ j ≤ n, separated by cases. Notice
that the final result (the last column) is equal in both tables, completing the proof.

j τ0,1(j) g′ ◦ τ0,1(j) = g1(j)

0 i yi−1

i 0 yi
i+ 1 i+ 1 yi

j ̸= 0, i, i+ 1 j yj−1

j τi,i+1(j) τ0,1 ◦ τi,i+1(j) g′ ◦ τ0,1 ◦ τi,i+1(j) = g2(j)

0 0 i yi−1

i i+ 1 i+ 1 yi
i+ 1 i 0 yi

j ̸= 0, i, i+ 1 j j yj−1

This proves that the Demazure operators are well defined as functions from Pn+1 to
itself. However, we also required them to be C−linear. As shown before, this is done in
Lean by creating a new object Demazure and supplying all the properties of a linear operator
with the where clause.

def Demazure (i : Fin n) : LinearMap (RingHom.id C)
(MvPolynomial (Fin (n + 1)) C) (MvPolynomial (Fin (n + 1)) C) where

toFun := DemazureFun i

map_add’ := demazure_map_add i

map_smul’ := demazure_map_smul i

The proofs that Demazure operators are additive and respect scalar multiplication, while
trivial mathematically, require some work in Lean due to the complexity of the definition.
For example, the proof of map_smul’ (scalar multiplication) is the following:

lemma demazure_map_smul (i : Fin n) :

∀ (r : C) (p : MvPolynomial (Fin (n + 1)) C),
DemazureFun i (r · p) = r · DemazureFun i p := by

intro r p

simp[DemazureFun, SwapVariables, MvPolynomial.smul_eq_C_mul]

nth_rewrite 2 [← swap_variables_commutes]

rw[← swap_variables_mul]

apply congr_arg

nth_rewrite 2 [← MvPolynomial.finSuccEquiv_comp_C_eq_C]

simp[RingHom.comp]

rw[← AlgEquiv.map_mul]

apply congr_arg

17

apply (poly_mul_cancel (demazure_denominator_ne_zero i)).mpr

rw[← mul_assoc]

rw [mul_comm (DemazureDenominator i) (Polynomial.C (C r))]

simp[demazure_division_exact’]

rw[mul_assoc]

rw[demazure_division_exact’ i p]

exact demazure_numerator_C_mul i p r

We start introducing the arbitrary scalar r and the polynomial p with the intro clause.
Then, we simplify the definition of the Demazure operator and the variable swapping ho-
momorphism. Then we need to convert the scalar multiplication to C-mul. They are two
different ways of conceptualizing multiplication of a scalar with a polynomial.

Scalar multiplication is more general, basically it’s defined for every vector space and
corresponds with the mathematical definition. Polynomial rings are vector spaces so they
come equipped with this operation. On the other hand, C-mul is exclusive to polynomials,
and uses the (Mv)Polynomial.C function we talked about before. It converts the scalar to
a polynomial and then uses polynomial multiplication.

Of course this two operations are equivalent, as this theorem states:

mathlib

theorem MvPolynomial.smul_eq_C_mul (p : MvPolynomial σ R) (a : R) :

a · p = MvPolynomial.C a * p

So after simplification, we have to prove that:

r · ∂i(p) = r · s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)
=

s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(r · p− si(r · p))
y − yi

)
= ∂i(r · p)

Afterwards, with the lines nth_rewrite 2 [← swap_variables_commutes] and rw[←
swap_variables_mul] we use that scalar multiplication commutes with the variable swap
homomorphism to rewrite the goal (what we want to prove) with this property. Now our
goal becomes:

s0,i

(
r · (ẽvQn[y]

g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

))
=

s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(r · p− si(r · p))
y − yi

)
In both sides there’s an external s0,i. If we prove that the inside part is equal, then the goal
is implied since we are just applying a function. So it suffices to prove

r · (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)
=

(ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(r · p− si(r · p))
y − yi

)

18

This is exactly what the tactic apply congr_arg does. We proceed iteratively in this way,
slowly moving towards the inside of the expression until the proof is complete. Most proofs
work like this, we prove theorems by ”layers”, from the outside to the inside. This usually
works all right since most of the building blocks are isomorphisms and as such have the
properties we require, but it involves a lot of work, even for simple proofs like this one.

Remark 3.6. The Demazure operators are not multiplicative. For example,

∂i(xi · 1) =
xi − xi+1

xi − xi+1
= 1 ̸= 0 = xi+1 · 0 = ∂i(xi) · ∂i(1)

In Lean,

lemma demazure_not_multiplicative :

∀ (i : Fin n), ∃(p q : MvPolynomial (Fin (n+1)) C),
Demazure i (p * q) ̸= Demazure i p * Demazure i q := by

intro i

use (X i)

use C 1

simp[Demazure, DemazureFun, DemazureNumerator, DemazureDenominator,

SwapVariables, SwapVariablesFun, Transposition, TranspositionFun,

fin_succ_ne_fin_castSucc, Fin.succ_ne_zero]

rw[one_of_div_by_monic_self]

simp[AlgHom.map_one]

exact Polynomial.monic_X_sub_C (X i)

We want to prove that there exist a pair of polynomials such that the Demazure operators
don’t respect their product. The way to solve it is by selecting the polynomials (xi and 1)
with the use keyboard and proving that specific case.

As before, there’s a lot of boilerplate. Now consider the following proposition, outlining
some properties of the composition of Demazure operators:

Definition 3.3. Let p ∈ Pn be a polynomial. We say that p is a symmetric polynomial if
for every σ ∈ Sn,

σ(p) = p

Since these induction functions are an action of Sn, we can consider the symmetric polyno-
mials as those invariant by this action. Therefore we denote them by PSn

n .

mathlib

def IsSymmetric [CommSemiring R] (φ : MvPolynomial σ R) : Prop :=

∀ e : Perm σ, rename e φ = φ

Remark 3.7. In particular, for i, j ∈ [n], swapping the variables of a symmetric polynomial
p ∈ Pn doesn’t modify it, since

si,j(p) = p

lemma symm_invariant_swap_variables {i j : Fin n}

{g : MvPolynomial (Fin n) C} (h : MvPolynomial.IsSymmetric g) :

SwapVariablesFun i j g = g := by

simp[SwapVariablesFun]

exact h (Equiv.swap i j)

19

Remark 3.8. The symmetric polynomials form a sub C−algebra of the polynomial ring.

mathlib

def MvPolynomial.symmetricSubalgebra(σ : Type u_5) (R : Type u_6)

[CommSemiring R] :

Subalgebra R (MvPolynomial σ R)

Proposition 3.9. Let 1 ≤ i, j < n. The following relations hold:

1. ∂i∂j = ∂j∂i if |i− j| > 1

2. ∂i∂i+1∂i = ∂i+1∂i∂i+1

3. Let g be a symmetric polynomial. Then, ∂i(gf) = g∂i(f)

In particular, this shows that the Demazure operators are not only C−linear, but PSn
n −linear

as well.

We have already had problems with the complexity of a single Demazure operator, and
when we combine them as in this proposition, it quickly gets out of hand, and combinatorial
proofs like this would require hundreds of lines. That’s why we will introduce an auxiliary
definition of Demazure operators that is more suitable for this kind of proof. We aim to
improve the following points:

1. Decrease the number of layers in the definition, to make proofs shorter.

2. Handle both input and output in terms of polynomial fractions, extending beyond mere
polynomials. This approach enables us to formally chain multiple Demazure operators
while preserving the initial polynomial, unlike when using divByMonic, which obscures
access to the internal polynomial.

3.3 Alternative definition

For this, we create a new structure to represent fractions of polynomials of degree n ∈ N:
structure PolyFraction’ (n : N) where

numerator : MvPolynomial (Fin (n + 1)) C
denominator : MvPolynomial (Fin (n + 1)) C
denominator_ne_zero : denominator ̸= 0

It features a polynomial for the numerator, another one for the denominator and a propos-
ition stating that the latter is non-zero. To create an instance of a polynomial fraction, we
have to specify the three fields:

example : PolyFraction’ 2 := ⟨X 0 + X 1, 1, one_ne_zero⟩

In this case, the fraction is x0+x1
1 . Note that we supply the proposition one_ne_zero, which

states that 1 ̸= 0. We introduce a helper definition for the previous situation, where we
consider a polynomial as a fraction (with denominator 1)

20

def to_frac (p : MvPolynomial (Fin (n + 1)) C) : PolyFraction’ n :=

⟨p, 1, one_ne_zero⟩

The next step is to define the operations between these fractions and the most notable
elements:

def add’ {n : N} : PolyFraction’ n → PolyFraction’ n → PolyFraction’ n :=

fun p q => ⟨p.numerator * q.denominator + q.numerator * p.denominator,

p.denominator * q.denominator, mul_ne_zero p.denominator_ne_zero

q.denominator_ne_zero⟩

def sub’ {n : N} : PolyFraction’ n → PolyFraction’ n → PolyFraction n :=

fun p q 7→ mk ⟨p.numerator * q.denominator - q.numerator * p.denominator,

p.denominator * q.denominator, mul_ne_zero p.denominator_ne_zero

q.denominator_ne_zero⟩

def mul’{n : N} : PolyFraction’ n → PolyFraction’ n → PolyFraction’ n :=

fun p q => ⟨p.numerator * q.numerator, p.denominator * q.denominator,

mul_ne_zero p.denominator_ne_zero q.denominator_ne_zero⟩

@[simp]

def one’ : PolyFraction’ n where

numerator := 1

denominator := 1

denominator_ne_zero := one_ne_zero

@[simp]

def zero’ : PolyFraction’ n where

numerator := 0

denominator := 1

denominator_ne_zero := one_ne_zero

def neg’ (p : PolyFraction’ n) : PolyFraction’ n :=

⟨-p.numerator, p.denominator, p.denominator_ne_zero⟩

Now we can perform these operations. For example, if we have to polynomial fractions
x and y we can add them with add’ x y.

Going forward, we will need to use the fact that this type admits addition in a lot of
theorems. There is a class in Lean stating exactly this:

mathlib

class Add (α : Type u) where

/-- ‘a + b‘ computes the sum of ‘a‘ and ‘b‘. See ‘HAdd‘. -/

add : α → α → α

We define PolyFraction’ n as an instance of this class to be able to use the notation p + q

going forward.

instance addition’ : Add (PolyFraction’ n) := ⟨add’⟩

Of course, we define the instances for the rest of operations as well:

instance : Mul (PolyFraction’ n) := ⟨mul’⟩
instance : Sub (PolyFraction’ n) := ⟨sub’⟩

21

Now, if we kept the structure like this, in order for two PolyFraction’ to be equal, all
their fields should be equal. But naturally, we want proportional fractions to be equal. To
fix this, we introduce an equivalence relation:

def r (n : N) : PolyFraction’ n → PolyFraction’ n → Prop :=

fun p q => p.numerator * q.denominator = q.numerator * p.denominator

(two fractions are equivalent under r if both diagonal products are equal) Next, we prove
that this is an equivalence relation, which we will need to do the partitioning.

lemma r_equiv : Equivalence (r n) := by

. . .

In the body of the lemma we have to prove the three properties of an equivalence relation;
reflexivity, symmetry and transitivity:

refl : ∀ (x : PolyFraction’ n), r n x x

symm : ∀ {x y : PolyFraction’ n}, r n x y → r n y x

trans : ∀ {x y z : PolyFraction’ n}, r n x y → r n y z → r n x z

All of them are quite straightforward to prove.

Next, we let Lean know that the type PolyFraction’ admits an equivalence relation,
again using type-class inference:

instance s (n : N) : Setoid (PolyFraction’ n) where

r := r n

iseqv := r_equiv

instance has_equiv : HasEquiv (PolyFraction’ n) := instHasEquivOfSetoid

Now we can use the notation a ≈ b to state that two polynomial fractions a and b are
equivalent under r, but most importantly, we can create a new type as the quotient by this
equivalence relation:

def PolyFraction (n : N) := (Quotient (s n))

And definitions to make it easier to create elements of this quotient from the base polynomial
fractions or from a polynomial.

def mk (p : PolyFraction’ n) : PolyFraction n := Quotient.mk (s n) p

def mk’ (p : MvPolynomial (Fin (n + 1)) C) : PolyFraction n :=

mk ⟨p, 1, one_ne_zero⟩

From now on, when we will write polynomial fractions to refer to elements in PolyFraction n

and polynomial fraction representatives for elements in PolyFraction’ n.

To define the arithmetic operations in the quotient ring, we use the following tool:

mathlib

abbrev Quotient.lift2
(f : α → β → φ)
(

c : ∀ (a1 : α) (b1 : β) (a2 : α) (b2 : β),

22

a1 ≈ a2 → b1 ≈ b2 → f a1 b1 = f a2 b2
)

(q1 : Quotient s1)

(q2 : Quotient s2) :

φ

This enables us to lift functions with two arguments to the quotient. f is the function we
want to lift, in our case mul’. Note that the signature of this function determines α, β, φ.
We want the result of the lift to be in PolyFraction n, so we need to take mul’ and project
it to the quotient (keep in mind that what we lift is the domain, not the image). So we
introduce this function as the candidate for f:

def mul_mk {n : N} : PolyFraction’ n → PolyFraction’ n → PolyFraction n :=

fun p q => mk (mul’ p q)

This way, we have α = β = PolyFraction’ n and φ = PolyFraction n. Therefore, the two
arguments q1, q2 are in the quotient of PolyFraction’ n, that is, PolyFraction n.

Then, the main part is the argument c, a proof that the function f is well defined w.r.t
this relation.

lemma mul’_s {n : N} : ∀ a1 b1 a2 b2 : PolyFraction’ n, a1 ≈ a2 → b1 ≈ b2 →
(mul_mk a1 b1) = (mul_mk a2 b2) := by

intro a1 b1 a2 b2

intro h1 h2

simp[mul_mk, mul’]

ring

rw[← equiv_r] at h1

rw[← equiv_r] at h2

simp[r] at h1

simp[r] at h2

rw[mul_comm a1.numerator]

rw[mul_assoc b1.numerator]

rw[h1]

rw[mul_comm b1.numerator]

rw[mul_assoc (a2.numerator * a1.denominator)]

rw[h2]

ring

We start by introducing the polynomial fraction representatives and their equivalence
relations. We unfold the addition in both sides and then also the definition of being equi-
valent with rw[← equiv_r] at h1 and rw[← equiv_r] at h2. The last two paragraphs are
manipulating the goal until the left hand side of the (unfolded) identities h1 and h2 appear,
and then replacing them with their right hand sides. Finally, the tactic ring takes care of
showing the equality of both sides of the goal.

Now we can define multiplication in the quotient ring:

def mul : PolyFraction n → PolyFraction n → PolyFraction n :=

fun p q 7→ Quotient.lift2 (mul_mk) (mul’_s) p q

Again, we let Lean know that PolyFraction n admits multiplication by creating an instance
of Mul.

23

instance : Mul (PolyFraction n) := ⟨mul⟩

And we proceed in the same way for addition and subtraction.

For the following proofs we will need some basic arithmetic properties. For example:

@[simp]

lemma add_comm (p q : PolyFraction n) : add p q = add q p := by

rcases get_polyfraction_rep p with ⟨p’, hp⟩
rcases get_polyfraction_rep q with ⟨q’, hq⟩
simp[add]

rw[← hp]

rw[← hq]

simp[lift2_r]

simp[add_mk, add’]

ring

The most noteworthy part of the proof is the use of get_polyfraction_rep. It’s defined this
way:

lemma get_polyfraction_rep (p : PolyFraction n) : ∃p’ : PolyFraction’ n, mk p’ =

p := by

simp[mk]

apply Quotient.exists_rep p

Basically it tells us that every quotient class has a representative. In the proof of add_comm,
we extract the representative and the proposition stating that its projection is in that class
with the tactic rcases.

After unpacking the representatives and simplifying the addition, we end up with the
goal

⊢ Quotient.lift2 add_mk (mk p’) (mk q’) =

Quotient.lift2 add_mk (mk q’) (mk p’)

To prove that two lifts applied to projections are equal, we use this helper lemma:

@[simp]

lemma lift2_r {a b : PolyFraction’ n}

{f : PolyFraction’ n → PolyFraction’ n → PolyFraction n}

{

c : ∀ (a1 b1 a2 b2 : PolyFraction’ n),

a1 ≈ a2 → b1 ≈ b2 → f a1 b1 = f a2 b2
} :

Quotient.lift2 f c (mk a) (mk b) = f a b := by rfl

It just says that under the conditions needed to lift a function f, the image of the lift of f
at [a]∼, [b]∼ is just the image of f at a, b. Once we are at PolyFraction’ n, it suffices to
unfold the definition of addition and use the ring tactic to prove commutativity.

With this construction we are ready to give our alternate definition of Demazure oper-
ators. As we mentioned before, we can easily extend the definition of these operators to
polynomial fractions to make composition easier. Let p, q ∈ Pn+1, 0 ≤ i < n. Then,

∂i

(
p

q

)
=

p
q − si(

p
q)

xi − xi+1
=

p·si(q)−si(p)·q
q·si(q)

xi − xi+1
=

p · si(q)− si(p) · q
q · si(q) · (xi − xi+1)

24

Or in Lean,

def DemAux’ (i : Fin n) : PolyFraction’ n → PolyFraction’ n := fun p =>

⟨
p.numerator * (SwapVariables (Fin.castSucc i) (Fin.succ i) p.denominator) -

(SwapVariables (Fin.castSucc i) (Fin.succ i) p.numerator) * p.denominator,

p.denominator * (SwapVariables (Fin.castSucc i) (Fin.succ i) p.denominator) *

(X (Fin.castSucc i) - X (Fin.succ i)),

mul_ne_zero (mul_ne_zero p.denominator_ne_zero (swap_variables_ne_zero

(Fin.castSucc i) (Fin.succ i) p.denominator p.denominator_ne_zero))

(demazure_denominator_not_null i)

⟩

mul_ne_zero states that the multiplication of two polynomials (or any instance of Mul) is
non-zero if both operands are non-zero. We use it to prove that the denominator is not null,
since none of its factors is.

Also notice that, as with the original definition, i ∈ Finn, meaning that 0 ≤ i < n. But
the polynomial fractions are defined in n+1 variables, so the indices have to be converted to
elements of Fin(n+1). To make the conversion we use Fin.castSucc to cast i into Fin (n+1)

while retaining its value, and Fin.succ to get i+ 1 as an element of Fin (n+1).

