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Abstract
The Bachelor’s thesis addresses the formalisation of ancient construction problems,
with a particular focus on the ”Impossibility of Trisecting the Angle and Doubling
the Cube”. This is the eighth theorem published by Freek Wiedijk in the ’100 The-
orems’ compendium, which serves to allow for a comparison of different theorem
provers. For this, the theorem prover Lean is utilised. As a result, this paper is de-
voted to the problems and solutions that arise when formalising ancient construction
problems and proves the impossibility of doing so using Galois’ theory.

Zusammenfassung in deutscher Sprache
Die Bachelorarbeit befasst sich mit der Formalisierung antiker Konstruktionsprob-
leme, wobei der Schwerpunkt auf der „Unmöglichkeit der Dreiteilung des Winkels
und der Verdoppelung des Würfels“ liegt. Dies ist das achte Theorem, das Freek
Wiedijk in dem im Rahmen von „100 Theorems“ veröffentlichten Kompendium
veröffentlicht hat, das dazu dient, einen Vergleich verschiedener Theorembeweiser
zu ermöglichen. Hierfür wird der Theorembeweiser Lean verwendet. Die vorliegende
Arbeit widmet sich daher den Problemen und Lösungen, die bei der Formalisierung
alter Konstruktionsprobleme auftreten, und beweist die Unmöglichkeit, dies mit der
Galois-Theorie zu tun.
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Chapter 1

Introduction in the topic of the
Bachelor Thesis

This paper formalises the proof of ”The Impossibility of Trisecting the Angle and
Doubling the Cube” in ruler and compass construction. The Github repository with
the code and bluebrint can be found here : https://github.com/Louis-Le-Grand/
Formalisation-of-constructable-numbers

1.1 Construction Problems
The straightedge and compass constructions were developed by the ancient Greeks.
It consists of an initial set ℳ of constructed points, a ruler that has no measurements
and can draw indefinite lines through at least two existing points, and a compass,
the centre of which is an already constructed point and the radius of which is the
distance between two already constructed points. To construct new points, take the
intersection of two lines, two circles or a line and a circle. The set of all possible
intersections is called ℳ∞. In order to construct a line or a circle, it is necessary
that our initial set contain at least two points. Consequently, we can normalise our
set and assume that 0, 1 ∈ ℳ.

We may now proceed to define the problem of doubling a cube. The volume of
a cube is equal to the cube of the length of an edge, which may be expressed as 𝑎3,
where 𝑎 is the length of an edge. Therefore, a cube with a doubled volume, 2 ⋅ 𝑎3,
has an edge length of the cube root of two times the length of the original edge. If
we now take the cube with a length of one, the problem is as follows:

Problem 1.1 (Doubling the Cube). Given the set ℳ = {0, 1}, can we construct
the point 3√2, i.e. is 3√2 ∈ ℳ∞?

A similar approach allows the problem of trisecting angles to be simplified. If
we take two points on the real axis and a third point on the unit circle, this defines
an angle. Thus we need the points 0, 1 and 𝑒𝑖𝛼. The trisection intersects the unit
circle at 𝑒𝑖𝛼/3. Therefore the problem can be described as follows:
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Problem 1.2 (Trisecting the Angle). Given the set ℳ = {0, 1, 𝑒𝚤⋅𝛼}, can we con-
struct the point 𝑒𝚤⋅𝛼3 , i.e. is 𝑒𝚤⋅𝛼3 ∈ ℳ∞?

1.2 Motivation
The subject of this formalisation is the eighth theorem of Freek Wiedijk’s list of
”100 Theromes”, entitled ”The Impossibility of Trisecting the Angle and Doubling
the Cube” [8]. This is a list of theorems based on an online list from 1999 of the 100
most significant theorems in mathematics [1], which is used for comparative purposes
with respect to different theorem provers. The list provides a concise overview of the
most important theorem provers, showcases fields in which theorems can be used,
and also presents some smaller programs that have formalised theorems that had not
yet been formalised in any other environment. Notably, the aforementioned theorem
had not yet been formalised in Lean [3].

1.3 Lean, Theorem Prover and Mathlib
Lean is a functional programming language that can be utilised as an interactive
theorem prover. The Lean Project was initiated by Leonardo de Moura at Microsoft
Research Redmond in 2013 and represents a long-term research endeavour, published
under the Apache 2.0 licence.

In order to verify a theorem, it is necessary to find proof. Computers can be of
assistance in two distinct ways: firstly, through interactive theorem proving, which
verifies the correctness of a proof step by step; and secondly, through automated
theorem proving, which attempts to find a proof for a given statement. Lean rep-
resents a hybrid of these two approaches. It is an interactive theorem prover, but
it incorporates automated tools and methods to assist in the construction of a fully
specified axiomatic proof.[2]

Mathlib is a library of mathematical content for the Lean programming language.
It is a community-developed project, created by a large number of contributors
and covering a substantial breadth of mathematical topics. To ascertain which
areas are encompassed by MathLib, one may refer to the following link: https:
//leanprover-community.github.io/mathlib-overview.html.