As with the basic operations, we define the auxiliary Demazure operator in the quotient
by proving that it has the same image at elements of the same class.

lemma DemAux_well_defined (i : Fin n) :

∀ (p q : PolyFraction’ n) (h : p ≈ q),

((mk ◦ DemAux’ i) p) = ((mk ◦ DemAux’ i) q) := by

intro p q h

simp[DemAux’]

rw[← equiv_r] at h

simp[r] at h

ring

rw[mul_comm p.numerator]

rw[mul_assoc (SwapVariablesFun (Fin.castSucc i) (Fin.succ i) p.denominator)]

rw[h]

rw[mul_comm (SwapVariablesFun (Fin.castSucc i) (Fin.succ i) p.numerator)]

rw[mul_assoc p.denominator]

rw[mul_comm (SwapVariablesFun (Fin.castSucc i) (Fin.succ i) p.numerator)]

rw[mul_assoc p.denominator]

rw[mul_assoc q.denominator]

rw[← swap_variables_mul]

rw[h]

simp[swap_variables_mul]

ring

And finally we can write the definition in the quotient using Quotient.lift, in a similar
way of how we did it with multiplication, just a bit simpler since DemAux only takes one
polynomial fraction.

def DemAux (i : Fin n) (p : PolyFraction n) : PolyFraction n :=

Quotient.lift (mk ◦ (DemAux’ i)) (DemAux_well_defined i) p

25

The primary purpose of introducing this alternative definition is to simplify proofs, making
it crucial to demonstrate that this new definition is indeed equivalent to the original one.
That is, we want to prove that our first Demazure operator definition

∂i(p) = s0,i ◦ (ẽvQn[y]
g)−1

(
ẽvQn[y]

g ◦ s0,i(p− si(p))

y − yi

)

Is equivalent to the new definition when applied to a fraction with denominator 1 (using
to_frac in Lean)

∂i

(p
1

)
=

p · si(1)− si(p) · 1
1 · si(1) · (xi − xi+1)

lemma demazure_definitions_equivalent’ :

∀ i : Fin n, ∀ p : MvPolynomial (Fin (n + 1)) C,
mk (DemAux’ i (to_frac p)) = mk’ (DemazureFun i p)

After simplifying the expression for ∂i
(p
1

)
, we turn the goal into showing that the cross

product is equal, that is,
p− si(p) = ∂i(p) · (xi − xi+1)

intro i p

simp[mk’]

simp[DemAux’, to_frac]

Now, we apply ẽvQn[y]
g ◦ s0,i at both sides to turn the goal into

ẽvQn[y]
g ◦ s0,i(p− si(p)) = ẽvQn[y]

g ◦ s0,i(∂i(p) · (xi − xi+1)) (2)

apply (SwapVariables (Fin.castSucc i) (0 : Fin (n + 1))).injective

apply (MvPolynomial.finSuccEquiv C n).injective

Then, we prove two equalities; First, if ∂i(p) = q/r for some polynomials q, r ∈ Pn+1 and
r monic (where q/r is the quotient of the polynomial division) we know that, since the
division is exact,

r · ∂i(p) = q

have h :

DemazureDenominator i * ((DemazureNumerator i p) /m (DemazureDenominator i)) =

DemazureNumerator i p

:= demazure_division_exact’ i p

On the other hand, by definition of DemazureNumerator,

q = ẽvQn[y]
g ◦ si,0(p− si(p))

have h2 : DemazureNumerator i p =

(MvPolynomial.finSuccEquiv C n)

((SwapVariables (Fin.castSucc i) 0)

(p - SwapVariablesFun (Fin.castSucc i) (Fin.succ i) p

)

:= by

simp [DemazureNumerator]

26

Rewriting both of these equalities at Eq. (2) yields:

r · ∂i(p) = ẽvQn[y]
g ◦ s0,i(∂i(p) · (xi − xi+1))

We will continue to peel back layers gradually until reaching an identity, at which point the
proof will be finalized. Further details about this process are available in the code.

3.4 Combinatorial results

We now possess all the necessary tools to demonstrate combinatorial properties of Demazure
operators. To begin, let’s consider a straightforward example.

Proposition 3.10. Let 0 ≤ i < n, p ∈ Pn+1. Then, ∂i ◦ ∂i(p) = 0

lemma demazure_order_two : ∀ (i : Fin n)

(p : MvPolynomial (Fin (n + 1)) C),
Demazure i (Demazure i p) = 0

Proof. Using the alternate definition in Lean,

lemma demaux_order_two : ∀ (i : Fin n) (p : PolyFraction n),

(DemAux i ◦ DemAux i) p = zero

We start getting representatives in Lean to go down to PolyFraction’ n and unfolding the
definitions.

intro i p

rcases get_polyfraction_rep p with ⟨p’, rfl⟩
simp[DemAux]

rw[lift_r]

rw[lift_r]

rw[zero]

apply Quotient.sound

rw[← equiv_r]

simp[r, DemAux’]

Then it’s just a computation.

∂i ◦ ∂i(p) = ∂i

(
p− si(p)

xi − xi+1

)
=

p−si(p)
xi−xi+1

− si(
p−si(p)
xi−xi+1

)

xi − xi+1
=

p−si(p)
xi−xi+1

+ si(p)−si◦si(p)
xi−xi+1

xi − xi+1
=

p−si(p)+si(p)−p
xi−xi+1

xi − xi+1
= 0

In Lean, once we are at the PolyFraction’ n level, without polynomial division, quotients
or any other construct, these computational proofs are as easy as using the built-in ring
arithmetic tactic.

ring

27

Now to get the result for the original definition, we will always proceed the same way;
first descend to the quotient

intro i p

apply eq_zero_of_mk’_zero.mp

simp[Demazure]

Now the goal is

⊢ mk’ (DemazureFun i (DemazureFun i p)) = zero

So we just interchange the definitions and apply the lemma of the auxiliary definition,
completing the proof:

rw[← demazure_definitions_equivalent]

rw[← demazure_definitions_equivalent]

exact demaux_order_two i (mk’ p)

All the proofs of combinatorial results follow the same recipe, first prove them with the
auxiliary definition and then use it to get the equivalent result for the original definition
with the previous procedure. Therefore, from now we will just focus on the proofs for the
auxiliary definition.

We are ready to tackle more advanced results.

Proof of Proposition 3.9.

(1) ∂i∂j = ∂j∂i if |i− j| > 1

We first need to define what it means for two indices to be non-adjacent in Lean:

def NonAdjacent (i j : Fin n) : Prop :=

(Fin.castSucc i : Fin (n + 1)) ̸= (Fin.castSucc j : Fin (n + 1)) ∧
(Fin.castSucc i : Fin (n + 1)) ̸= (Fin.succ j : Fin (n + 1)) ∧
(Fin.succ i : Fin (n + 1)) ̸= (Fin.castSucc j : Fin (n + 1)) ∧
(Fin.succ i : Fin (n + 1)) ̸= (Fin.succ j : Fin (n + 1))

This definition ensures that neither the original indices nor their successors overlap,
which is crucial for the commutativity of the corresponding transpositions. In mathematical
notation, this means:

i ̸= j, i ̸= j + 1, i+ 1 ̸= j, i+ 1 ̸= j + 1

We then prove that transpositions with non-adjacent indices commute:

lemma transposition_commutes_non_adjacent (i j : Fin n)

(h : NonAdjacent i j) :

Equiv.swap (Fin.castSucc i) (Fin.succ i) *

Equiv.swap (Fin.castSucc j) (Fin.succ j) =

Equiv.swap (Fin.castSucc j) (Fin.succ j) *

Equiv.swap (Fin.castSucc i) (Fin.succ i)

28

The key insight is that non-adjacent transpositions act on disjoint sets of elements, which
implies they commute. In Lean, we prove this using the following steps:

First, we destructure the NonAdjacent hypothesis:

rcases h with ⟨h1, h2, h3, h4⟩

We want to prove that the transpositions are disjoint, which is captured in the built-in
proposition Equiv.Perm.Disjoint

have h_disjoint : Equiv.Perm.Disjoint

(Equiv.swap i.castSucc i.succ)

(Equiv.swap j.castSucc j.succ)

Two transpositions are disjoint if for any element k ∈ [n], if it’s moved by one transpos-
ition, it cannot be moved by the other. We introduce this k and assume that si(k) ̸= k.

intro k

apply or_iff_not_imp_left.mpr

intro h

As a consequence of the NonAdjacent inequalities, we can easily prove that i ̸= j

have heq : i ̸= j := by

intro h’

apply h1

simp[h’]

Now, the goal becomes to prove that sj(k) = k.

⊢ (Equiv.swap j.castSucc j.succ) k = k

First, let’s understand what Equiv.eq_or_eq_of_swap_apply_ne_self does: Given a trans-
position (a, b) and an element x where (a, b)(x) ̸= x, it states that either x = a or x = b.
This is clear by the definition of transpositions.

So we consider both cases, k must be either i or i+ 1.

rcases Equiv.eq_or_eq_of_swap_apply_ne_self h with h | h

Next, Equiv.swap_apply_of_ne_of_ne states: If x ̸= a and x ̸= b, then (a, b)(x) = x So it
suffices to prove that x ̸= j, j+1 when x = i or x = i+1. These proofs by cases are a great
match for the repeat clause, that, as the name suggests, applies a tactic repeatedly until it
can no longer advance.

repeat

simp[h, heq, h1, h2, h3, h4, h1.symm, h2.symm, h3.symm, h4.symm]

We tell it to simplify the goal with all our hypotheses:

• h tells us which of the two cases from step 2 we’re in

• heq states that i ̸= j

• h1,h2,h3,h4 are our non-adjacency conditions

29

The .symm property flips both sides of an equality, so if h : a = b, then h.symm : b = a.
This finished the proof that si and sj are disjoint.

Finally, we apply the fundamental theorem that disjoint permutations commute:

rw[Equiv.Perm.Disjoint.commute h_disjoint]

This commutativity at the level of permutations trivially implies the commutativity of
their induced isomorphisms, so we omit the proof here.

lemma swap_variables_commutes_non_adjacent

(i j : Fin n) (h : NonAdjacent i j)

{p : MvPolynomial (Fin (n + 1)) C} :

SwapVariablesFun (Fin.castSucc i) (Fin.succ i)

(SwapVariablesFun (Fin.castSucc j) (Fin.succ j) p) =

SwapVariablesFun (Fin.castSucc j) (Fin.succ j)

(SwapVariablesFun (Fin.castSucc i) (Fin.succ i) p)

Finally, we can prove that the Demazure operators of non-adjacent indices commute.

lemma demaux_commutes_non_adjacent

(i j : Fin n) (h : NonAdjacent i j) :

∀ p : MvPolynomial (Fin (n + 1)) C,
(DemAux i ◦ DemAux j) (mk’ p) = (DemAux j ◦ DemAux i) (mk’ p) := by

We start by picking representatives of the quotient, and turning the proof into showing that
the cross product of the fractions at both sides are equal.

intro p

simp[DemAux, mk’]

repeat rw[lift_r]

apply mk_eq.mpr

simp[DemAux’]

The resulting goal is quite long, since we are composing two Demazure operators.

((p− sj(p)) · (si(xj)− si(xj+1))− (si(p)− si(sj(p))) · (xj − xj+1))

· ((xi − xi+1) · (sj(xi)− sj(xi+1)) · (xj − xj+1))

= (xj − xj+1) · (si(xj)− si(xj+1)) · (xi − xi+1)

· ((p− si(p)) · (sj(xi)− sj(xi+1))− (sj(p)− sj(si(p))) · (xi − xi+1))

Thankfully, since this is an expression directly in the polynomial ring (thanks to the
auxiliary definition!), we can let Lean solve it with its built-in arithmetic engine. We just
need to supply the fact that variable swaps commute for this indices and all the non-adjacent
inequalities.

simp[swap_variables_commutes_non_adjacent i j h]

rcases h with ⟨h1, h2, h3, h4⟩
simp[h1, h2, h3, h4, h1.symm, h2.symm, h3.symm, h4.symm]

ring

(2) ∂i∂i+1∂i = ∂i+1∂i∂i+1

30

This part is really similar to the previous one, so we won’t get into much detail. We
prove that transpositions commute in a similar way.

sisi+1si = si+1sisi+1

lemma transposition_commutes_adjacent {i : Fin n} {j : Fin (n + 1)}

(h0 : i < n + 1) (h1 : i + 1 < n + 1) (h2 : i + 2 < n + 1) :

Equiv.swap ⟨i, h0⟩ ⟨i + 1, h1⟩
(Equiv.swap ⟨i + 1, h1⟩ ⟨i + 2, h2⟩ (Equiv.swap ⟨i, h0⟩ ⟨i + 1, h1⟩ j)) =

Equiv.swap ⟨i + 1, h1⟩ ⟨i + 2, h2⟩
(Equiv.swap ⟨i, h0⟩ ⟨i + 1, h1⟩ (Equiv.swap ⟨i + 1, h1⟩ ⟨i + 2, h2⟩ j))

In this case we don’t have that many cases, we just prove that the result of applying the
functions at both sides is equal when i = i, i+ 1, i+ 2 or something else.

simp[Equiv.swap_apply_def]

by_cases c0 : j = ⟨i, h0⟩
simp[c0]

by_cases c1 : j = ⟨i + 1, h1⟩
simp[c1]

by_cases c2 : j = ⟨i + 2, h2⟩
simp[c2]

simp[c0,c1,c2]

And use this property to prove the equivalent for Demazure operators:

lemma demaux_commutes_adjacent (i : Fin n) (h : i + 1 < n) :

∀ p : MvPolynomial (Fin (n + 1)) C,
(DemAux i ◦ DemAux ⟨i+1, h⟩ ◦ DemAux i) (mk’ p) =

(DemAux ⟨i+1, h⟩ ◦ DemAux i ◦ DemAux ⟨i+1, h⟩) (mk’ p)

In this scenario, both sides involve two compositions, leading to an increased number of
calculations. Nonetheless, Lean is capable of managing these computations provided we
slightly extend the maximum time allowed for each simplification step:

set_option maxHeartbeats 10000000

Using this setup, it requires approximately 30 seconds to conduct a verification on a standard
laptop, which is a reasonably short time. (3) Let g be a symmetric polynomial. Then,
∂i(gf) = g∂i(f)

First, we extend the definition of symmetric polynomials to polynomial fractions, where
we say that p

q for some p, q ∈ Pn is symmetric if both p and q are.

mathlib

def IsSymmetric (p : PolyFraction n) : Prop := ∃p’ : PolyFraction’ n,

mk p’ = p ∧
MvPolynomial.IsSymmetric p’.numerator ∧
MvPolynomial.IsSymmetric p’.denominator

Then, we can state our goal as

31

lemma demaux_mul_symm (i : Fin n) (g f : PolyFraction n) (h : IsSymmetric g) :

DemAux i (g*f) = g*(DemAux i f)

As usual, we take representatives of the polynomial fractions f = f1
f2

and g = g1
g2
. Note

that we use h to get the representative for g, so we know directly that its numerator and
denominator are symmetric polynomials.

rcases h with ⟨g’, ⟨rfl, g_num_symm, g_denom_symm⟩⟩
rcases get_polyfraction_rep f with ⟨f’, rfl⟩

Then, we apply the usual lemmas to transform the problem into just working with repres-
entatives, where we have to prove

∂i

(
g1 · f1
g2 · f2

)
= g · ∂i(f)

rw[mk_mul]

simp[DemAux]

repeat rw[lift_r]

Remember that this equation is between polynomial fractions, so we can apply the demazure
operator definitions and show that the cross product of the resulting expressions is equal

(g1f1 · (si(g2) · si(f2))− si(g1) · si(f1) · (g2 · f2))
· (g2 · (f2 · si(f2) · (xi − xi+1)))

=

g2 · f2 · (si(g2) · si(f2)) · (xi − xi+1)

· (g1 · (f1 · si(f2)− si(f1) · f2))

rw[← simp_mul’]

rw[← simp_mul]

rw[mk_mul]

rw[mk_eq]

simp[DemAux’]

Once again, thankfully we can use the ring arithmetic tactic after canceling si,j(p) = p
wherever p is a symmetric polynomial to obtain the result.

simp[symm_invariant_swap_variables g_num_symm,

symm_invariant_swap_variables g_denom_symm]

ring

In particular, this implies the result for the case f2 = g2 = 1, which is what we are
interested in. We could have done the proof directly for that case, but thanks to the simp

and ring tactics, there is no extra cost associated to proving this generalized version.

As we saw in this proof, the combinatorial properties of Demazure operators closely
resemble those of the transpositions si. In fact, we proved most of them based on the
equivalent for transpositions.

32

And we know that the transpositions si generate Sn+1. This means that any w ∈ Sn+1

can be expressed as
w = si0si1 · · · sip−1

For some ik ∈ [n] for every k ∈ [p] Therefore, one is tempted to generalize the definition of
Demazure operators to Sn+1, where we take ∂si := ∂i and expand with the group operation,
so with w ∈ Sn+1 as before,

∂w = ∂i0 ◦ ∂i1 · · · ∂ip−1

The idea is good, but this naive approach has multiple problems:

1. If w has two of the same transposition in a row, there is a fundamental difference in
how it behaves at the transposition and Demazure operator levels. Of course, s2i = e,
so we should have

∂si·si = ∂e = id

But using the previous definition and Proposition 3.10, we get that

∂si·si = ∂i ◦ ∂i = 0

A clear contradiction.

2. There are multiple ways to get w with a product of transpositions, so how can we
guarantee that for two different expressions w = si0si1 · · · sip−1 = s′j0s

′
j1
· · · s′jr−1

, the
Demazure operators will agree?

∂si0si1 ···sip−1
=s′j0

s′j1
= ∂i0 ◦ ∂i1 · · · ∂ip−1

?
= ∂j0 ◦ ∂j1 · · · ∂jr−1 = ∂j0 ◦ ∂j1 · · · ∂jr−1

In order to address these issues and extend the concept of Demazure operators, a thor-
ough examination of the combinatorial characteristics of the transpositions si in Sn+1 is
required. Interestingly, their behaviour is not limited to the symmetric group and can be
analysed within a broader class of groups.

4 Coxeter groups

We will give a tour of the already formalised landscape of Coxeter groups (named after H.
S. M. Coxeter, who introduced them in [Cox34]) and then prove some major results that
weren’t formalised before.

We mainly follow [AB05], since it’s the book that has been taken a reference for the
majority of results already in mathlib. However, our proofs will sometimes differ, specially
in the section about Matsumoto’s theorem.

4.1 Definition

Let B be any set. We will call the elements of B ”indices”.

Definition 4.1. A matrix M : B × B → N ∪ {0} is a Coxeter matrix if it satisfies the
following properties for all i, j ∈ B:

33

1. M(i, j) = M(j, i) (M is symmetric)

2. M(i, i) = 1

3. M(i, i′) ̸= 1 if i ̸= j

Coxeter matrices are part of Lean’s default mathematics library as:

mathlib

structure CoxeterMatrix(B : Type u_1) : Type u_1

isSymm : self.M.IsSymm

diagonal : ∀ (i : B), self.M i i = 1

off_diagonal : ∀ (i i’ : B), i ̸= i’ → self.M i i’ ̸= 1

A Coxeter matrix M determines a Coxeter group (accessible in lean through M.group)

W = ⟨ {si}i∈B | (sisj)M(i,j) ∀i, j ∈ B⟩ (3)

So, S = {si : i ∈ B} are the generators of the Coxeter group (think of the transpositions
in the Sn case). Although we did not explicitly request them to be distinct, this can be
demonstrated based on the definition of a Coxeter group. (Proposition 1.1.1 of [AB05])

In particular, given that M(i, i) = 1, it follows that s2i = e. These are known as nil
relations. For indices i and j where i ̸= j, the expression (sisj)

M(i,j) is equivalent to

sisjsisj . . .︸ ︷︷ ︸
m(si,sj)

= sjsisjsi . . .︸ ︷︷ ︸
m(si,sj)

.

These are the braid relations.

If a group W has a presentation like the one in 3, then the pair (W,M) is called a
Coxeter system.

Example 4.1. As we anticipated, the symmetric group Sn+1 along with the transpositions
S = {s0, . . . , sn−1} form a Coxeter system indexed by [n].

The Coxeter matrix associated to Sn+1 (commonly referred as An) is the following, for
every i, j ∈ [n]

1. M(i, i) = 1

2. M(i, j) = 2 if |i− j| > 1

3. M(i, i+ 1) = 3

This comes from the relations of the symmetric group that we proved in Proposition 3.9

1. s2i = e

2. sisj = sjsi if |i− j| > 1

34

3. sisi+1si = si+1sisi+1

Keep in mind that to prove that Sn+1 corresponds to this Coxeter group, we have to
show that it is completely determined by these relations, which is not trivial. We will go
over this in more detail in Section 5.

Coxeter systems are formalized in Lean by:

mathlib

structure CoxeterSystem{B : Type u_1} (M : CoxeterMatrix B) (W : Type u_2) [Group

W] :

Type (max u_1 u_2)

mulEquiv : W ≃* M.Group

In mulEquiv we supply an isomorphism of W with the presentation of the form 3. This
way, we can recognize the Coxeter group structure of a previously defined group.

4.2 Basic properties and facts

Let us fix a set of indices B, a Coxeter matrix M : B ×B → N∪ {0} and a Coxeter system
(W,M). We also do this in Lean through the use of variables. At the start of the files in
which we work with Coxeter groups, the first lines are as follows:

variable {B : Type}

variable {W : Type} [Group W] [DecidableEq W]

variable {M : CoxeterMatrix B} (cs : CoxeterSystem M W)

In Lean, the variable command allows us to introduce variables that we can reuse across
multiple definitions, eliminating the need to repeatedly mention the same types or assump-
tions. For example, instead of passing common parameters like a type, group structure, or
matrix into every definition or lemma, we can declare them once with a variable as we did
above.

Then, take this example of working with Coxeter groups:

lemma braid_relation (i j : B) : (s i * s j) ^ M i j = 1 := by

simp [CoxeterMatrix]

Here, B, M, and other structures like the group W and Coxeter system cs are already introduced
as variables earlier in the file. The variable command at the beginning ensures that the
types and assumptions (such as W being a group and M a Coxeter matrix) are automatically
considered within the scope of every lemma or definition that follows. This means we don’t
have to specify them again and again in each lemma.

If we had not used the variable command, we would have to declare all these types and
structures explicitly every time, leading to much more verbose code. For example, without
variable, the braid_relation lemma would look something like this:

lemma braid_relation (B : Type) (W : Type) [Group W] [DecidableEq W]

(M : CoxeterMatrix B) (cs : CoxeterSystem M W) (i j : B) :

35

(s i * s j) ^ M i j = 1 := by

simp [CoxeterMatrix]

It is worth emphasizing the different ways to refer to an element in a Coxeter group.
Sometimes we are interested in the actual representation of this element in terms of the
generators. We call these expressions words and use only the indices, so we consider them
as elements of B∗, the free group generated by B.

For example l = i1 · · · ik ∈ B∗ for some k ∈ N. Then the product of a word is defined
as follows:

Definition 4.2. The product of a word i1i2 · · · ik for some k ∈ N is:

π(i1i2 · · · ik) := si1si2 · · · sik

Notice that different words can equal the same element in W using the aforementioned
relations. For example, iij ̸= j but sisisj = sj , using the nil relation.

With this notation, we emphasize the difference between both objects and make the
mathematical notation more closely mimic the Lean syntax, where every object has a specific
type.

To understand how words are handled in Lean, we first need to explore Lists. Lists are
an example of an inductive type — a type defined by specifying various constructors (or
ways to build elements of that type). Inductive types are particularly powerful because their
constructors can reference the very type being defined, allowing for recursive definitions.
This characteristic gives inductive types their name and their flexibility.

For example, the natural numbers are defined this way:

mathlib

inductive Nat where

| nil : Nat

| succ : Nat → Nat

This corresponds to the fact that a natural number can either be zero, constructed by
Nat.nil or the successor of another natural number, with Nat.succ n, where n : Nat.
Whenever we have a natural number n : Nat, we can separate both cases with the match

keyboard.

match (n : Nat) with

| nil => . . . (replaces n with 0)

| succ i => . . . (replaces n with i + 1)

This structure lends itself well to induction proofs, as we will soon see.

But the most important inductive type for us is List α, where α is any type.

Definition 4.3. A list l of elements of any type α is one of the following:

1. An empty list

36

2. The concatenation of its head a (the first element) and its tail t (the rest of the list,
a smaller list).

In Lean,

mathlib

inductive List (α : Type u) where

| nil : List α
| cons (head : α) (tail : List α) : List α

Often we represent the case List.nil with [] and the case List.cons a t with a :: t.
Of course, Lean provides a lot of additional ways of constructing a list.

1. Explicitly: For example, we can create a list of natural numbers directly as [1,2,3,5,2]

2. Concat: If we want to add an element i to a preexisting list l at the end instead of
at the beginning, we can use

l.concat i

3. Append: If we want to join two lists l and l’, we can do so with the operator ++:

l ++ l’

In the upcoming sections, we will employ this list structure to conduct induction proofs
directly on lists, a method not commonly employed in conventional mathematics. Never-
theless, this approach can significantly simplify some proofs in Lean, contrasting with the
traditional method of performing induction based on list length.

But first, let’s explore the basic definitions and lemmas of products of words included
in mathlib that we will often use.

To get the generators from any index, we use the following definition:

mathlib

def CoxeterSystem.simple (cs : CoxeterSystem M W) (i : B) : W

So, to get the generator si for i ∈ B we use the term cs.simple i. We have to explicitly
specify the Coxeter system because two different Coxeter systems could share the same
index set.

In fact, to make the code less verbose and more reminiscent of the mathematical notation,
we introduce the following abbreviation, where cs is a CoxeterSystem:

local prefix:100 "s" => cs.simple

So now we use s i to get the generator si.

To get the product of a whole word, we use

37

mathlib

def wordProd (w : List B) : W := prod (map cs.simple w)

The map operator applies a function (cs.simple in our case) to every element of a list,
and the prod operator returns the product of all its elements.

As before, we introduce an abbreviation to mimic the mathematical notation:

local prefix:100 "π" => cs.wordProd

So the product of a word l : List B can be obtained with the expression π l.

For empty lists, the result is clearly the neutral element of W .

mathlib

theorem CoxeterSystem.wordProd_nil (cs : CoxeterSystem M W) :

cs.wordProd [] = 1

Often we will require to get the product of a list to which we appended a new head.
As expected, this product will be the genererator indexed at the head of the list times the
product of the tail.

mathlib

theorem CoxeterSystem.wordProd_cons

(cs : CoxeterSystem M W) (i : B) (ω : List B) :

cs.wordProd (i :: ω) = cs.simple i * cs.wordProd ω

A similar theorem explains what happens to the product of a word when we append an
element at the end (we just multiply the generator of the new element to the right instead
of the left)

mathlib

theorem CoxeterSystem.wordProd_concat

(cs : CoxeterSystem M W) (i : B) (ω : List B) :

cs.wordProd (ω.concat i) = cs.wordProd ω * cs.simple i

Lemma 4.1. π is multiplicative, that is, ∀l, l′ ∈ B∗,

π(l · l′) = π(l) · π(l′)

Remember than multiplication of words is defined with List.append in Lean.

mathlib

theorem CoxeterSystem.wordProd_append

(cs : CoxeterSystem M W) (ω : List B) (ω’ : List B) :

cs.wordProd (ω ++ ω’) = cs.wordProd ω * cs.wordProd ω’

A really important fact is that if (W,S) is a Coxeter system, any of its elements is the
product of (at least) one word.

38

mathlib

theorem CoxeterSystem.wordProd_surjective (cs : CoxeterSystem M W) :

Function.Surjective cs.wordProd

Definition 4.4. The reverse/inverse of a word l = i0i1 · · · ip−1 ∈ B∗ is

l−1 := ip−1ip−2 · · · i1i0

In lean, we use l.reverse.

Lemma 4.2. For any word l ∈ B∗,

π(l−1) = π(l)−1

mathlib

theorem CoxeterSystem.wordProd_reverse

(cs : CoxeterSystem M W) (ω : List B) :

cs.wordProd ω.reverse = (cs.wordProd ω)−1

4.3 Alternating words

Definition 4.5. An alternating word from i to j of length m is the word ending in j
that alternates between the two elements m times. That is:

ap(i, j) = · · · ijij︸ ︷︷ ︸
m

In Lean, it is defined inductively:

mathlib

def alternatingWord (i i’ : B) (m : N) : List B :=

match m with

| 0 => []

| m+1 => (alternatingWord i’ i m).concat i’

Recall that the concat function adds an element to the end of the list. That is why in
the m+1 case, i and i′ are flipped, since when we add an element at the end, we change the
last element.

We know from the definition how to construct a larger alternating word by concatenating
it with the corresponding index:

am+1(i, j) = am(j, i) · j

mathlib

theorem CoxeterSystem.alternatingWord_succ (i : B) (i’ : B) (m : N) :

CoxeterSystem.alternatingWord i i’ (m + 1) = (CoxeterSystem.alternatingWord

i’ i m).concat i’

39

But sometimes we may want to construct it by appending an element to the beginning
of the alternating word. In that case, we have to keep in mind that the first element of an
alternating word depends of the parity of its length.

Theorem 4.3. Let i, j ∈ B and m ∈ N. Then,

am+1(i, j) =

{
j · am(i, j) if m is even

i · am(i, j) if m is odd

mathlib

theorem CoxeterSystem.alternatingWord_succ’ (i : B) (i’ : B) (m : N) :

CoxeterSystem.alternatingWord i i’ (m + 1) =

(if Even m then i’ else i) :: CoxeterSystem.alternatingWord i i’ m

When we take the product of an alternating word, we obtain a power of sisj with an
additional factor if the length is odd.

Theorem 4.4. Let i, j ∈ B and m ∈ N. Then,

π(am(i, j)) =

{
(sisj)

⌊m/2⌋ if m is even

sj(sisj)
⌊m/2⌋ if m is odd

mathlib

theorem CoxeterSystem.prod_alternatingWord_eq_mul_pow

(cs : CoxeterSystem M W)(i : B) (i’ : B) (m : N) :

cs.wordProd (CoxeterSystem.alternatingWord i i’ m) =

(if Even m then 1 else cs.simple i’) *

(cs.simple i * cs.simple i’) ^ (m / 2)

The explicit description of each element of an alternating word isn’t available in mathlib,
so we proved it ourselves. It also exemplifies how proofs by induction work in the context
of Coxeter words.

Theorem 4.5. Let am(i, j) = a0a1 · · · ap−1. Then, for every 0 ≤ k < p,

ak =

{
i if p+ k is even

j if p+ k is odd

lemma getElem_alternatingWord

(i j : B) (p : N) (k : Fin ((alternatingWord i j p).length)) :

(alternatingWord i j p)[k] = (if Even (p + k) then i else j)

Proof. We prove it by induction on p.

induction p with

| zero => . . .
| succ n h => . . .

40

The case where p = 0 is trivial, since the alternating word is empty, so there is nothing
to prove. We divide k into k, the natural number, and hk the proof that it is less than
(alternatingWord i j 0).length. Then we unfold the length of the alternating word at hk

to end up with k < 0, a contradiction.

rcases k with ⟨k, hk⟩
simp[alternatingWord] at hk

When p > 0, we substitute it with n + 1 for n := p − 1 and we get the induction
hypothesis h. Now we want to separate the head of the alternatingWord to apply the
induction hypothesis, but if we were to do it directly, like

rw [alternatingWord_succ’ i j n]

Lean throws the error

tactic ’rewrite’ failed, motive is not type correct

This happens when Lean loses track of some implicit fact about a dependent argument. In
our case, the goal is

⊢ (alternatingWord i j (n + 1))[k] = if Even (n + 1 + ↑k) then i else j

So it contains explicitly the assumption that k < length(an+1(i, j)). However, when we
apply the previous lemma, the goal turns into:

((if Even n then j else i) :: alternatingWord i j n)[k] =

if Even (n + 1 + k) then i else j

So Lean tries to find a proof that k is less than the length of the list in the left hand side
but doesn’t find it. The workaround is to extract k as a general parameter with

revert k

Now the goal becomes

⊢ ∀ (k : Fin (alternatingWord i j (n + 1)).length),

(alternatingWord i j (n + 1))[k] = if Even (n + 1 + k) then i else j

So when we use the rewrite tactic, we also change the definition of k accordingly, and it
matches the goal. Afterwards, we introduce again k with

rintro ⟨k, hk⟩

(in this case with the natural value and the inequality k < ... separate variables)

Our goal then becomes:

((if Even n then j else i) :: alternatingWord i j n)[⟨k, hk⟩] =

if Even (n + 1 + ⟨k, hk⟩) then i else j

Then, we proceed by induction on k.

In the case k = 0, the element we get is the head, so the goal becomes

(if Even n then j else i) = if Even (n + 1) then i else j

41

The solution then becomes a simple proof by cases

by_cases h2 : Even n

· have : ¬ Even (n + 1) := by

simp

exact Even.add_one h2

simp [h2, this]

· have : Even (n + 1) := by

simp at h2

exact Odd.add_one h2

simp [h2, this]

If k > 0, we substitute it with k+1 as usual. Then we prove that k < (alternatingWord

i j n).length and use it to get rid of the head, with the lemma

mathlib

theorem List.getElem_cons_succ

(a : α) (as : List α) (i : Nat) (h : i + 1 < (a :: as).length) :

(a :: as)[i + 1] = as[i]

The goal is now

(alternatingWord i j n)[k] = if Even (n + 1 + (k + 1)) then i else j

Which looks a lot like our induction hypothesis. We rewrite the left hand side with it
and simplyfy it

rw[h ⟨k, this⟩]
simp

ring

To obtain

⊢ (if Even (n + k) then i else j) = if Even (2 + n + k) then i else j

Again, the result comes from a simple proof by cases

have (m : N) : Even (2 + m) ↔ Even m := by

have aux : m ≤ 2 + m := by linarith

apply (Nat.even_sub aux).mp

simp

by_cases h_even : Even (n + k)

· simp [if_pos h_even]

rw[← this (n+k)] at h_even

rw[← Nat.add_assoc 2 n k] at h_even

simp [if_pos h_even]

· simp [if_neg h_even]

rw[← this (n+k)] at h_even

rw[← Nat.add_assoc 2 n k] at h_even

simp [if_neg h_even]

The most important alternating words are the following:

42

Definition 4.6. An alternating word from i to j of length M(i, j) is called a braid word,
and denoted as:

b(i, j) := aM(i,j)(i, j)

mathlib

abbrev braidWord (M : CoxeterMatrix B) (i i’ : B) : List B := alternatingWord i

i’ (M i i’)

Of course, the name comes from the fact that braid words are related by the braid
relations:

. . . sisjsisj︸ ︷︷ ︸
m(si,sj)

= . . . sjsisjsi︸ ︷︷ ︸
m(si,sj)

⇐⇒ π(b(i, j)) = π(b(j, i))

This is captured in the following lemma:

Lemma 4.6. Let i, j ∈ B. Then,

π(b(i, j)) = π(b(j, i))

mathlib

theorem CoxeterSystem.wordProd_braidWord_eq {M : CoxeterMatrix B}

(cs : CoxeterSystem M W) (i : B) (i’ : B) :

cs.wordProd (CoxeterSystem.braidWord M i i’) =

cs.wordProd (CoxeterSystem.braidWord M i’ i)

4.4 Length of words

When talking about words, we define their length simply as the length of the list/free
product.

Definition 4.7. Let i0i1 · · · ip−1 ∈ B∗ for some p ≥ 1. Then,

len(i0i1 · · · ip−1) := p

For products, the definition is more complicated because two words of different lengths
can equal the same product.

Definition 4.8. The length of w ∈ W is the minimum length of a word whose product is
w.

l̃en(w) = min
l∈B∗

π(l)=w

len(l)

To define it in Lean, mathlib makes use of wordProd_surjective in this (more explicit)
alternate form:

43

mathlib

private theorem exists_word_with_prod (w : W) :

∃ n ω, ω.length = n ∧ π ω = w := by

rcases cs.wordProd_surjective w with ⟨ω, rfl⟩
use ω.length, ω

We use the rcases tactic to find a preimage of an element in the codomain of a surjective
function.

Then, the length of a product is defined as:

mathlib

noncomputable def length (w : W) : N := Nat.find (cs.exists_word_with_prod w)

Nat.find returns the minimum natural number that satisfies the exist clause in the
proposition cs.exists_word_with_prod w. Note that is set as noncomputable because we
don’t give a procedure to find this element. Therefore this is not a constructive definition.

Again, we shorten the definition to len.

local prefix:100 "len" => cs.length

Remark 4.7. Note that if l ∈ B∗, we can have the situation

len(l) ̸= l̃en(π(l))

For example, if l = i3i1i1i2, we have that len(l) = 4, but

π(l) = si3si1si1si2 = si3si2 = π(i3i2) =⇒ l̃en(π(l)) ≤ 2

We are specially interested in words where the previous condition does hold.

Definition 4.9. We say that a word l ∈ B∗ is reduced if its length is that of its product
(the minimum of all equivalent words). That is,

len(l) = l̃en(π(l))

mathlib

def CoxeterSystem.IsReduced (cs : CoxeterSystem M W) (ω : List B) : Prop :=

(cs.length (cs.wordProd ω) = ω.length)

Lemma 4.8. For every product w ∈ W , there exists a reduced word l ∈ B∗ such that
π(l) = w.

mathlib

theorem CoxeterSystem.exists_reduced_word’ (cs : CoxeterSystem M W) (w : W) :

∃ (ω : List B), cs.IsReduced ω ∧ w = cs.wordProd ω

We prove the following lemmas, which are straight-forward from the definition:

44

Lemma 4.9. Let l, l′ ∈ B∗ such that len(l) = len(l′) and π(l) = π(l′). Then, if l is reduced,
so is l′.

theorem isReduced_of_eq_length (l l’ : List B)

(h_len : l.length = l’.length) (h_eq : π l = π l’) (hr : cs.IsReduced l) :

cs.IsReduced l’

Proof.
len(l′) = len(l) = l̃en(π(l)) = l̃en(π(l′))

simp[IsReduced]

simp[IsReduced] at hr

calc

len π l’ = len π l := by rw[h_eq]

_ = l.length := by rw[hr]

_ = l’.length := by rw[h_len]

Lemma 4.10. Let l, l′ ∈ B∗ such that they are both reduced and π(l) = π(l′). Then,

len(l) = len(l′)

theorem eq_length_of_isReduced (l l’ : List B)

(h_eq : π l = π l’) (hr : cs.IsReduced l) (hr’ : cs.IsReduced l’) :

l.length = l’.length

Proof.
len(l) = l̃en(π(l)) = l̃en(π(l′)) = len(l′)

rw[IsReduced] at hr

rw[IsReduced] at hr’

calc l.length = len π l := by rw[hr]

_ = len π l’ := by rw[h_eq]

_ = l’.length := by rw[hr’]

4.5 Reflections and inversions

We aim to understand the operation of products within Coxeter groups. As noted, the
generators are crucial. However, many of their characteristics can be extended to a larger
category.

Definition 4.10. The set of reflections of a Coxeter system (W,S) is

T := {wsw−1 : s ∈ S, w ∈W}

45

To formalize this we first define a proposition stating that t ∈W is a reflection.

mathlib

def CoxeterSystem.IsReflection (cs : CoxeterSystem M W) (t : W) : Prop :=

∃ w i, t = w * s i * w−1

Then, as we do mathematically, the set of reflections is defined as those elements of W that
satisfy this property.

def T : Type := {t : W // IsReflection cs t}

It is clear from the definition that S ⊆ T and that t2 = 1 for every t ∈ T .

mathlib

theorem CoxeterSystem.isReflection_simple(cs : CoxeterSystem M W) (i : B) :

cs.IsReflection (cs.simple i)

mathlib

theorem CoxeterSystem.IsReflection.pow_two

{cs : CoxeterSystem M W} {t : W} (ht : cs.IsReflection t) :

t ^ 2 = 1

Also, the conjugate of a reflection is another reflection.

mathlib

theorem CoxeterSystem.IsReflection.conj

{cs : CoxeterSystem M W} {t : W} (ht : cs.IsReflection t) (w : W) :

cs.IsReflection (w * t * w−1)

We introduce an auxiliary definition for conjugation for reflections, to automatically prove
that the result is also a reflection.

def conj (t : cs.T) (w : W) : cs.T :=

⟨w * t.1 * w−1, IsReflection.conj t.2 w⟩

Definition 4.11. Let w ∈W . A left (resp. right) inversion t ∈ TL(w) (resp. TR(w)) of w
is a reflection that decreases the length of w when multiplied on the left (resp. right).

We will focus on the left case, but most properties are analogous for the right inversions.
In equation form, t ∈ TL(w) if:

l̃en(t · w) < l̃en(w)

mathlib

def IsLeftInversion (w t : W) : Prop :=

cs.IsReflection t ∧ len (t * w) < len w

A really important class of inversions is:

Definition 4.12. The left inversion sequence of a word l := si0si1 · · · sip−1 for some p ∈ N
is the sequence T̂ (l) := (tk)0≤k<p where:

tk := si0si1 · · · sik · · · si1si0 ∀0 ≤ k < p

46

In mathlib, it is defined inductively, using T̂ (e) = e and

T̂ (i · l) = (t′k)0≤k<p+1

Where t′0 = si and t′k = sitk−1si if 1 ≤ k < p+ 1.

mathlib

def leftInvSeq (ω : List B) : List W :=

match ω with

| [] => []

| i :: ω => s i :: List.map (MulAut.conj (s i)) (leftInvSeq ω)

Then our original definition is recovered in

mathlib

theorem CoxeterSystem.getD_leftInvSeq

(cs : CoxeterSystem M W) (ω : List B) (j : N) :

(cs.leftInvSeq ω).getD j 1 = cs.wordProd (List.take j ω) *

(Option.map cs.simple (ω.get? j)).getD 1 *

(cs.wordProd (List.take j ω))−1

The expression (. . .).getD j d returns the element at position j if it is within bounds
and d otherwise. get? acts similarly, but returns a special value Option.none in the second
case. This value can be propagated with Option.map (it acts as the normal operator map

otherwise) and finally set to the default value with the last getD.