Outline of the Thesis
The following three chapters present the blueprint for my formalisation. Conse-
quently, the document includes a number of elementary lemmas and details that
are not typically documented in such a manner. However, a few statements and
most of the auxiliary lemmas are not included in the blueprint. The structure of
this formalisation is based on the lecture ”Einführung in die Algebra” by Jan Schröer
(WS 22/23).

5

https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/mathlib-overview.html


Chapter 2

Basic Constructions with Ruler
and Compass

2.1 Defining lines, circles and the set of constructable
points

First we need to define what construction using a ruler and compass means. We will
use ℂ as plane of drawing and ℳ ⊂ ℂ as the set of constructed points.

Definition 2.1 (Line). A line 𝐿 ∶= (𝑥, 𝑦) is defined by two points 𝑥, 𝑦 ∈ ℂ with
𝑥 ≠ 𝑦 and a set

𝑙 ∶= {𝜆𝑥 + (1 − 𝜆)𝑦 ∣ 𝜆 ∈ ℝ}.
We say two lines are equal if their generated set is equal.

Remark 2.2. To express lines in the most general way, they are stated without the
requirement that 𝑥 ≠ 𝑦, which allows for trivial lines. The condition is only included
in the lemmas that require it.

Definition 2.3 (Circle). A circle 𝐶 ∶= (𝑐, 𝑟) is defined by a center 𝑐 with 𝑐 ∈ ℂ, a
radius 𝑟 ∈ ℝ≥0 and the set:

𝑐 ∶= {𝑧 ∈ ℂ ∣ ‖𝑧 − 𝑐‖ = 𝑟}.

We say two circles are equal if their underlying sets are equal.

Lemma 2.4. If we have two circles 𝐶1 = (𝑐1, 𝑟1), 𝐶2 = (𝑐2, 𝑟2) and we have 𝑐1 ≠ 𝑐2
or 𝑟1 ≠ 𝑟2 then the circles aren’t equal.

Definition 2.5 (Set of lines). ℒ(ℳ) is the set of all real straight lines 𝑙, with
|𝑙 ∩ℳ| ≥ 2. As a set this is:

ℒ(ℳ) ∶= {𝑙 ∣ 𝑙 = {𝑥, 𝑦} with 𝑥, 𝑦 ∈ ℳ∧ 𝑥 ≠ 𝑦}.
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Definition 2.6 (Set of circles). 𝒞(ℳ) is the set of all circles in ℂ, with center in
ℳ and radius of 𝒞 which is the distance of two points in ℳ. As an equation this is:

𝒞(ℳ) ∶= {𝑐 ∣ 𝑐 = ⟨𝑐, dist 𝑟1𝑟2⟩ with 𝑐, 𝑟1, 𝑟2 ∈ 𝑀}.
Definition 2.7 (Rules to construct a point). We define operations that can be used
to construct new points.

1. (𝐼𝐿𝐿) is the intersection of two different lines in ℒ(ℳ).
2. (𝐼𝐿𝐶) is the intersection of a line in ℒ(ℳ) and a circle in 𝒞(ℳ).
3. (𝐼𝐶𝐶) is the intersection of two different circles in 𝒞(ℳ).

𝐼𝐶𝐿(ℳ) is the union of all points that can be constructed using the operations
(𝐼𝐿𝐿), (𝐼𝐿𝐶) and (𝐼𝐶𝐶) and ℳ.

Definition 2.8 (Set of constructable points). We inductively define the chain

ℳ0 ⊆ ℳ1 ⊆ ℳ2 ⊆ …
with ℳ0 = ℳ and ℳ𝑛+1 = 𝐼𝐶𝐿(ℳ𝑛)
and call ℳ∞ = ⋃𝑛∈ℕ ℳ𝑛 the set of all constructable points.

Remark 2.9. The set of lines, circles and their intersection 𝑖𝑐𝑐, 𝑖𝑙𝑐, 𝑖𝑐𝑐 are mono-
ton, i.e. for 𝑁 ⊆ 𝑀 is ℒ(𝒩) ⊆ ℒ(ℳ),….

2.2 Properties of Lines
In light of the fact that a considerable proportion of the forthcoming project will
entail the manipulation of lines and the absence of an existing formalisation from
MathLib, it is imperative to illustrate the fundamental properties that will be utilised
throughout the remainder of the project.

Lemma 2.10. The set of points of a line 𝑙 is not defined by one position vector, i.e.
for every 𝛼 ∈ 𝑙 {𝜆𝑥 + (1 − 𝜆)𝑦 ∣ 𝜆 ∈ ℝ} = {𝜆𝑥 + 𝜆𝑦 + 𝛼 ∣ 𝜆 ∈ ℝ}.