This approach has the benefit of not having to pass around the proofs that the indices are
within bounds, but it makes the statements more convoluted and inductive proofs harder
(we have to consider the out-of-bounds cases too). Therefore, we have opted to use the
normal get operator while supplying proofs that the index is within bounds. For example,
we re-state the previous lemma in this way.

theorem get_leftInvSeq (w : List B) (j : Fin w.length) :

(cs.leftInvSeq w).get ⟨j, by simp⟩ =

cs.wordProd (List.take j w) * s (w.get ⟨j, by simp⟩) * (cs.wordProd (List.take j

w))−1 := by

have h : j < (cs.leftInvSeq w).length := by simp

rw [← List.getD_eq_get ((cs.leftInvSeq w)) 1 h]

rw [getD_leftInvSeq]

simp

With this formulation, j is guaranteed to be less than the length of w. Note that sometimes
the proofs have to be adapted to the specific list. For example, to use (cs.leftInvSeq

w).get we need to prove that j < (cs.leftInvSeq w).length, but in most cases this proof
is automatic with ⟨j, by simp⟩

The left inverse sequence of alternating words is especially important.

Theorem 4.11. Let i, j ∈ B and p, k ∈ N with k < 2p. Let (tk)1≤k≤2p := T̂ (a2p(i, j)).
Then,

tk = π(a2k+1(j, i))

47

theorem alternatingWord_of_get_leftInvSeq_alternatingWord

(i j : B) (p : N) (k : N) (h : k < 2 * p) :

(leftInvSeq cs (alternatingWord i j (2 * p))).get ⟨k, by simp; linarith ⟩ =

π alternatingWord j i (2 * k + 1)

The proof is really manual, proving an induction relation by using the the explicit descrip-
tions of alternating words and left inversion sequences.

Lemma 4.12. Let i, j ∈ B and p, k ∈ N with k < 2p. Let (tk)1≤k≤2p := T̂ (a2p(i, j)). Then,
the left inverse sequence repeats in the following way:

tM(i,j)+k = tk

lemma leftInvSeq_repeats : ∀ (k : N) (h : k < M i j),

(cs.leftInvSeq (alternatingWord i j (2 * M i j))).get

⟨M i j + k, (by simp[h]; linarith)⟩
=

(cs.leftInvSeq (alternatingWord i j (2 * M i j))).get

⟨k, (by simp[h]; linarith)⟩

The proof consists on using the explicit definition (formalised in Theorem 4.11) and the
previous lemma to show the result by direct means. Both of these proofs can be found in
the code repository.

Definition 4.13. Let l be a word and t be a reflection. Then, n(l, t) is the amount of times
that t appears in T̂ (l).

def nReflectionOccurrences (l : List B) (t : cs.T) : N :=

(cs.leftInvSeq l).count t.1

A lot of times we are only interested in the parity of this number, which motivates the
following definition:

Definition 4.14. Let l be a word and t a reflection. Then,

η(l, t) = n(l, t) (mod 2) ∈ Z/2Z

def parityReflectionOccurrences (w : List B) (t : cs.T) : ZMod 2 :=

(nReflectionOccurrences cs w t : ZMod 2)

As a special case, if l = i, then the only element in T̂ (l) is si, so we have

η(i, t) =

{
1 if t = si

0 if t ̸= si

We define this case separately in Lean, and we will later link it to the original definition.

def eta (i : B) (t : cs.T) : ZMod 2 :=

if (s i = t.1) then 1 else 0

Lemma 4.13. For every t ∈ T and i ∈ B,

η(i, t) = η(i, sits
−1
i)

48

lemma eta_simpleConj_eq_eta (i : B) (t : cs.T) :

eta cs i t = eta cs i (cs.conj t (s i))

Proof. First, we unfold the definition of eta and t.

simp [eta]

rcases t with ⟨t, ht⟩

Then the goal becomes

(if cs.simple i = ⟨t, ht⟩ then 1 else 0) =

if cs.simple i = (cs.conj ⟨t, ht⟩ (cs.simple i)) then 1 else 0

We proceed by proving that si = t ⇐⇒ si ∗ t = 1. From left to right, we apply a simple
substitution plus the fact that t2 = 1 (IsReflection.mul_self ht). From right to left, we
multiply by t on both sides and apply t2 = 1 again.

have : s i = t ↔ s i * t = 1 := by

constructor

· intro h’

rw [h’]

exact IsReflection.mul_self ht

· intro h’

apply (mul_left_inj t).mp

simp [IsReflection.mul_self ht]

exact h’

Then, we split the cases si = t and si ̸= t, and just supplying the simp tactic with the
previous lemmas is enough for it to figure out the result, that if si = t then sits

−1
i = s−1

i = si
by the previous equivalence and s2i = 1.

by_cases h : s i = t

· simp [this, h, conj]

· simp [this, h, if_neg, conj]

Lemma 4.14. Let t ∈ T and i, j ∈ B. Then,

η(a2M(i,j)(i, j), t) = 0

lemma parityReflectionOccurrences_braidWord (t : cs.T) :

parityReflectionOccurrences cs (alternatingWord i j (2 * M i j)) t = 0

Proof. By definition of η as the projection of n to Z/2Z, it suffices to prove that the number
of occurrences n(a2M(i,j)(i, j), t) is even.

suffices Even (nReflectionOccurrences cs (alternatingWord i j (2 * M i j)) t)

from by

simp[this, parityReflectionOccurrences]

apply ZMod.eq_zero_iff_even.mpr this

49

We show this by pairing up the elements in T̂ (a2M(i,j)(i, j)), according to the relations in
Lemma 4.12. This is done in another technical result nReflectionOccurrences_even_braidWord

Definition 4.15. For every i ∈ B, the permutation map Pi : T × Z/2Z→ T × Z/2Z sends

(t, z) 7→ Pi(t, z) = (sitsi, z + η(s, t))

def permutationMap (i : B) : cs.T × ZMod 2 → cs.T × ZMod 2 :=

fun (t , z) => (cs.conj t (s i), z + eta cs i t)

Theorem 4.15. For every i ∈ B, P 2
i = id

theorem permutationMap_orderTwo (i : B) :

permutationMap cs i ◦ permutationMap cs i = id

Proof. To demonstrate the equality of two functions in Lean, we employ the funext tactic,
which reformulates the objective to show that the functions yield the same result for each
input. In our case,

funext ⟨t, z⟩
simp [permutationMap]

turns the goal into

⊢ cs.conj (cs.conj t (cs.simple i)) (cs.simple i) = t ∧
z + cs.eta i t + cs.eta i (cs.conj t (cs.simple i)) = z

That is, we want to prove that si(sits
−1
i)s−1

i = t and z + η(i, t) + η(i, sits
−1
i) = z. We split

both goals with

constructor

· (. . .)
· (. . .)

For the first half, we simply use s2i = 1 and the associativity of multiplication (plus unfolding
the definition of conj).

simp[conj, mul_assoc]

For the second half, we use Lemma 4.13 to turn the goal into z + 2 · η(i, t) = z and prove it
by showing 2 = 0 in Z/2Z with the rfl tactic after some manipulations.

rw [← eta_simpleConj_eq_eta cs i t]

ring_nf

simp

right

rfl

50

4.6 Coxeter lifts

Our objective is to prove the following lifting theorem:

Theorem 4.16. The map (i ∈ B) 7→ Pi extends to an homomorphism (w ∈W) 7→ Pw such
that if w = si1si2 · · · sip, then

Pw = Pi1 ◦ Pi2 ◦ · · · ◦ Pip

mathlib provides a really useful theorem for constructing lifts like this:

Theorem 4.17. Let G be any monoid and f : B → G be a map that satisfies

(f(i) · f(j))M(i,j) = 1 (4)

Then there exists a homomorphism f̃ : W → G extending f , that is,

f̃(si1si2 · · · sip) = f(i1) · f(i2) · · · f(ip) (5)

The property Eq. (4) is formalised as

mathlib

def _root_.CoxeterMatrix.IsLiftable

{G : Type*} [Monoid G] (M : CoxeterMatrix B) (f : B → G) : Prop :=

∀ i i’, (f i * f i’) ^ M i i’ = 1

Then, for any f that satisfies IsLiftable, we define its lift with

mathlib

def CoxeterSystem.lift (cs : CoxeterSystem M W) {G : Type u_5} [Monoid G] :

{ f : B → G // M.IsLiftable f } ≃ (W →* G)

The lift property Eq. (5) comes from the fact that the lift is a monoid homomorphism plus
the following theorem

mathlib

theorem CoxeterSystem.lift_apply_simple (cs : CoxeterSystem M W)

{G : Type u_5} [Monoid G] {f : B → G} (hf : M.IsLiftable f) (i : B) :

(cs.lift ⟨f, hf⟩) (cs.simple i) = f i

In our case, the monoid G will be the functions T × Z/2Z → T × Z/2Z. For this, we
define the multiplication as the composition and the element one as the identity function,
and we prove the following facts for all f, g, h ∈ T × Z/2Z→ T × Z/2Z:

1. 1 · f = f , that is, id ◦f = f

2. f · 1 = f , that is, f ◦ id = f

3. f · (g · h) = (f · g) · h, that is, f ◦ (g ◦ h) = (f ◦ g) ◦ h

All of these properties are immediate from the properties of function composition.

51

instance instMul : Mul (cs.T × ZMod 2 → cs.T × ZMod 2) where

mul := fun f g => f ◦ g

lemma mulDef (f g : cs.T × ZMod 2 → cs.T × ZMod 2) : f * g = f ◦ g := rfl

instance : Monoid (cs.T × ZMod 2 → cs.T × ZMod 2) where

one := id

mul := (instMul cs).mul

one_mul := by

intro f

funext x

suffices (id ◦ f) x = f x from by

rw[← this]

rfl

simp

mul_one := by

intro f

funext x

suffices (f ◦ id) x = f x from by

rw[← this]

rfl

simp

mul_assoc := by

intro f g h

funext x

repeat rw[mulDef]

rfl

Then, we define inductively the permutation map of a word.

Definition 4.16. Let l = i0i1 · · · ip−1 ∈ B∗ for some p ∈ N be a word. Then,

Pl := Pi0 · Pi1 · · ·Pip−1

def permutationMap_ofList (l : List B) : cs.T × ZMod 2 → cs.T × ZMod 2 :=

match l with

| [] => id

| a :: t => permutationMap cs a * permutationMap_ofList t

We can give an explicit desciption of this function.

Theorem 4.18. Let l = i0i1 · · · ip−1 ∈ B∗ for some p ∈ N be a word. Then for every t ∈ T ,
z ∈ Z/2Z,

Pl(t, z) = (π(l) · t · π(l)−1, z + η(l−1, t)) = (si0 · · · sip−1tsip−1 · · · si0 , z + η(ip−1 · · · i0, t))

lemma permutationMap_ofList_mk (l : List B) (t : cs.T) (z : ZMod 2) :

(permutationMap_ofList cs l ⟨t,z⟩) = ⟨cs.conj t (π l),

z + parityReflectionOccurrences cs l.reverse t⟩

Proof. We will prove the theorem in parts by first focusing on the first coordinate. When
we have an element of a Cartesian product x ∈ A × B, like Pl(t, z) ∈ T × Z/2Z, we can
access the first coordinate with x.1 and similarly for the second. We will denote this by x1
and x2 in mathematical language.

52

lemma permutationMap_ofList_mk_1 (l : List B) :

(permutationMap_ofList cs l ⟨t,z⟩).1 = cs.conj t (π l)

After unfolding the definition of conj, we proceed by induction on l.

If l = e, then both Pl and conjugation by π(l) = e act as the identity, so it is enough to
unfold all the definitions.

simp[permutationMap_ofList, permutationMap, nReflectionOccurrences]

Otherwise, we substitute l with a :: l. We can remove the head as

(Pa::l(t, z))1 = ((Pa · Pl)(t, z))1 = (Pa(Pl(t, z)))1

calc

(permutationMap_ofList cs (a :: l) (t, z)).1 =

((permutationMap cs a * permutationMap_ofList cs l) (t, z)).1 := by

simp[permutationMap_ofList]

_ = (permutationMap cs a (permutationMap_ofList cs l (t, z))).1 := by

rfl

Then, simplify with the induction hypothesis ((Pl(t, z))1 = π(l) · t · π(l)−1). Lean is able to
figure out that if Pl = (P 1

l , P
2
l), then (Pa(Pl(t, z)))1 = (P 1

a (Pl(t, z))1) (since (Pa(t, z))1 only
depends on t) to get Pa::l(t, z) = Pa(π(l) · t · π(l)−1)

simp[permutationMap, conj, h]

So we have to show that saπ(l)tπ(l)
−1sa = π(a :: l)tπ(a :: l)−1

⊢ ⟨cs.simple a * (cs.wordProd l * ↑t * (cs.wordProd l)−1) * cs.simple a, . . .⟩ =

⟨cs.wordProd (a :: l) * ↑t * (cs.wordProd (a :: l))−1, . . .⟩

This is solved with one of the properties of π and associativity

simp[cs.wordProd_cons, mul_assoc]

On to the second part, we want to show that (Pl(t, z))2 = η(l−1, t)

lemma permutationMap_ofList_mk_2 (l : List B) :

(permutationMap_ofList cs l ⟨t,z⟩).2 = z + parityReflectionOccurrences cs

l.reverse t

Again we proceed by induction on l, with the base case being trivial. Otherwise we substitute
l by a :: l, and then substitute

(Pa::l(t, z))2 = (Pa(Pl(t, z)))2 = (Pa(P
1
l (t, z), z + η(l−1, t)))2

So after applying Pa, the goal becomes

z + η(l−1, t) + η(i, P 1
l (t, z)) = z + η(l−1 · i, t) (6)

53

rw[permutationMap_ofList, mulDef]

simp[permutationMap, h]

⊢ z + cs.parityReflectionOccurrences l.reverse t +

cs.eta i (cs.permutationMap_ofList l (t, z)).1 =

z + cs.parityReflectionOccurrences (l.reverse ++ [i]) t

Now we convert the append expression l.reverse ++ [i] into concat and apply the
lemma leftInvSeq_concat which tells us that

T̂ (l−1 · i) = T̂ (l−1) + +[π(l)−1 · si · π(l)]

Here, ++ means concatenation of lists/sequences, like in Lean.

rw[← List.concat_eq_append]

rw[leftInvSeq_concat]

But then, the amount of times that t appears in T̂ (l · i) is

η(l−1 · i, t) = η(l−1, t) +

{
1 if t = π(l)−1 · si · π(l)
0 otherwise

Since η(l−1, t) is the number of times it appears in T̂ (l−1).

simp [List.count_singleton]

Therefore, it suffices to show that

η(i, P 1
l (t, z)) =

{
1 if t = π(l)−1 · si · π(l)
0 otherwise

since substituting this in Eq. (6) plus the previous observation yields the result. We formalise
this in Lean with the following tactic. We write suffices h from (. . .) and prove our original
goal in the expression body of from, using the hyphothesis h (accessible as this from there).
Subsequently, h becomes the new goal. In our case,

suffices cs.eta i (permutationMap_ofList cs l (t, z)).1 = if (cs.wordProd l)−1 *

cs.simple i * cs.wordProd l = t.1 then 1 else 0 from by

rw[this]

simp[add_assoc]

To prove this we use the first part of the theorem and the definition of η to transform the
goal into {

1 if si = π(l) · t · π(l)−1

0 otherwise
=

{
1 if t = π(l)−1 · si · π(l)
0 otherwise

simp[eta, permutationMap_ofList_mk_1, conj]

⊢ (if cs.simple i = cs.wordProd l * ↑t * (cs.wordProd l)−1 then 1 else 0) =

if (cs.wordProd l)−1 * cs.simple i * cs.wordProd l = ↑t then 1 else 0

The two conditions are clearly equivalent by simple multiplication of π(l) and its inverse.
In Lean, we finish the proof by cases.

54

by_cases h’ : (cs.wordProd l)−1 * cs.simple i * cs.wordProd l = t.1

· simp[h’]
rw[← h’]

simp[mul_assoc]

· simp[h’]
by_contra h’’

rw[h’’] at h’

simp[mul_assoc] at h’

Now we are ready to prove the lifting condition of the permutation map.

Theorem 4.19. The map i 7→ Pi satisfies the lifting condition of Theorem 4.17. That is,

(Pi · Pj)
M(i,j) = 1

theorem permutationMap_isLiftable : M.IsLiftable (cs.permutationMap)

Proof. We start by unfolding the definition of the liftable property by introducing the ar-
bitrary i, j ∈ B.

intro i j

First, we want to prove that, for any p ∈ N,

(Pi · Pj)
p = Pa2p(i,j)

We do so by induction on p.

have h (p : N) : (cs.permutationMap i * cs.permutationMap j) ^ p =

permutationMap_ofList cs (alternatingWord i j (2 * p)) := by

induction p with

| zero =>

simp[permutationMap_ofList, permutationMap, permutationMap_orderTwo]

rfl

| succ p h => (. . .)

As we can see above, the initial case is trivial once the definitions unfold, since both
(Pi · Pj)

0 = 1 by the definition of the product and Pa0(i,j) = Pe = 1 by definition of
the permutation map.

When p > 0, we substitute it with p + 1. Then, we substitute (Pi · Pj)
p+1 = (Pi · Pj) ·

(Pi · Pj)
p and apply the induction hypothesis to transform the goal into

(Pi · Pj) · Pa2p(i,j) = Pa2p+2(i,j)

We prove this by using that Pa2p+2(i,j) = Pi·j·a2p(i,j) = Pi ·Pj ·Pa2p(i,j) In Lean this works by
applying the inductive definition of alternating words, with the fact that 2p+2 = 2p+1+1,
and taking care of the parity of the head.

have : 2 * (p + 1) = 2 * p + 1 + 1 := by ring

rw[this]

rw[alternatingWord_succ’]

rw [if_neg (Nat.not_even_bit1 p)]

rw[permutationMap_ofList]

55

rw[alternatingWord_succ’]

rw [if_pos (even_two_mul p)]

rw[permutationMap_ofList]

simp[mul_assoc]

We apply this auxiliary result with p = M(i, j) and introduce an arbitrary t ∈ T and
z ∈ Z/2Z to transform the goal into

Pa2M(i,j)(i,j)(t, z) = (t, z)

rw[h (M i j)]

funext ⟨t, z⟩

Now apply Theorem 4.18 to get the goal

(π(a2M(i,j)(i, j)) · t · π(a2M(i,j)(i, j))
−1 = t) ∧ (η(a2M(i,j)(i, j)

−1, t) = 0)

simp[permutationMap_ofList_mk, conj]

⊢ ⟨cs.wordProd (alternatingWord i j (2 * M.M i j)) * ↑t * (cs.wordProd

(alternatingWord i j (2 * M.M i j)))−1, . . .⟩ = t ∧
cs.parityReflectionOccurrences (alternatingWord i j (2 * M.M i j)).reverse t = 0

For the left equality, recall that π(a2M(i,j)) = (si · sj)M(i,j) = 1, which yields the result.

simp[cs.prod_alternatingWord_eq_mul_pow]

For the right equality, we use the properties of alternating words and Coxeter matrices to
get that a2M(i,j)(i, j)

−1 = a2M(i,j)(j, i) = a2M(j,i)(j, i). Finally, apply Lemma 4.14 to get
the result.

rw[alternatingWord_reverse]

rw[M.symmetric]

exact parityReflectionOccurrences_braidWord cs t

With this, we can finally define the permutation map for any w ∈W .

Proof of Theorem 4.16. As we just proved in Theorem 4.19, the permutation map over a
word l ∈ B∗ satisfies the Coxeter relations, so it can be defined for an element w ∈W using
any expression as representative. In Lean, we define it with

def permutationMap_lift : W →* cs.T × ZMod 2 → cs.T × ZMod 2 :=

cs.lift ⟨cs.permutationMap, permutationMap_isLiftable cs⟩

And to prove that it agrees with the definition with a word (Pπ(l) = Pl) as in Eq. (5), we
do so by induction on l. We extract the head of the word (list) on both sides using the
definition of permutationMap_ofList and that the lift of P is a homomorphism. Then, the
induction hypothesis plus the lemma CoxeterSystem.lift_apply_simple complete the proof.

56

theorem permutationMap_lift_mk_ofList (l : List B) (t : cs.T) (z : ZMod 2) :

permutationMap_lift cs (cs.wordProd l) ⟨t,z⟩ = permutationMap_ofList cs l ⟨t,z⟩
:= by

induction l with

| nil =>

simp[permutationMap_lift, cs.wordProd_nil, permutationMap_ofList]

rfl

| cons i l h =>

rw[cs.wordProd_cons]

rw[permutationMap_ofList]

simp[mulDef]

rw[← h]

simp[permutationMap_lift]

We now get this result for free:

Theorem 4.20. 1. η can be defined in W × T by lifting the original definition.

2. Let l, l′ ∈ B∗ and t ∈ T with π(l) = π(l′). Then,

η(l, t) = η(l′, t)

Proof. For the first part, let w ∈W and t ∈ T We lift η by taking the second coordinate of
Pw.

def parityReflectionOccurrences_lift (w : W) (t : cs.T) : ZMod 2 :=

(permutationMap_lift cs w−1 ⟨t,0⟩).2

If w = π(l), η(w, t) = η(l, t) because Pw−1(t, 0) = Pl−1(t, 0) by Theorem 4.16, which means
that their second coordinates agree. The second coordinate of Pw−1(t, 0) is η(w, t) by defin-
ition and the second coordinate of Pl−1(t, 0) is η(l, t) by Theorem 4.18.

theorem parityReflectionOccurrences_lift_mk (l : List B) (t : cs.T) :

parityReflectionOccurrences_lift cs (cs.wordProd l) t =

parityReflectionOccurrences cs l t := by

rw[parityReflectionOccurrences_lift]

rw[← wordProd_reverse]

rw[permutationMap_lift_mk_ofList cs l.reverse t 0]

rw[permutationMap_ofList_mk cs l.reverse t 0]

simp

The second part of the theorem is a direct consequence of the first;

η(l, t) = η(π(l), t) = η(π(l′), t) = η(l′, t)

theorem parityReflectionOccurrences_ext (l l’ : List B) (t : cs.T) (h : π l = π
l’) :

parityReflectionOccurrences cs l t = parityReflectionOccurrences cs l’ t := by

calc

parityReflectionOccurrences cs l t = parityReflectionOccurrences_lift cs

(cs.wordProd l) t := by rw[parityReflectionOccurrences_lift_mk]

57

_ = parityReflectionOccurrences_lift cs (cs.wordProd l’) t := by rw[h]

_ = parityReflectionOccurrences cs l’ t := by

rw[parityReflectionOccurrences_lift_mk]

Therefore, the lifted version of Theorem 4.18 is:

Theorem 4.21. Let w = si1si2 · · · sip ∈W , t ∈ T and z ∈ Z/2Z. Then,

Pw(t, z) = (w · t · w−1, z + η(w−1, t))

theorem permutationMap_lift_mk (w : W) (t : cs.T) (z : ZMod 2) :

permutationMap_lift cs w ⟨t,z⟩ = ⟨⟨w * t.1 * w−1, IsReflection.conj t.2 w⟩ , z +

parityReflectionOccurrences_lift cs w−1 t⟩ := by

obtain ⟨l, _, rfl⟩ := cs.exists_reduced_word’ w

apply Prod.ext

· simp[permutationMap_lift_mk_ofList, permutationMap_ofList_mk, conj]

· simp[parityReflectionOccurrences_lift]
rw[permutationMap_lift_mk_ofList cs l t 0]

rw[permutationMap_lift_mk_ofList cs l t z]

simp[permutationMap_ofList_mk]

A very important property is how the permutation map behaves with regards to reflec-
tions.

Theorem 4.22. Let t ∈ T and z ∈ Z/2Z. Then,

Pt(t, z) = (t, z + 1)

lemma permutationMap_lift_of_reflection (t : cs.T) : ∀ (z : ZMod 2),

permutationMap_lift cs t.1 (t, z) = ⟨t, z + 1⟩

Proof. Let t = w ·sp ·w′ for w ∈W and p = l̃en(w). We can use Lemma 4.8 to get a reduced
expression l of w, such that

w = s0s1 · · · sp−1

rcases t with ⟨t, t_refl⟩
rcases t_refl with ⟨w, p, rfl⟩
obtain ⟨l, _, rfl⟩ := cs.wordProd_surjective w

Then, t = s0s1 · · · sp−1 · · · s1s0 and we proceed by induction on l. The case where l = e is
clear. Otherwise,

Ps0···sp−1···s0(s0 · · · sp−1 · · · s0, z) =
= Ps0Ps1···sp−1···s1(s1 · · · sp−1 · · · s1, z + η(s0; s0 · · · sp−1 · · · s0))
= Ps0(s0 · · · sp−1 · · · s0, z + 1 + η(s0; s1 · · · sp−1 · · · s1))
= (s0 · · · sp−1 · · · s0, z + 1 + 2 · η(s0; s1 · · · sp−1 · · · s1))
= (t, z + 1)

The formalization is straightforward; we follow the procedures used in previous proofs with
the explicit description of the permutation map. For additional information, refer to the
Lean code. [Ála]

58

4.7 The Strong Exchange Theorem

Now we are ready to state and prove one key theorem of Coxeter groups.

Definition 4.17. Let k, p ∈ N such that k < p We define the erase at k function as

ek : {l ∈ B∗ : len(l) > 0} −→ B∗, i0 · · · ik−1ikik+1 · · · ip−1 7→ i0 · · · ik−1ik+1 · · · ip−1

A lot of times we will use the more expressive notation i0i1 · · · îk · · · ip−1. As expected, we
give an alternative inductive definition in Lean.

ek(l) =


e if l = e

l′ if l = i0 · l′ and k = 0 for some i0 ∈ B, l′ ∈ B∗

i0 · ek′(l′) if l = i0 · l′ and k = k′ + 1 for some i0 ∈ B, l′ ∈ B∗

mathlib

def eraseIdx : List α → Nat → List α
| [], _ => []

| _::as, 0 => as

| a::as, n+1 => a :: eraseIdx as n

Theorem 4.23 (Strong Exchange Theorem). Let l = i0i1 · · · ip−1 ∈ B∗ for some p ∈ N and
t ∈ TL(π(l)). Then, there exists some k < p such that:

t · π(i0i1 · · · ik · · · ip−1) = π(ek(l)) = π(i0i1 · · · îk · · · ip−1)

In Lean, we accomplish the deletion with the function eraseIdx as such:

theorem strongExchangeProperty (l : List B) (t : cs.T)

(h’ : cs.IsLeftInversion (cs.wordProd l) t.1) :

∃ (k : Fin l.length), t.1 * π l = π (l.eraseIdx k)

First, we prove it for a specific case.

Lemma 4.24. Let l = i0i1 · · · ip−1 ∈ B∗ for some p ∈ N and t ∈ T̂ (l). Then, there exists
some 0 ≤ k < p such that:

t · π(i0i1 · · · ik · · · ip−1) = π(i0i1 · · · îk · · · ip−1)

lemma eraseIdx_of_mul_leftInvSeq (l : List B) (t : cs.T)

(h : t.1 ∈ cs.leftInvSeq l) :

∃ (k : Fin l.length), t.1 * π l = π (l.eraseIdx k)

Proof. First, we get that there is some 0 ≤ k < p such that t = tk, where T̂ (l) = (tk)k.

have : ∃ (k : Fin (cs.leftInvSeq l).length), (cs.leftInvSeq l).get k = t.1 :=

List.get_of_mem h

rcases this with ⟨k, hk⟩

Then, we state that this k is the one appearing on the lemma statement. We need to do some
manipulations to the restrictions on k (basically proving that (cs.leftInvSeq l).length =

l.length).

59

use ⟨k, by rw[← length_leftInvSeq cs l] ; exact k.2⟩

Then we substitute t by the specific tk and apply mathlib’s lemma

mathlib

theorem getD_leftInvSeq_mul_wordProd (ω : List B) (j : N) :

((lis ω).getD j 1) * π ω = π (ω.eraseIdx j)

Afterwards, a simple convertion from getD to get yields the result.

simp

rw[← List.get?_eq_getElem?]

rw [List.get?_eq_get k.2]

simp

Lemma 4.25. Let l = i0i1 · · · ip−1 ∈ B∗ for some p ∈ N and t ∈ T̂ (l). Then, there exists
some 0 ≤ k < p such that:

t · π(i0i1 · · · ik · · · ip−1) = π(i0i1 · · · îk · · · ip−1)

lemma eraseIdx_of_mul_leftInvSeq (l : List B) (t : cs.T)

(h : t.1 ∈ cs.leftInvSeq l) :

∃ (k : Fin l.length), t.1 * π l = π (l.eraseIdx k)

Proof. We begin by finding k such that t = tk, where tk is an element of T̂ (l). This follows
from the fact that t.1 belongs to cs.leftInvSeq(l), meaning t corresponds to some index k.

have : ∃ (k : Fin (cs.leftInvSeq l).length), (cs.leftInvSeq l).get k = t.1 :=

List.get_of_mem h

rcases this with ⟨k, hk⟩

Next, we identify the index k and verify that the length of cs.leftInvSeq(l) matches the
length of l. This allows us to correctly apply the index k in l.

use ⟨k, by rw[← length_leftInvSeq cs l] ; exact k.2⟩

Subsequently, we substitute t with tk using the previously obtained k, and apply the lemma
getD_leftInvSeq_mul_wordProd, which establishes the desired multiplication and erasure.

rw[← hk]

rw[← getD_leftInvSeq_mul_wordProd cs l k]

Finally, we simplify the expression and apply the conversion from getD to get using standard
list operations.

simp

rw[← List.get?_eq_getElem?]

rw [List.get?_eq_get k.2]

simp

60

Lemma 4.26. Let l ∈ B∗ and t ∈ T such that η(l, t) = 1. Then, t ∈ T̂ (l).

lemma isInLeftInvSeq_of_parityReflectionOccurrences_eq_one

(l : List B) (t : cs.T) (h : parityReflectionOccurrences cs l t = 1) :

t.1 ∈ cs.leftInvSeq l

Proof. We begin by observing that η(l, t) = 1 is equivalent to n(l, t) being odd, by definition
of η.

simp [parityReflectionOccurrences] at h

rw [← @odd_iff_parity_eq_one (nReflectionOccurrences cs l t)] at h

Then, since it’s an odd natural number it must be at least one. We prove this in an auxilliary
lemma in Lean.

lemma gt_one_of_odd (n : N) : Odd n → n > 0 := by

intro h

simp[Odd] at h

rcases h with ⟨m, rfl⟩
suffices m ≥ 0 from by linarith

exact Nat.zero_le m

When simplifying Odd we get that ∃m ∈ N such that n = 2m+1 and the resulting inequality
is easily solved by the linarith tactic with the fact that n ≥ 0.

So we apply it, and simplifying the definition of n(l, t) (amount of times that t appears

in ˆT (l)) completes the proof.

apply gt_one_of_odd (nReflectionOccurrences cs l t) at h

simp[nReflectionOccurrences] at h

exact h

There are two slight variations of the last lemma that are worth noting.

Lemma 4.27. Let l ∈ B∗ and t ∈ T such that η(l, t) = 1. Then, t is a left inversion of
π(l).

lemma isLeftInversion_of_parityReflectionOccurrences_eq_one

(l : List B) (t : cs.T) :

parityReflectionOccurrences cs l t = 1 →
cs.IsLeftInversion (cs.wordProd l) t.1

Proof. While it seems obvious from the previous result, we have to take care since only
elements of the left inversion sequence of a reduced word are guaranteed to be left inversions
(otherwise its terms can cancel out). But we can find a reduced representative of π(l) and
apply Theorem 4.20 to circumvent this.

intro h

rcases cs.exists_reduced_word’ (π l) with ⟨u, u_reduced, hu⟩

61

rw[hu]

apply cs.isLeftInversion_of_mem_leftInvSeq u_reduced

rw[cs.parityReflectionOccurrences_ext l u t hu] at h

exact isInLeftInvSeq_of_parityReflectionOccurrences_eq_one cs u t h

Similarly, we can prove it for the lifted version of η.

Lemma 4.28. Let w ∈ W and t ∈ T such that η(w, t) = 1. Then, t is a left inversion of
w.

lemma isLeftInversion_of_parityReflectionOccurrences_lift_eq_one

(w : W) (t : cs.T) :

parityReflectionOccurrences_lift cs w t = 1 → cs.IsLeftInversion w t.1

Proof. The proof just consists of applying the previous lemma to a representant of w.

intro h

obtain ⟨l, _, rfl⟩ := cs.exists_reduced_word’ w

simp[parityReflectionOccurrences_lift_mk] at h

apply isLeftInversion_of_parityReflectionOccurrences_eq_one cs l t h

The most important and final lemma for the proof is:

Lemma 4.29. Let l ∈ B∗ and t ∈ T . Then, t is a left inversion of l (len(t · l) < len(l)) if
and only if η(l, t) = 1

lemma isLeftInversion_iff_parityReflectionOccurrences_eq_one

(l : List B) (t : cs.T) :

cs.IsLeftInversion (cs.wordProd l) t.1 ↔
parityReflectionOccurrences cs l t = 1

Proof. We prove both directions;

constructor

· (=>)
· (<=)

The right to left case is Lemma 4.27.

exact isLeftInversion_of_parityReflectionOccurrences_eq_one cs l t

For the left to right case, we proceed by contradiction.

intro h

by_contra h’

62

The by_contra tactic introduces the negation of the goal as a hypothesis and sets ⊢ False

as the new goal (finding a contradiction).

Therefore, we assume that η(l, t) ̸= 1, that is, η(l, t) = 0. This equality requires a bit of
work with the ZMod properties.

have h’’ : parityReflectionOccurrences cs l t = 0 := by

simp [parityReflectionOccurrences]

rw [ZMod.eq_zero_iff_even]

simp[parityReflectionOccurrences] at h’

rw[ZMod.eq_one_iff_odd] at h’

exact Nat.not_odd_iff_even.mp h’

Then, it suffices to prove that t·π(l) ∈ TL(l), that is, t·π(l) ∈ T and l̃en(t·t·π(l)) < l̃en(π(l)).

suffices cs.IsLeftInversion (t.1 * π l) t.1 from by

simp[IsLeftInversion] at this

rw[← mul_assoc] at this

rcases this with ⟨_, ht⟩

We will focus on the inequality

ht : cs.length (↑t * ↑t * cs.wordProd l) < cs.length (↑t * cs.wordProd l)

Since t ∈ T , we have t2 = 1, so it’s equivalent to l̃en(π(l)) < l̃en(t · π(l)).
rw[IsReflection.mul_self t.2] at ht

simp at ht

But also t ∈ TL(l), so l̃en(t · π(l)) < l̃en(π(l)), which is a contradiction.

simp[IsLeftInversion] at h

linarith

Furthermore, it suffices to prove that

P(t·π(l))−1(t, 0) = (π(l)−1 · t · π(l), 1)

Because in that case, matching the second coordinates, we have η(t · π(l), t) = 1, which by
Lemma 4.28 means that t · π(l) ∈ TL(l).

suffices permutationMap_lift cs (t.1 * π l)−1 ⟨t, 0⟩ =

⟨cs.conj t (π l)−1, 1⟩ from by

apply isLeftInversion_of_parityReflectionOccurrences_lift_eq_one

cs (t.1 * π l) t

rw[permutationMap_lift_mk cs (t.1 * π l)−1 t 0] at this

simp at this

simp[this.2]

Then, we finish the proof by proving that equality:

P(t·π(l))−1(t, 0) =

= Pπ(l)−1(Pt(t, 0)) (by definition of P and t−1 = 1) =

= Pπ(l)−1(t, 1) (by Theorem 4.22) =

= (π(l)−1 · t · π(l), 1 + η(π(l), t)) (by applying P) =

= (π(l)−1 · t · π(l), 1) (by the lift of our absurd assumption)

(7)

63

calc

permutationMap_lift cs (t.1 * π l)−1 ⟨t, 0⟩ =

permutationMap_lift cs (π l)−1 (permutationMap_lift cs t.1 ⟨t, 0⟩) := by

simp[IsReflection.inv t.2]

rfl

_ = permutationMap_lift cs (π l)−1 ⟨t, 1⟩ := by

rw[permutationMap_lift_of_reflection cs t 0]

simp[permutationMap_lift_mk]

_ = ⟨cs.conj t (π l)−1, 1 + parityReflectionOccurrences_lift cs (π l) t⟩ := by

simp[permutationMap_lift_mk, conj]

_ = (cs.conj t (cs.wordProd l)−1, 1) := by

simp

simp[parityReflectionOccurrences_lift_mk, h’’]

We are finally ready to prove the Strong Exchange Theorem.

Proof of Theorem 4.23. We know that it suffices to prove t ∈ T̂ (l) from Lemma 4.25.

suffices t.1 ∈ cs.leftInvSeq l from eraseIdx_of_mul_leftInvSeq cs l t this

We replace our hypothesis that t is a left inversion of l with η(l, t) = 1 using Lemma 4.29
and then use Lemma 4.27 to get that t ∈ T̂ (l), finalizing the proof.

rw [isLeftInversion_iff_parityReflectionOccurrences_eq_one cs l t] at h’

exact isInLeftInvSeq_of_parityReflectionOccurrences_eq_one cs l t h’

4.8 Coxeter moves and Matsumoto’s theorem

We have seen a multitude of properties of products in Coxeter groups. However, a funda-
mental question remains. How do we know if two words correspond to the same product?
The definition of Coxeter groups with a group presentation doesn’t provide an easy answer,
since the space of operations we can perform on words while maintaining their product is
infinite.

In this section we will study this process of modifying different expressions of a product
with the application of nil and braid moves, culminating in the statement and proof of
Matsumoto’s theorem.

Definition 4.18.

si0 · · · sip−2sip−1sipsip+1 · · · sil−1

n[i,p]−−−→

{
si0 · · · sip−2sip+1 · · · sil−1

if ip−1 = i = ip

si0 · · · sip−2sip−1sipsip+1 · · · sil−1
otherwise

For example, we can apply a nil move to the word i0i1i1i3i2
n[1,1]−−−→ i0i3i2. The two words

are obviously not equal, but their products are, because of the Coxeter group relations.
si0si1si1si3si2 = si0si3si2

64

structure NilMove (cs : CoxeterSystem M W) where

i : B

p : N

And we also have the braid moves.

Definition 4.19.

si0 · · · sip−1 · b(i, j) · · · sil−1

β[i,j,p]−−−−→ si0 · · · sip−1 · b(j, i) · · · sil−1

si0 · · · sil−1

β[i,j,p]−−−−→ si0 · · · sil−1
otherwise

For example, if M(0, 1) = 3, then

i2i0i1i0i3i0
β[0,1,1]−−−−→ i2i1i0i1i3i0 =⇒ si2si0si1si0si3si0 = si2si1si0si1si3si0

structure BraidMove (cs : CoxeterSystem M W) where

i : B

j : B

p : N

Then we define the notion of a Coxeter move as either a nil or a braid move. In lean,

inductive CoxeterMove(cs : CoxeterSystem M W) where

| nil : cs.NilMove → cs.CoxeterMove

| braid : cs.BraidMove → cs.CoxeterMove

For example, we can say cs.CoxeterMove.nil nm, where nm : cs.NilMove. And if we
have a general coxeter move cm : cs.CoxeterMove, we can split between the cases where cm

is a nil or braid move with the match keyboard:

match cm with

| nil nm => . . .
| braid bm => . . .