Proof. Two sets are equal if they have the same elements. Since 𝛼 is in 𝑙, there exists
a 𝜆𝛼 such that 𝛼 = 𝜆𝛼𝑥 + (1 − 𝜆𝛼)𝑦.

”⇒∶” Let 𝑧 = 𝜆0𝑥+(1−𝜆0)𝑦 (i.e. 𝑧 ∈ {𝜆𝑥+(1−𝜆)𝑦 ∣ 𝜆 ∈ ℝ}), we have to show
that 𝑧 ∈ {𝜆𝑥 + 𝜆𝑦 + 𝛼 ∣ 𝜆 ∈ ℝ}, which is equivalent to the existence of 𝜆 such that
𝑧 = 𝜆𝑥 + 𝜆𝑦 + 𝛼. If we use 𝜆 = 𝜆0 − 𝜆𝛼 we get

(𝜆0 − 𝜆𝛼)𝑥 + ((𝜆0 − 𝜆𝛼))𝑦 + 𝛼 𝛼=𝜆𝛼𝑥+(1−𝜆𝛼)𝑦= 𝜆0𝑥 − 𝜆0𝑦 + 𝑦 = 𝑧
⇐∶ Let 𝑧 be in {𝜆𝑥 + (𝜆)𝑦 + 𝛼 ∣ 𝜆 ∈ ℝ}, if we use 𝜆 = 𝜆0 + 𝜆𝛼 we get

(𝜆0+𝜆𝛼)𝑥+(1−(𝜆0+𝜆𝛼))𝑦 = 𝜆0𝑥−𝜆0𝑦+𝜆𝛼𝑥−𝜆𝛼𝑦+𝑦 𝛼=𝜆𝛼𝑥+(1−𝜆𝛼)𝑦= 𝜆0(𝑥−𝑦)+𝛼 = 𝑧
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Definition 2.11 (parallel). Two lines 𝑙1 and 𝑙2 are parallel if they have the same
slope, i.e. ∃𝑟 ∈ ℂ ∶ 𝑙1 = {𝑥 + 𝑟 ∣ 𝑥 ∈ 𝑙2}.

Lemma 2.12 (Parallel defined by basis). If the basis of two lines is moved by the
same amount, i.e 𝑙1.𝑧1 − 𝑙2.𝑧1 = 𝑙1.𝑧2 − 𝑙2.𝑧2, then they are parallel.

Proof. We have to lines 𝑙1, 𝑙2 with basis 𝑧1, 𝑧2 and 𝑙1.𝑧1 − 𝑙2.𝑧1 = 𝑙1.𝑧2 − 𝑙2.𝑧2. To
show that they are parallel we have to show that

∃𝑟 ∶ 𝑙1 = {𝑧 + 𝑟 ∣ 𝑧 ∈ 𝑙2}.

To make it easier to read we define 𝑎 ∶= 𝑙1.𝑧1, 𝑏 ∶= 𝑙1.𝑧2, 𝑥 ∶= 𝑙2.𝑧1 and 𝑦 ∶= 𝑙2.𝑧2.
Upon unravelling the definition, it becomes evident that we need to show that
∃𝑡 ∶ 𝑡 ⋅ 𝑎 + (1 − 𝑡) ⋅ 𝑏 = 𝑧 ⟺ ∃𝑠 ∶ 𝑠 ⋅ 𝑥 + (1 − 𝑠)𝑦 + (𝑎 − 𝑥) = 𝑧.
⇒∶ Claim 𝑠 = 𝑡(𝑎−𝑏)

𝑥−𝑦 is a solution.

Proof.

𝑧 = 𝑠 ⋅ 𝑥 + (1 − 𝑠)𝑦 + (𝑎 − 𝑥) |𝑧 = 𝑡 ⋅ 𝑎 + (1 − 𝑡) ⋅ 𝑏
⇔ 𝑡 ⋅ 𝑎 + (1 − 𝑡) ⋅ 𝑏 = 𝑠 ⋅ 𝑥 + (1 − 𝑠)𝑦 + (𝑎 − 𝑥)
⇔ 𝑡 ⋅ 𝑎 − 𝑡 ⋅ 𝑏 + 𝑏 = 𝑠 ⋅ 𝑥 − 𝑠 ⋅ 𝑦 + 𝑦 + (𝑎 − 𝑥) | − 𝑦
⇔ 𝑡 ⋅ 𝑎 − 𝑡 ⋅ 𝑏 + 𝑏 − 𝑦 = 𝑠 ⋅ 𝑥 − 𝑠 ⋅ 𝑦 + (𝑎 − 𝑥) − 𝑦 |𝑎 − 𝑥 = 𝑏 − 𝑦
⇔