With this machinery, we are ready to apply these moves to any word. Consider the
following function, that takes a nil move and a word and outputs the result of applying the
move:

def apply_nilMove (nm : cs.NilMove) (l : List B) : List B :=

match nm with

| NilMove.mk i p =>

match p with

| 0 =>

if l.take 2 = [i, i] then

l.drop 2

else

l

| p + 1 =>

match l with

| [] => []

| h::t => h :: apply_nilMove (NilMove.mk i p) t

65

First, we extract the generator index i of the move and the position of the move p with
the instruction match. Then, we divide into the cases where p=0 and where p is a successor
of another natural number, in which case we substitute p with p+1.

If p = 0, it means that the nil move should be applied at the beginning of the word.
Therefore, we check that the first two elements of the word l are, in fact, i, and in that
case we return the list without those first two elements. Otherwise, we return the original
word, because the move could not be applied.

If p if not zero, we write it as p + 1 and then act depending on l. If l = [], we cannot
apply the nil move, so we return [] (the original list). Otherwise, we consider the list l

as a first element h (the head) and a tail t. These two cases make up the entire array of
possibilities, since if l is not empty it has a first element that can be considered as its head.

In the second case, we take the tail t, apply the nil move one position before (at p instead
of p - 1) and return the result with h appended as the first element.

The result is that we apply the second case repeatedly until p=0 at which point we apply
the nil move at the beginning of the remaining word and append the first p elements back.
This has the effect of applying the nil move at position p.

Then, to apply a braid move we proceed in a similar way as with nil moves:

def apply_braidMove (bm : cs.BraidMove) (l : List B) : List B :=

match bm with

| BraidMove.mk i j p =>

match p with

| 0 =>

if l.take (M i j) = braidWord M i j then

braidWord M j i ++ l.drop (M i j)

else

l

| p + 1 =>

match l with

| [] => []

| h::t => h :: apply_braidMove (BraidMove.mk i j p) t

Matsumoto’s theorem aims to shed light on the process of converting equivalent words
into each other. At first glance, the process of turning one word into an equivalent could
involve not only braid and nil moves, but also reverse nil moves (introducing ii ∈ B∗ between
two letters of the word). But this theorem assures us that it suffices with the first two, and
just braid moves when relating two reduced words.

Theorem 4.30 (Matsumoto [AB05]). Let w ∈W

1. Any expression s1s2 · · · sq for w can be transformed into a reduced expression for w by
a sequence of nil-moves and braid-moves.

2. Every two reduced expressions for w can be connected via a sequence of braid-moves.

We will prove just the second part, because it is the one we need to show that Demazure
operators are well defined.

66

With our notation, it means that for every two reduced words l, l′ ∈ B∗ with π(l) = π(l′),
there exists r ∈ N and a finite sequence of braid moves β = (βk)0≤k≤r−1 and a sequence of
words (lk)0≤k≤r such that

l = l0
β0−→ l1

β1−→ l2
β2−→ · · · βr−1−−−→ lr = l′

We abbreviate this by

l
β−→ l′

def apply_braidMoveSequence (bms : List (cs.BraidMove)) (l : List B) : List B :=

match bms with

| [] => l

| bm :: bms’ => cs.apply_braidMove bm (apply_braidMoveSequence bms’ l)

Also, if we have two braid move sequences β(1) = (β
(1)
k)0≤k≤r−1 and β(2) = (β

(2)
k)0≤k≤s−1,

we define their product as the concatenation of both sequences. That is,

β(1) · β(2) = (βk)0≤k≤r+s−1 where βk =

{
β
(1)
k if k < r

β
(2)
k−r if r ≤ k < r + s

Lemma 4.31. Let l, l′, l′′ ∈ B∗ and β, β′ be braid move sequences such that

l
β−→ l′

β′
−→ l′′

Then, l
β·β′
−−→ l′′

theorem concatenate_braidMove_sequences (l l’ l’’ : List B)

(h : ∃ bms : List (cs.BraidMove), cs.apply_braidMoveSequence bms l = l’)

(h’ : ∃ bms’ : List (cs.BraidMove),

cs.apply_braidMoveSequence bms’ l’ = l’’) :

∃ bms’’ : List (cs.BraidMove), cs.apply_braidMoveSequence bms’’ l = l’’

Proof. We use an auxiliary lemma to work with Lean’s definition in an easier way. Here,
we proceed by induction in the first sequence. If it’s empty the result is trivial since the
concatenation is just β, and otherwise we apply the first move in both sides and use the
induction hypothesis.

theorem apply_braidMove_sequence_append (bms bms’ : List (cs.BraidMove)) (l :

List B) :

cs.apply_braidMoveSequence (bms ++ bms’) l = cs.apply_braidMoveSequence bms

(cs.apply_braidMoveSequence bms’ l) := by

induction bms with

| nil =>

simp[apply_braidMoveSequence]

| cons bm bms ih =>

simp[apply_braidMoveSequence]

apply congr_arg

exact ih

Then, the proof just constructs the concatenation of both sequences and uses the previous
lemma to prove that it acts as expected.

67

rcases h with ⟨bms, hbms⟩
rcases h’ with ⟨bms’, hbms’⟩
use bms’ ++ bms

simp[apply_braidMove_sequence_append]

simp[hbms’, hbms]

Let’s check that braid moves are well defined in the Coxeter group.

Theorem 4.32. Applying a braid move β to a word l ∈ B∗ does not change its product.
That is,

l
β−→ l′ =⇒ π(l) = π(l′)

theorem braidMove_wordProd (bm : cs.BraidMove) (l : List B) :

π (cs.apply_braidMove bm l) = π l

Proof. Let i, j ∈ B and p ∈ N such that β = β[i, j, p]. We use the rcases tactic to extract
the data contained in a structure, in this case the index and position of a braid move.

rcases bm with ⟨i, j, p⟩

Then, we prove the result by induction on p.

match p with

| 0 => (. . .)
| p + 1 => (. . .)

1. p = 0: This is the moment where we apply the braid move. Therefore we unfold the
definition with the simp tactic and divide the proof into two scenarios: one where the
braid move can be applied and one where it cannot. This corresponds to the word
starting with the braid word b(i, j).

simp[apply_braidMove]

by_cases h : List.take (M.M i j) l = braidWord M i j

· (. . .)
· (. . .)

That is, w = b(i, j)·w′ for some w′ ∈W . Then, we want to prove that w = b(i, j)·w′ =
b(j, i) ·w′. First we use the lemma Lemma 4.1 to cancel the multiplication on the right
by the tail w′ and be left with the goal of proving b(i, j) = b(j, i), which is exactly
Lemma 4.6.

simp[h]

have h’ : l = l.take (M.M i j) ++ l.drop (M.M i j) := by simp

nth_rewrite 2 [h’]

repeat rw[wordProd_append]

rw[h]

simp[wordProd_braidWord_eq]

The case where w doesn’t start with b(i, j) is trivial, since the braid move doesn’t
change w. It suffices to use the simp tactic with the statement of this case.

68

simp[h]

2. p > 0: In this case we substitute p with p + 1 and match l with either the empty list
(the result is trivial in this case) or a list starting with h.

match l with

| [] => simp[apply_braidMove]

| h::t => (. . .)

Which along with the definition of apply_braidMove, leaves us with the goal

simp[apply_braidMove, wordProd_cons]

⊢ cs.wordProd (cs.apply_braidMove i j p t) = cs.wordProd t

That is exactly the induction hypothesis. Lean is smart enough to figure this when
using the match keyword, so we can reference the theorem we are proving to finish the
proof by induction.

exact braidMove_wordProd (BraidMove.mk i j p) t

We are ready to formalise the statement of the second part of Matsumoto’s theorem,
relating to reduced words.

theorem matsumoto_reduced [MatsumotoCondition cs] (l l’ : List B)

(hr : cs.IsReduced l) (hr’ : cs.IsReduced l’) (h : π l = π l’) :

∃ bms : List (cs.BraidMove), cs.apply_braidMoveSequence bms l = l’

It tells us that two reduced words with the same product can be related by a sequence of
braid moves, just like we wanted.

Notice the requirement that our Coxeter system cs is an instance of the class MatsumotoCondition.
This class holds two technical assumptions:

Lemma 4.33. Let i, j ∈ B and p ∈ N be such that i ̸= j and 0 < p < M(i, j). Then,

(sisj)
p ̸= e

This assures us that the product an alternating word of length less than 2 ∗M(i, j) is
not equal to one (the neutral element of W). That is, the order of sisj is exactly M(i, j)
and not just a divisor of it, as the relations directly imply.

Lemma 4.34. For every i, j ∈ B, M(i, j) ≥ 1.

This assumption says that M has no zero entries, that is, every two generators are part
of a braid relation.

class MatsumotoCondition where

one_le_M : ∀ i j : B, 1 ≤ M i j

alternatingWords_ne_one : ∀ (i j : B) (_ : i ̸= j)

(p : N) (_ : 0 < p) (_ : p < M i j), (s i * s j) ^ p ̸= 1

69

While Matsumoto’s theorem holds for every Coxeter group, these assumptions serve the
following purposes:

1. Lemma 4.33 is true of every Coxeter group(Proposition 1.1.1 of [AB05]). However,
the proof involves constructing a linear representation of W , that is, a homomorphism
Φ : W −→ GL(U), where GL(U) denotes the group of invertible linear transformations
of some vector space U into itself.

This proof is complex and relies on certain results that are currently absent from
mathlib. Consequently, it falls outside the scope of this thesis. Nonetheless, if it were
proven in the future, it would show that every Coxeter group adheres to this aspect
of MatsumotoCondition.

2. Lemma 4.34 assures us that there is a braid relation between every two generators.
This braid relation is a key element of the proof of Matsumoto’s theorem that we par-
tially follow from [AB05], where this assumption is not stated nor worked around. This
highlights the usefulness of formalizing proofs to ensure that no implicit assumptions
are taken.

We are mostly interested in the case where the Coxeter groups are finite (for the
symmetric group) so we can easily prove this assumption, but it’s worth noting that
the proof needs further work to hold in complete generality.

With these assumptions clarified, we can use them to prove intermediate results needed
for the proof of Matsumoto’s theorem.

Lemma 4.35. Lists whose length is p+ 1 for some p ∈ N have a first element and can be
written as the first element appended at the back of a tail list.

lemma cons_of_length_succ {α : Type} (l : List α) {p : N} (h : l.length = p + 1) :

∃ (a : α) (t : List α), l = a :: t ∧ t.length = p

Proof. The case where l is empty leads to a contradiction so it must be of the form a::t,
in which case a is the element we were looking for.

cases l with

| nil =>

simp at h

| cons a t =>

simp at h

use a, t

Definition 4.20. We say that we shift a braid move β[i, j, p] when we increase the position
at which the move is applied by one. That is, we turn it into s(β[i, j, p]) := β[i, j, p+ 1]

def shift_braidMove (bm : cs.BraidMove) : cs.BraidMove :=

match bm with

| BraidMove.mk i j p => BraidMove.mk i j (p + 1)

Lemma 4.36. Let i0 ∈ B, l, l′ ∈ B∗ and β[i, j, p] be a braid move such that l
β[i,j,p]−−−−→ l′.

Then,

i0 · l
s(β[i,j,p])−−−−−−→ i0 · l′

70

lemma braidMove_cons (bm : cs.BraidMove) (l : List B) (a : B) :

a :: cs.apply_braidMove bm l = cs.apply_braidMove (cs.shift_braidMove bm) (a ::

l)

Proof. Clear by definition of the position of a braid move and shifting.

rcases bm with ⟨i, j, p⟩
simp[shift_braidMove, apply_braidMove]

This can be extended to a braid move sequence with an usual induction proof:

Lemma 4.37. Let i0 ∈ B, l, l′ ∈ B∗ and β be a sequence of braid moves such that l
β−→ l′.

Then,

i0 · l
s(β)−−→ i0 · l′

Here s(β) = s((βk)k) := (s(βk))k.

lemma braidMoveSequence_cons (bms : List (cs.BraidMove)) (l : List B) (a : B) :

a :: cs.apply_braidMoveSequence bms l =

cs.apply_braidMoveSequence (List.map cs.shift_braidMove bms) (a :: l)

Proof. As we said, we proceed by induction. If the braid move sequence is empty the proof
is trivial. Otherwise, we separate the first braid move to be applied, use the previous lemma
and then use the induction hypothesis with the tail of the list.

induction bms with

| nil =>

simp[apply_braidMoveSequence]

| cons bm bms ih =>

rw[apply_braidMoveSequence]

rw[cs.braidMove_cons bm]

simp[apply_braidMoveSequence] at ih

rw[ih]

simp[apply_braidMoveSequence_cons]

Lemma 4.38. Let i0 ∈ B and l ∈ B∗ such that i0 · l ∈ B∗ is a reduced word. Then l is also
a reduced word.

theorem isReduced_cons (a : B) (l : List B) : cs.IsReduced (a :: l) →
cs.IsReduced l

Lemma 4.39. Let i0 ∈ B and l ∈ B∗ such that i0 · l ∈ B∗ is a reduced word. Then, i0 is a
left descent of i0 · l ∈ B∗.

lemma leftDescent_of_cons (i : B) (l : List B) (hr : cs.IsReduced (i :: l)) :

cs.IsLeftDescent (π (i :: l)) i

71

Proof. We unfold the definition of a left descent, which means that l̃en(si0 ·si0 ·l) < l̃en(si0 ·l)
apply cs.isLeftDescent_iff.mpr

But of course, si0 · si0 · l = l and both i0 · l and l are reduced (the second by Lemma 4.38) so
we just need to prove that the length of l is less than the length of i0 · l (as words), which
is trivial.

rw[hr]

simp[wordProd_cons]

rw[← IsReduced]

apply cs.isReduced_cons i l hr

As a consequence,

Lemma 4.40. Let i0 ∈ B and l ∈ B∗ such that i0 · l ∈ B∗ is a reduced word. Then, si0 is
a left inversion of i0 · l ∈ B∗.

lemma leftInversion_of_cons

(i : B) (l : List B) (hr : cs.IsReduced (i :: l)) :

cs.IsLeftInversion (π (i :: l)) (s i) :=

(cs.isLeftInversion_simple_iff_isLeftDescent (π (i :: l)) i).mpr

(cs.leftDescent_of_cons i l hr)

In our reference [AB05], the proof of Matsumoto uses the fact that a Coxeter group has
a lattice structure under some order relation. This approach is really general and can be
applied to a lot of other results, but we are mainly interested in the proof of Matsumoto for
other purposes. Therefore we proved it directly without developing all this theory.

The main intermediate result that we proved by elementary means is the following:

Lemma 4.41. Under the assumptions Lemma 4.33 and Lemma 4.34, let l, l′ ∈ B∗, i, j ∈ B
such that i ̸= j but π(i · l) = π(j · l′) with both i · l and j · l′ being reduced.

Then, there’s a word t ∈ B∗ such that:

1. π(i · l) = π(b(i, j) · t)

2. b(i, j) · t is reduced

lemma prefix_braidWord [MatsumotoCondition cs]

(l l’ : List B) (i j : B) (i_ne_j : i ̸= j) (pi_eq : π (i :: l) = π (j :: l’))

(hr : cs.IsReduced (i :: l)) (hr’ : cs.IsReduced (j :: l’)) :

∃ t : List B, π (i :: l) = π (braidWord M i j ++ t) ∧
cs.IsReduced (braidWord M i j ++ t)

To prove this, we will need an important results about alternating words.

Lemma 4.42. Under the assumptions Lemma 4.33 and Lemma 4.34, let i, j ∈ B, p ∈ N
with p < M(i, j) and i ̸= j. Then, for every k = 0, 1, 2, 3

π(ap+1(i, j)) ̸= π(ek(ap(i, j)))

72

theorem alternatingWord_succ_ne_alternatingWord_eraseIdx [MatsumotoCondition cs]

(i j : B) (p : N) (hp : p < M i j) (hij : i ̸= j) :

∀ (k : N) (hk : k < p),

π (alternatingWord i j (p + 1)) ̸= π (alternatingWord i j p).eraseIdx k

Proof. First of all, let’s consider i and j as general members of B since they will switch
places in the proof.

revert i j

We proceed by induction. The case p = 0 is trivial, since the condition k ∈ N : k < 0 is
empty.

Otherwise, we replace p with p+ 1 and keep track of the induction hypothesis.

succ p ih =>

Our goal then becomes π(ap+1+1(i, j)) ̸= π(ek(ap+1(i, j))) We can use the inductive defini-
tion of alternating words to extract their last element, turning the goal into π(ap+1(j, i)·j) ̸=
π(ek(ap(j, i) · j))
rw[alternatingWord_succ]

nth_rewrite 2 [alternatingWord_succ]

simp

Now we can consider the case where we delete the last element or one in the middle.

1. k < p: In this case, the del function commmutes with multiplication on the right, so
our goal becomes

π(ap+1(j, i) · j) ̸= π(ek(ap(j, i)) · j)

rw[List.eraseIdx_append_of_lt_length h_erase [j]]

We will prove it by contradiction. Suppose that the two sides are equal. Then,
π(ap+1(j, i) · j) = π(ap+1(j, i)) · sj and π(ek(ap(j, i)) · sj , so we can cancel the sj ’s out
to get the negative of the induction hypothesis. In lean this requires some work to
swap i and j before applying ih.

have hij’ : j ̸= i := by

intro h

apply hij

rw[h]

have h_erase’ : k < p := by simp at h_erase; exact h_erase

apply ih j i hp’’ hij’ k h_erase’ h_contra

2. k = p: Actually, in Lean we will work with the condition k ≥ p since it’s the direct
negation of the previous case and it’s actually better suited for the next mathlib lemma
we will need:

mathlib

lemma List.eraseIdx_append_of_length_le {l : List α} {k : N}
(hk : l.length ≤ k) (l’ : List α) :

(l ++ l’).eraseIdx k = l ++ l’.eraseIdx (k - l.length)

73

This lemma applied to this specific case explains that since k ≥ p,

ek(l · j) = l · ek−p(j) = l (k − p = 0)

This turns our goal into
π(ap+1(j, i) · j) ̸= π(ap(j, i))

rw[List.eraseIdx_append_of_length_le h_erase’ [j]]

have h_erase_k : [j].eraseIdx (k - (alternatingWord j i p).length) = [] := by

apply List.eraseIdx_eq_nil.mpr

right

simp

apply Nat.sub_eq_zero_iff_le.mpr

linarith

rw[h_erase_k]

simp

⊢ ¬cs.wordProd (alternatingWord j i (p + 1) ++ [j]) =

cs.wordProd (alternatingWord j i p)

We proceed by contradiction, that is, we assume that

π(ap+1(j, i) · j) = π(ap(j, i)) (8)

intro h_contra

Let’s start by simplifying the left hand side:

π(ap+1(j, i) · j) = π(ap+2(i, j))

have : cs.wordProd (alternatingWord j i (p + 1) ++ [j]) =

cs.wordProd (alternatingWord i j (p + 2)) := by

simp[alternatingWord_succ]

rw[this] at h_contra

Now we apply Theorem 4.4 to get the value of both sides of the equation in terms of
si and sj . The result depends on the parity of p, so we consider both cases. If p is
even, then p+ 2 is even as well, and

π(ap(j, i)) = (sjsi)
p
2 and π(ap+2(i, j)) = (sisj)

p+2
2 = (sisj)

p
2
+1

simp[prod_alternatingWord_eq_mul_pow] at h_contra

by_cases p_even : Even p

· have p_even’ : Even (p + 2) := by

apply Nat.even_add.mpr

simp

exact p_even

simp[p_even, p_even’] at h_contra

We apply this equalities to Eq. (8) and multiply both sides by ((sjsi)
p
2)−1 to obtain

(sisj)
p
2
+1 · ((sjsi)

p
2)−1 = e

74

But a simple computation shows that

((sjsi)
p
2)−1 = ((sjsi)

−1)
p
2 = (s−1

i s−1
j)

p
2 = (sisj)

p
2

So we obtain

e = (sisj)
p
2
+1 · ((sjsi)

p
2)−1 = (sisj)

p
2
+1 · (sisj)

p
2 = (sisj)

p+1

apply mul_inv_eq_one.mpr at h_contra

rw[← inv_pow (s j * s i) (p/2)] at h_contra

simp at h_contra

rw[← pow_add] at h_contra

have : p / 2 + 1 + p / 2 = p + 1 := by

have : 2 * (p / 2) = p := Nat.two_mul_div_two_of_even p_even

ring

simp[mul_comm, this]

rw[this] at h_contra

This clearly contradicts Lemma 4.33, since 0 < p < M(i, j).

apply MatsumotoCondition.alternatingWords_ne_one i j hij (p + 1)

zero_lt_p_succ _ h_contra

linarith

The case where p is odd is completely analogous.

Now we are ready to prove Lemma 4.41, which we will do by slowly building the braid word.
For that we introduce the following auxiliary lemma:

Lemma 4.43. Under Lemma 4.33, let w ∈ W , l, l ∈ B∗ and i, j ∈ B such that i ̸= j, and
both π(i · l) and π(j · l′) are reduced.

Then, for every p ≤M(i, j), there is a word t ∈ B∗ such that

1. π(ap(i, j) · t) = w

2. ap(i, j) · t is reduced

lemma prefix_braidWord_aux [MatsumotoCondition cs]

(w : W) (l l’ : List B) (i j : B) (i_ne_j : i ̸= j)

(hil : π (i :: l) = w) (hjl’ : π (j :: l’) = w)

(hr : cs.IsReduced (i :: l)) (hr’ : cs.IsReduced (j :: l’)) :

∀ (p : N) (h : p ≤ M i j), ∃ t : List B,

π (alternatingWord i j p ++ t) = w ∧
cs.IsReduced (alternatingWord i j p ++ t)

Proof. We proceed by induction on p. The base case (p = 0) is trivial, since a0(i, j) = e, so
we can take t = i · l.
intro _

simp[alternatingWord]

use i :: l

75

Then, we assume the goal for p and try to prove it for p+ 1, under the constraint p+ 1 ≤
M(i, j). This clearly implies that p ≤M(i, j), so we can apply the induction hypothesis to
obtain t ∈ B∗ such that π(ap(i, j) · t) = w and ap(i, j) · t is reduced.
intro hp

have hp’ : p ≤ M i j := by linarith

have hp’’ : p < M i j := by linarith

rcases ih hp’ with ⟨t, ht, htr⟩

So now we can substitute w with this expression to get the following goal:

∃t′ ∈ B∗ : π(ap+1(i, j) · t′) = π(ap(i, j) · t) ∧ ap+1(i, j) · t′ is reduced

rw[← ht]

⊢ ∃ t_1,

cs.wordProd (alternatingWord i j (p + 1) ++ t_1) =

cs.wordProd (alternatingWord i j p ++ t)

∧
cs.IsReduced (alternatingWord i j (p + 1) ++ t_1)

Now, we extract the first letter of ap+1(i, j) using Theorem 4.3, which again leads to two
cases. Let’s assume that p is even, since the case where it is odd is really similar. Then,
π(ap+1(i, j) · t′) = π(j · ap(i, j) · t′) = sj · π(ap(i, j) · t′). So our goal becomes

∃t′ ∈ B∗ : sj · π(ap(i, j) · t′) = π(ap(i, j) · t) ∧ j · ap(i, j) · t′ is reduced

The first part looks similar to the statement of the Strong Exchange Theorem. We can
modify it until this theorem can be applied. For that, let’s prove that it suffices to show

∃k ≤ len(t) : sj · π(ap(i, j) · t) = π(ap(i, j) · ek(t))

suffices ∃ k : Fin t.length,

s j * cs.wordProd (alternatingWord i j p ++ t) =

cs.wordProd (alternatingWord i j p ++ (t.eraseIdx k))

from by

If we manage to prove this, then we can pick t′ = ek(t) to quickly show that

sj · π(ap(i, j) · ek(t)) = π(ap(i, j) · t) (9)

Which implies the first part of the original goal (π(ap+1(i, j) · t′) = π(ap(i, j) · t)). For the
second part, we will need some extra work.

rcases this with ⟨k, hk⟩
use (t.eraseIdx k)

have hw :

cs.simple j * cs.wordProd (alternatingWord i j p ++ t.eraseIdx k) =

cs.wordProd (alternatingWord i j p ++ t)

:= by

rw[← hk]

simp[cs.wordProd_cons]

constructor

· exact hw

· (. . .)

76

To prove that j · ap(i, j) · ek(t) is reduced, we need to show that

l̃en(π(j · ap(i, j) · ek(t))) = p+ 1 + len(ek(t))

While the induction hypothesis tells us that ap(i, j) · t is reduced, that is,

l̃en(π(ap(i, j) · t)) = p+ len(t)

simp[IsReduced]

simp[IsReduced] at htr

But using Eq. (9), π(j · ap(i, j) · ek(t)) = sj · π(ap(i, j) · ek(t)) = π(ap(i, j) · t), so the goal
becomes

p+ 1 + len(ek(t)) = l̃en(π(j · ap(i, j) · ek(t))) = l̃en(π(ap(i, j) · t)) = p+ len(t)

rw[cs.wordProd_cons]

rw[hw]

rw[htr]

⊢ p + t.length = p + (t.eraseIdx ↑k).length + 1

Of course, len(ek(t)) = len(t) − 1, completing the result. This part is surprisingly long in
Lean, since we need to prove that len(t) ≥ 1 to make sure that len(t) − 1 is still a natural
number in order to use their properties.

rw[List.length_eraseIdx k.2]

simp[add_assoc]

have : 1 ≤ t.length := by

apply Nat.le_of_not_lt

intro h’

rw[Nat.lt_one_iff] at h’

rw[h’] at k

have wah := k.2

linarith

rw[Nat.sub_add_cancel this]

So we know it suffices to prove

∃k ≤ len(t) : sj · π(ap(i, j) · t) = π(ap(i, j) · ek(t))

We begin by proving that sj ∈ TL(π(ap(i, j) · t)). From our hypotheses,

π(ap(i, j) · t) = w = π(j · l′)

And sj ∈ TL(π(j · l′)) by Lemma 4.40.

have h_left_inversion_j :

cs.IsLeftInversion (cs.wordProd (alternatingWord i j p ++ t)) (s j)

:= by

rw[ht, ← hjl’]

apply cs.leftInversion_of_cons j l’ hr’

77

Knowing this, we can apply the Strong Exchange Theorem (Theorem 4.23) to get

∃k ≤ len(ap(i, j) · t) : sj · π(ap(i, j) · t) = π(ek(ap(i, j) · t))

rcases cs.strongExchangeProperty

(alternatingWord i j p ++ t) ⟨s j, cs.isReflection_simple j ⟩ h_left_inversion_j

with ⟨k, hk⟩

Let’s fix this k and proceed by cases, depending on its value:

1. Case k < p: We will prove that this case is impossible by finding a contradiction. This
is done in Lean by using the tactic

exfalso

Which ignores the goal and turns it into proving ⊢ False (finding a contradiction).
Since k < p = len(ap(i, j)), we can apply ek on the first part of the product ap(i, j) · t
to get

sj · π(ap(i, j) · t) = π(ek(ap(i, j)) · t)

have k_lt_len’ : k < (alternatingWord i j p).length := by simp[k_lt_len]

rw[List.eraseIdx_append_of_lt_length k_lt_len’ t] at hk

Using that π is a homomorphism, we can extract the tails,

sj · π(ap(i, j)) · π(t) = π(ek(ap(i, j))) · π(t)

simp[cs.wordProd_append] at hk

And cancel them
sj · π(ap(i, j)) = π(ek(ap(i, j)))

rw[← mul_assoc] at hk

rw[mul_right_cancel_iff] at hk

Finally, we incorporate sj into the alternating word with Theorem 4.3 to get

π(ap+1(i, j)) = π(ek(ap(i, j)))

rw[← wordProd_cons] at hk

have : j :: alternatingWord i j p = alternatingWord i j (p + 1) := by

simp[alternatingWord_succ’, p_even]

rw[this] at hk

hk : cs.wordProd (alternatingWord i j (p + 1)) =

cs.wordProd ((alternatingWord i j p).eraseIdx ↑k)

This is a contradiction by Lemma 4.42, since p < M(i, j).

exact cs.alternatingWord_succ_ne_alternatingWord_eraseIdx

ha i j p hp’’ i_ne_j k k_lt_len hk

78

2. Case k ≥ p: In this case we get

sj · π(ap(i, j) · t) = π(ek(ap(i, j) · t)) = π(ap(i, j) · ek−p(t))

rw[List.eraseIdx_append_of_length_le] at hk

Which we can plug into our goal, turning it into (we state it in terms of k′ to avoid
confusion with the k we got from the Strong Exchange Theorem):

∃k′ ≤ len(t) : π(ap(i, j) · ek−p(t)) = π(ap(i, j) · ek′(t))

So taking k′ = k − p completes the proof. We just have to show that 0 ≤ k′ < len(t),
which comes from the fact that k ≥ p and k < len(ap(i, j) · t) = p+ len(t).

have : k - (alternatingWord i j p).length < t.length := by

have kle := k.2

simp at kle

simp

apply (Nat.sub_lt_iff_lt_add _).mpr kle

exact k_lt_len

use ⟨k - (alternatingWord i j p).length, this⟩

Proof of Lemma 4.41. Use the previous lemma with w = π(i · l) and p = M(j, i). Of course
M(j, i) ≤M(i, j) so we can use it this way. Then, just unfold the definition of a braid word
as an alternating word and apply it at both parts of the theorem.

have h : M i j ≤ M i j := by linarith

have h’ : π (j :: l’) = π (i :: l) := Eq.symm pi_eq

rcases cs.prefix_braidWord_aux

(π (i :: l)) l l’ i j i_ne_j rfl h’ hr hr’ (M i j) h

with ⟨t, ht, htr⟩
use t

rw[braidWord]

constructor

· simp[ht]
· exact htr

Proof of Theorem 4.30. We prove Matsumoto’s theorem by induction on the length of the
words. For that, we prove an auxiliary lemma that exposes the length of l and l′ as p ∈ N.

Lemma 4.44. Under Lemma 4.33 and Lemma 4.34, let p ∈ N and l, l′ ∈ B∗ such that
len(l) = p = len(l′), l, l′ are reduced, and π(l) = π(l′).

Then, there exists a braid move sequence β such that l
β−→ l′

79

theorem matsumoto_reduced_aux [MatsumotoCondition cs]

(p : N) (l l’ : List B) (len_l_eq_p : l.length = p)

(len_l’_eq_p : l’.length = p) (l_reduced : cs.IsReduced l)

(l’_reduced : cs.IsReduced l’) (h_eq : π l = π l’) :

∃ bms : List (cs.BraidMove), cs.apply_braidMoveSequence bms l = l’

As we said, we will proceed by induction on p. But first, we generalise l and l′, since we
will use a different pair inside the proof as part of the induction argument.

When p = 0, we have len(l) = len(l′) = 0, which clearly means that l = e = l′. This
result is formalised in the following lemma:

mathlib

theorem length_eq_zero : length l = 0 ↔ l = []

so no braid moves are needed to show that they are equal. Therefore, we use an empty list
as the sequence of braid moves (which doesn’t modify l) and l = l′ yields the result.

intro l l’ hl hl’ _ _ _

have h_len : l.length = l’.length := by rw[hl, hl’]

simp at h_len

use []

simp[apply_braidMoveSequence]

apply List.length_eq_zero.mp at hl

apply List.length_eq_zero.mp at hl’

rw[hl, hl’]

Otherwise, we assume the result is true for p and prove it for p+1. So len(l) = len(l′) =
p + 1, which means that there exists i, j ∈ B such that l = i · lt and l′ = j · l′t for some
lt, l

′
t ∈ B∗, by applying Lemma 4.35.

intro l l’ len_l_eq_p len_l’_eq_p l_reduced l’_reduced h_eq

rcases cons_of_length_succ l len_l_eq_p with ⟨i, l_t, rfl, len_l_t_eq_p⟩
rcases cons_of_length_succ l’ len_l’_eq_p with ⟨j, l’_t, rfl, len_l’_t_eq_p⟩

Now, there are two cases, depending of whether i = j or not.

If the equality holds, we will use the induction hypothesis to find a sequence of braid
moves from lt to l′t. Then, since the first letter is equal, the shifted sequence will transform
l into l′.

But to apply the induction hypothesis, we need to satisfy all its requirements:

• lt and l′t are reduced They are the result of removing the first letter from l and l′

respectively. Hence, Lemma 4.38 yields the result.

have htr : cs.IsReduced l_t := cs.isReduced_cons i l_t l_reduced

have htr’ : cs.IsReduced l’_t := cs.isReduced_cons j l’_t l’_reduced

• π(lt) = π(l′t) This is proven by a simple chain of equivalences;

π(l) = π(l′) =⇒ π(i · lt) = π(i · l′t) =⇒ siπ(lt) = siπ(l
′) =⇒ π(lt) = π(l′t)

80

have h_prod : π l_t = π l’_t := by

apply @mul_left_cancel _ _ _ (cs.simple i) _ _

rw[← cs.wordProd_cons i l_t, ← cs.wordProd_cons i l’_t, h_eq]

rw[← first_letter_eq]

• len(lt) = len(l′t) = p By definition.

So using the previous properties we can apply the induction hypothesis at them to get

that there exists a sequence of braid moves β = (βk)k such that lt
β−→ l′t

have ⟨bms, ih’⟩ := ih l_t l’_t len_l_t_eq_p len_l’_t_eq_p htr htr’ h_prod

Then, Lemma 4.37 implies that

l = i · lt
s(β)−−→ i · l′t = l′

Making s(β) the obvious choice for the braid move sequence.

apply (List.cons_inj_right j).mpr at ih’

rw[← ih’]

rw[braidMoveSequence_cons]

use (List.map cs.shift_braidMove bms)

This case will appear later, so we abstract it as a separate lemma in lean:

lemma matsumoto_reduced_inductionStep_of_firstLetterEq

(p : N) (l_t l’_t : List B) (i : B)

(len_l_t_eq_p : l_t.length = p) (len_l’_t_eq_p : l’_t.length = p)

(h_eq : π (i :: l_t) = π (i :: l’_t))

(l_reduced : cs.IsReduced (i :: l_t)) (l’_reduced : cs.IsReduced (i :: l’_t))

(ih: ∀ (l l’ : List B),

l.length = p →
l’.length = p →

cs.IsReduced l → cs.IsReduced l’ → cs.wordProd l = cs.wordProd l’ → ∃
bms, cs.apply_braidMoveSequence bms l = l’):

∃ bms, cs.apply_braidMoveSequence bms (i :: l_t) = i :: l’_t

Now assume that i ̸= j. From Lemma 4.34 we know that M(i, j) ≥ 1, so we can pick
m := M(i, j)− 1 and rewrite it as

M(j, i) = M(i, j) = m+ 1

obtain ⟨m, hm⟩ : ∃ m : N ,M i j = m + 1 := by

use M i j - 1

simp[MatsumotoCondition.one_le_M cs i j]

have hm’ : M j i = m + 1 := by

simp[M.symmetric]

exact hm

Then we have to consider the case where m is even or odd. As usual, we only write the case
where m is even, because the odd case is really similar.

81

Then, we have l′t, lt reduced words and i, j ∈ B with i ̸= j such that π(i · lt) = π(j · l′t) ,
so we can apply Lemma 4.41 to get bt ∈ B∗ such that b(j, i) · bt is reduced and

π(j · l′t) = π(b(j, i) · bt)

obtain ⟨b_tail, hb, b_reduced⟩ :=

cs.prefix_braidWord ha l’_t l_t j i j_ne_i (Eq.symm h_eq) l’_reduced

l_reduced

Of course, that immediately implies that π(i · l) = π(b(j, i) · bt) as well.
have hb’ : cs.wordProd (i :: l_t) = cs.wordProd (braidWord M j i ++ b_tail) := by

rw[← hb]

exact h_eq

Now, our goal is to find a braid move sequence β such that l
β−→ l′. We will do this in steps,

by finding three braid move sequences β(1), β(2) and β(3) such that

l = i · lt
β(1)

−−→ b(j, i) · bt
β(2)

−−→ b(i, j) · bt
β(3)

−−→ j · l′t

We use Lemma 4.31 to split the proof like this. First, we apply it with i · lt and b(j, i) · bt
to divide the proof in two goals, showing ∃β(1) with i · lt

β(1)

−−→ b(j, i) · bt and ∃β(∗) with

b(j, i) · bt
β(∗)
−−→ j · l′t. Afterwards, we will split the second goal further.

apply cs.concatenate_braidMove_sequences

(i :: l_t) (braidWord M j i ++ b_tail) (j :: l’_t)

We will solve the first goal by first observing that the words at both sides start with i, since
using Theorem 4.3,

b(j, i) · bt = am+1(j, i) · bt = i · am(j, i) · bt (10)

have b_word_cons : (braidWord M j i ++ b_tail) = i :: (alternatingWord j i m ++

b_tail) := by

simp[braidWord]

rw[hm’]

simp[alternatingWord_succ’]

simp[m_even]

rw[b_word_cons]

Furthermore, the length of am(j, i) · bt is p. To prove this, it suffices to show that len(b(j, i) ·
bt) = p+ 1

suffices (braidWord M j i ++ b_tail).length = p + 1 from by

. . .

This is because these conditions are clearly equivalent, given that

len(b(j, i) · bt) = len(b(j, i)) + len(bt) = m+ 1 + len(bt) = len(am(j, i) · bt) + 1

And the previous fact is easy to see with Lemma 4.10, which knowing that π(b(j, i) · bt) =
π(i · lt) and they are both reduced, tells us that their lengths are equal, and len(i · lt) = p+1
by induction hypothesis.

82

rw[← cs.eq_length_of_isReduced (i :: l_t)

(braidWord M j i ++ b_tail) hb’ l_reduced b_reduced]

exact len_l_eq_p

Then, we can re-use the argument we used before when the first letters of both reduced
equivalent words were equal to get the result. We just have to rewrite the previous trans-
formation in some hypotheses.

rw[b_word_cons] at hb’

rw[b_word_cons] at b_reduced

apply cs.matsumoto_reduced_inductionStep_of_firstLetterEq p l_t (alternatingWord

j i m ++ b_tail) i len_l_t_eq_p b_len_p hb’ l_reduced b_reduced ih

Now that the first step is done, we break down further the second goal

∃β(∗) with b(j, i) · bt
β(∗)
−−→ j · l′t

Into the following two sub-goals, using Lemma 4.31 as before

∃β(2) with b(j, i) · bt
β(2)

−−→ b(i, j) · bt

∃β(3) with b(i, j) · bt
β(3)

−−→ j · l′t

apply cs.concatenate_braidMove_sequences

(braidWord M j i ++ b_tail) (braidWord M i j ++ b_tail) (j :: l’_t)

The first goal clearly consists in a single braid move β[j, i, 0], which turns

b(j, i) · bt
β[j,i,0]−−−−→ b(i, j) · bt

use [BraidMove.mk j i 0]

simp[apply_braidMoveSequence]

simp[apply_braidMove]

For the second case, we observe again that the first letter is j in both sides, since b(i, j) ·bt =
j · am(i, j) · bt:
have b_word_cons : (braidWord M i j ++ b_tail) =

j :: (alternatingWord i j m ++ b_tail) := by

simp[braidWord]

rw[hm]

simp[alternatingWord_succ’]

simp[m_even]

And the rest of the prerequisites to apply our previous argument are present (mainly that
the length of both sides is p)

have b_len_p : (alternatingWord i j m ++ b_tail).length = p

So we can finish the proof by using it again:

83

rw[b_word_cons] at hb’

rw[b_word_cons] at b_reduced’

apply cs.matsumoto_reduced_inductionStep_of_firstLetterEq

p (alternatingWord i j m ++ b_tail) l’_t j b_len_p len_l’_t_eq_p

(Eq.symm hb’) b_reduced’ l’_reduced ih

Now that we have the proof of this auxiliary lemma, the proof of Theorem 4.30 is just
a special case:

theorem matsumoto_reduced [. . .] := by

apply cs.matsumoto_reduced_aux (l.length) l l’ rfl _ hr hr’ h

Notice that all hypotheses for the auxiliary theorem are directly given from those of the final
theorem except for len_l_eq_p and len_l’_eq_p. For the first, since we supplied l.length

as p, the goal becomes

⊢ l.length = l.length

Goals like this, where we have to prove ⊢ a = a are resolved with the reflexivity tactic rfl.

And for len_l’_eq_p, the goal becomes

⊢ l.length = l’.length

This proof is a bit more complicated so we leave it for later with the placeholder keyword
(_). Then, the calc tactic helps us prove this through a chain of equalities.

l’.length is equal to len (π l’) (the length of its product) because l’ it’s a reduced
word (hr’). Then, len (π l’) is equal to len (π l) from the hypothesis h, which is in turn
equal to l.length because l is also reduced (hr).

calc

l’.length = len (π l’) := by

rw[IsReduced] at hr’

rw[← hr’]

_ = len (π l) := by rw[h]

_ = l.length := by

rw[IsReduced] at hr

rw[← hr]

5 Demazure operators over Sn+1

5.1 Sn+1 as a Coxeter group

With Matsumoto’s theorem in hand, we can broaden the definition of Demazure operators.
Think back to the difficulties encountered during our initial expansion attempt and consider
how we can now overcome those issues.

84

To apply Matsumoto’s theorem (and the rest of results of the previous section), we need
to show that Sn+1 is in fact a Coxeter group. Surprisingly, this is not trivial and, in fact, it
has not been formalised yet.

We didn’t find a simple way to do it, so we didn’t think it was worth spending a lot of
time into, specially knowing that the mathlib community is working on a generalised way
to identify Coxeter groups.

We leave a blueprint to prove this fact from Exercise 1.5 of [AB05], which requires a
highly technical but direct induction proof, and it’s probably the shortest way to prove this
fact with the current tools. Another way is by using the Exchange property characterization
of Coxeter groups (Proposition 1.5.4 of [AB05]), which is also not too far off now that the
Strong Exchange Theorem is formalised.

Sadly, this means that this becomes the only part of this work that is not formalised
and instead taken for granted. However, this is a basic fact in almost every reference about
Coxeter groups[Bou08; AB05; Hum90; Dav08] so its veracity is hardly disputed.

As we explained in Example 4.1, let Coxn be the Coxeter group associated to the matrix
An, with generators {si}i∈[n]
variable (n : N)
def M := CoxeterMatrix.An n

def cs := (M n).toCoxeterSystem

abbrev Cox (n : N) := (M n).Group

Then let’s consider the symmetric group Sn+1, with generators {si}i∈[n]
abbrev S (n : N) := Equiv.Perm (Fin n)

instance : Group (S (n + 1)) := Equiv.Perm.permGroup

Theorem 5.1. There is a natural homomorphism of groups f : Coxn −→ Sn+1 sending

si 7→ si

Proof. As described in Section 4.6, we construct this map by lifting the map f̃ : [n] −→ Sn+1

that sends i 7→ si.

def f_simple : Fin n → S (n + 1) :=

fun i => Equiv.swap i.castSucc i.succ

We show that f is liftable with a similar argument to those used in Section 4.6.

theorem f_liftable : (M n).IsLiftable (f_simple n) := by

. . .

Then, the function we are looking for is

def f := lift (cs n) ⟨ f_simple n, f_liftable n ⟩

Lemma 5.2. f is surjective.

85

Proof. Being surjective is equivalent to having the range of f be the whole monoid Sn+1

(the top element of the subgroup order, denoted by T in lean)

apply MonoidHom.mrange_top_iff_surjective.mp

⊢ MonoidHom.mrange (f n) = T

But we also have that the closure of {s0, . . . , sn−1} is Sn+1, since these transpositions gen-
erate the symmetric group.

have : Submonoid.closure (Set.range fun (i : Fin n) 7→ Equiv.swap i.castSucc

i.succ) = := by

exact Equiv.Perm.mclosure_swap_castSucc_succ n

Therefore, it suffices to prove that these generators are in the image of f , which is trivial
by its definition.

rw[← this]

simp

intro p hp

simp at hp

rcases hp with ⟨ i, rfl ⟩
simp

use (cs n).simple i

simp[f_apply_simple]

Theorem 5.3 (Proposition 1.5.4 of [AB05]). f is an isomorphism

Sketch of proof. We construct the isomorphism as that with underlying function f and using
the previous lemma to show it’s surjective. The proof of injectivity is missing.

def f_equiv : (S’ n) ≃* S (n + 1) := by

apply MulEquiv.ofBijective (f n)

constructor

· sorry
· exact f_surjective n

Now, we can consider Sn+1 as a Coxeter group with the previous isomorphism.

def S_cox : CoxeterSystem (M n) (S (n + 1)) := ⟨ (f_equiv n).symm ⟩

Remark 5.4. As expected, the generator set S is the set of transpositions si

theorem S_cox_simple (i : Fin n) :

(S_cox n).simple i = (Equiv.swap i.castSucc (i.succ)) := by

rw[← f_equiv_apply_simple]

rfl

Theorem 5.5. The symmetric group Sn+1 satisfies the conditions needed to apply Mat-
sumoto’s Theorem.

86

Proof. 1. Lemma 4.34: ∀i, j ∈ [n], 1 ≤M(i, j)

We simply show that the inequality holds for every i and j, regardless of whether they
are equal, adjacent or none of them.

intro i j

simp[M, CoxeterMatrix.An]

by_cases h1 : i = j

repeat

by_cases h2 : j.val + 1 = i.val ∨ i.val + 1 = j

repeat simp [h1, h2]

2. Lemma 4.33: ∀i, j ∈ B with i ̸= j and p ∈ N such that 0 < p < M(i, j), (sisj)
p ̸= e

We proceed by cases. For the case where i and j are adjacent we proved the following
technical lemma:

Lemma 5.6. Let i, j ∈ [n] such that i = j + 1 or j = i + 1. Then, sisj is a cycle of
length three

lemma cycle_of_adjacent_swap (i j : Fin n) (hij : i ̸= j)

(h1 : j.succ = i.castSucc ∨ i.succ = j.castSucc) :

Equiv.Perm.IsThreeCycle

(Equiv.swap i.castSucc i.succ * Equiv.swap j.castSucc j.succ)

As expected, this means that sisj has order three. This is formalised in

mathlib

theorem Equiv.Perm.IsThreeCycle.orderOf {g : Equiv.Perm α} (ht :

g.IsThreeCycle) :

orderOf g = 3

Then, we unfold the definition of order, which tells us two things; That (sisj)
3 = e,

which we ignore by using the _ placeholder and that (sisj)
p ̸= e when 0 < p < 3,

exactly what we are looking for.

obtain ⟨ _, ho ⟩ := (orderOf_eq_iff zero_lt_three).mp

(Equiv.Perm.IsThreeCycle.orderOf this)

simp at ho

apply ho p hp’ hp

When i and j aren’t adjacent, M(i, j) = 2 so the only value within bounds is p = 1.
Therefore, we need to show that sisj ̸= e This is achieved by showing that sisj(j) =
si(j + 1) = j + 1

calc

(Equiv.swap i.castSucc i.succ * Equiv.swap j.castSucc j.succ) j =

Equiv.swap i.castSucc i.succ (Equiv.swap j.castSucc j.succ j)

:= by rfl

_ = Equiv.swap i.castSucc i.succ j.succ

:= by simp[h1]

_ = j.succ := by

apply Equiv.swap_apply_of_ne_of_ne

intro h

simp at h1

apply Fin.ext_iff.mp at h

87

simp at h

simp[h] at h1

intro h

apply Fin.succ_inj.mp at h

apply hij h.symm

The only non-trivial part is showing that si(j + 1) = j + 1 by proving j + 1 ̸= i and
j + 1 ̸= i+ 1 in [n], which requires some type conversions.

5.2 Extending the definition

Definition 5.1. Let l = i0i1 · · · ip−1 ∈ B∗ be a word (p ∈ N, ik ∈ B ∀0 ≤ k < p). The
Demazure operator at l is defined as:

∂l := ∂i0 ◦ ∂i1 ◦ · · · ◦ ∂ip−1

def DemazureOfWord (l : List (Fin n)) : LinearMap (RingHom.id C) (MvPolynomial

(Fin (n + 1)) C) (MvPolynomial (Fin (n + 1)) C) :=

match l with

| [] => LinearMap.id

| i :: l => LinearMap.comp (Demazure i) (DemazureOfWord l)

Some properties are immediate from the definition:

Lemma 5.7. Let l, l′ ∈ B∗ be two words. Then,

∂l·l′ = ∂l ◦ ∂l′

lemma demazureOfWord_append (l l’ : List (Fin n)) : DemazureOfWord (l ++ l’) =

LinearMap.comp (DemazureOfWord l) (DemazureOfWord l’) := by

induction l with

| nil => simp[DemazureOfWord]

| cons i l ih => simp[DemazureOfWord, ih, LinearMap.comp_assoc]

Now we want to lift this definition to Sn+1, while avoiding the pitfalls we identified before the
Coxeter section. We can’t have two equal transpositions next to each other or the resulting
operator will be zero. To avoid this, we only consider reduced words for the definition.

Definition 5.2. Let w ∈ W . Then, let l ∈ B∗ be a reduced word representing w, that is,
such that π(l) = w. This word is guaranteed to exist by Lemma 4.8. Then, the Demazure
operator at w is defined as:

∂w := ∂l

To formalise this definition we will use Classical.choose to get a specific reduced
word from the existence statement in Lemma 4.8. This means that this definition is non-
computable.

noncomputable def DemazureOfProd (w : S (n + 1)) :

LinearMap (RingHom.id C) (MvPolynomial (Fin (n + 1)) C) (MvPolynomial (Fin (n +

1)) C) :=

DemazureOfWord (Classical.choose ((Symm n).exists_reduced_word’ w))

88

To establish that this is well defined, we have to prove that the choice of reduced word
l is irrelevant. We begin by showing that executing a braid move does not change the
Demazure operator for a given word.

Lemma 5.8. Let l, l′ ∈ B∗ related by a braid move β[i, j, p], that is,

l
β[i,j,p]−−−−→ l′

Then, ∂l = ∂l′

theorem demazure_of_braidMove (l : List (Fin n)) (bm : cs.BraidMove) :

DemazureOfWord l = DemazureOfWord (cs.apply_braidMove bm l)

Proof. We proceed by induction on l, generalizing the braid word. The initial case is trivial,
since if l = e, there’s no word to apply and both Demazure operators are equal to the
identity.

evert bm

induction l with

| nil =>

rintro ⟨i, j, p⟩
simp[DemazureOfWord, apply_braidMove]

rw[apply_braidMove.eq_def]

simp[braidWord_ne_nil]

match p with

| 0 => simp[DemazureOfWord]

| _ + 1 => simp[DemazureOfWord]

| cons i’ l ih => . . .

Now, let’s assume that the result holds for l and let’s prove it for i′ · l. That is, for any braid

move β and l′ ∈ B∗ with l
β−→ l′ we have

∂l = ∂l′

Now let β[i, j, p] be a braid move with i, j ∈ B and p ∈ N. We proceed by cases on p.
If it’s greater than zero, we write it as p+ 1. Then, applying β[i, j, p+ 1] to i′ · l results in
i′ · l′, where l

β[i,j,p]−−−−→ l′ by the definition of braid words. But then,

∂i′·l = ∂i′ ◦ ∂l = ∂i′ ◦ ∂l′ = ∂i′·l′

We have applied the induction hypothesis in the middle equality.

match p with

| p + 1 =>

simp[DemazureOfWord, apply_braidMove]

simp[LinearMap.comp, Function.comp]

apply congr_arg

rw[ih ⟨i, j, p⟩]

If p = 0, we apply the braid move right away, so we split by cases depending on whether
i′ · l starts with b(i, j) or not.

89

simp[apply_braidMove]

by_cases h : List.take (M n i j) (i’ :: l) = braidWord (M n) i j

Of course if it doesn’t the proof is trivial since the braid move doesn’t modify l. So we
assume that i′ · l = b(i, j) · lt. Therefore, we need to show that

∂b(i,j)·lt = ∂b(j,i)·lt

nth_rewrite 1 [← List.take_append_drop (M n i j) (i’ :: l)]

simp[h]

rw[demazureOfWord_append]

rw[demazureOfWord_append]

So, since ∂b(i,j)·lt = ∂b(i,j) ◦ ∂lt (and similarly for the right side), it suffices to show

∂b(i,j) = ∂b(j,i)

suffices DemazureOfWord (braidWord (M n) i j) =

DemazureOfWord (braidWord (M n) j i) from by

rw[this]

First, we discard the case where i = j since it’s trivial, and simplify braid words to altern-
ating words of length M(i, j) (resp. M(j, i))

simp[braidWord]

by_cases h_eq : i = j

· simp[h_eq]

Now we consider the case where i and j are non adjacent. Then, after unfolding the definition
of NonAdjacent we apply the inequalities at the Coxeter matrix An to get that M(i, j) = 2.
Therefore, the goal turns into

∂a2(i,j) = ∂a2(j,i)

obtain ⟨_, h2, h3, _⟩ := by exact h_adjacent

simp at h2 h3

have h2’ := not_imp_not.mpr Fin.eq_of_val_eq h2

have h3’ := not_imp_not.mpr Fin.eq_of_val_eq h3

simp at h2’ h3’

simp[M, CoxeterMatrix.An, h_eq, j_ne_i, h2’, h3’, Ne.symm h2’, Ne.symm h3’]

By the definition of alternating words, the previous equation turns into

∂i ◦ ∂j = ∂j ◦ ∂i

Which is one of the equations we proved in Proposition 3.9.

simp[alternatingWord, DemazureOfWord, Demazure, LinearMap.comp, Function.comp]

funext p

apply demazure_commutes_non_adjacent i j h_adjacent p

90

If i and j are adjacent, this means that either i = j + 1 or j = i+ 1 as natural numbers
by simply inverting the inequalities of NonAdjacent

have h_adjacent’ : j.val + 1 = i.val ∨ i.val + 1 = j.val := by

rw[NonAdjacent] at h_adjacent

simp at h_adjacent

by_contra h_contra

simp at h_contra

rcases h_contra with ⟨h1, h2⟩
apply h_eq

apply h_adjacent h_eq

intro h_fin

apply h1

apply Eq.symm

apply Fin.val_eq_of_eq h_fin

intro h_fin

apply h2

apply Fin.val_eq_of_eq h_fin

Then, we use these two cases to get that M(i, j) = 3 and therefore turn the goal into

∂j ◦ ∂i ◦ ∂j = ∂i ◦ ∂j ◦ ∂i

simp[M, CoxeterMatrix.An, j_ne_i, h_eq, h_adjacent’, Or.comm.mp h_adjacent’]

simp[alternatingWord, DemazureOfWord, Demazure, LinearMap.comp, Function.comp]

Let’s assume that i = j+1 (the other case is analogous). Observe that j+1 = i < 0, so we
can see it as an element of [n]. This part is mostly a formality to get the equality i = j in
[n] and not only in N.
have hj : j.val + 1 < n := by

rw[h1]

simp

have h1’ : ⟨j.val + 1, hj⟩ = i := by

apply Fin.ext

simp[h1]

Then we substitute i by j + 1 and apply the second part of Proposition 3.9 to finish the
proof.

rw[← h1’]

funext p

exact demazure_commutes_adjacent j hj p

We can easily extend this result to a sequence of braid moves with an induction argument.

Lemma 5.9. Let l, l′ ∈ B∗ related by a sequence of braid moves β, that is,

l
β−→ l′

Then, ∂l = ∂l′

91

lemma demazure_of_braidMoveSequence

(l : List (Fin n)) (bms : List (Symm n).BraidMove) :

DemazureOfWord l = DemazureOfWord ((Symm n).apply_braidMoveSequence bms l) :=

by

induction bms with

| nil =>

simp[apply_braidMoveSequence]

| cons bm bms ih =>

rw[apply_braidMoveSequence]

rw[← demazure_of_braidMove ((Symm n).apply_braidMoveSequence bms l) bm]

exact ih

Finally, we can prove that this definition stays the same when taking an equivalent word,
thanks to Matsumoto’s Theorem.

Theorem 5.10. Let l, l′ ∈ B∗ such that they are both reduced words and π(l) = π(l′). Then,

∂l = ∂l′

theorem DemazureOfWord_eq_equivalentWord (l l’ : List (Fin n))

(h_eq : π l = π l’) (hr : cs.IsReduced l) (hr’ : cs.IsReduced l’) :

DemazureOfWord l = DemazureOfWord l’

Proof. We know that it suffices to prove that there is a sequence of braid moves β such that

l
β−→ l′ with Lemma 5.9 implies the result.

suffices ∃ (bms : List (Symm n).BraidMove),

(Symm n).apply_braidMoveSequence bms l = l’ from by

rcases this with ⟨bms, h⟩
rw[← h]

exact demazure_of_braidMoveSequence l bms

This is precisely what Matsumoto’s theorem states, given that l and l′ are reduced words
with π(l) = π(l′).

exact (Symm n).matsumoto_reduced l l’ hr hr’ h_eq

92

References

[AB05] Francesco Brenti (auth.) Anders Bjorner. Combinatorics of Coxeter Groups. 1st ed.
Graduate Texts in Mathematics №231. Springer, 2005. isbn: 3540442383; 9783540442387;
9783540275961; 3540275967.

[Bou08] N. Bourbaki. Lie Groups and Lie Algebras: Chapters 4-6. Elements de mathem-
atique [series] partes 4-6. Springer Berlin Heidelberg, 2008. isbn: 9783540691716.

[Cox34] H. S. M. Coxeter. “Discrete Groups Generated by Reflections”. Annals of Math-
ematics 35.3 (1934), pp. 588–621. issn: 0003486X, 19398980.

[Dav08] Michael W. Davis. The geometry and topology of Coxeter groups. English. Vol. 32.
Lond. Math. Soc. Monogr. Ser. Princeton, NJ: Princeton University Press, 2008.
isbn: 978-0-691-13138-2.

[Dem74] Michel Demazure. “Désingularisation des variétés de Schubert généralisées”. fr.
Annales scientifiques de l’École Normale Supérieure 4e série, 7.1 (1974), pp. 53–
88. doi: 10.24033/asens.1261.

[Hum90] James E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1990.

[Lea] Lean webpage. url: https://lean-lang.org/about/.

[Mil] Mathematics in Lean. url: https : / / leanprover - community . github . io /
mathematics_in_lean/.

[Mata] mathlib. url: https://github.com/leanprover-community/mathlib4.

[Matb] mathlib documentation. url: https://leanprover- community.github.io/
mathlib4_docs/.

[Ála] Óscar Álvarez. Formalization of the Demazure operators in lean (code). url:
https://github.com/bolito2/DemazureOperatorsLean.

[Álb] Óscar Álvarez. Formalization of the Demazure operators in lean (documentation).
url: https://bolito2.github.io/DemazureOperatorsLean/.

93

https://doi.org/10.24033/asens.1261
https://lean-lang.org/about/
https://leanprover-community.github.io/mathematics_in_lean/
https://leanprover-community.github.io/mathematics_in_lean/
https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover-community.github.io/mathlib4_docs/
https://github.com/bolito2/DemazureOperatorsLean
https://bolito2.github.io/DemazureOperatorsLean/

	Introduction
	Preliminaries
	Groups
	Symmetric group
	Polynomials

	Demazure Operators
	Definition
	Basic results
	Alternative definition
	Combinatorial results

	Coxeter groups
	Definition
	Basic properties and facts
	Alternating words
	Length of words
	Reflections and inversions
	Coxeter lifts
	The Strong Exchange Theorem
	Coxeter moves and Matsumoto's theorem

	Demazure operators over Sn+1
	Sn+1 as a Coxeter group
	Extending the definition

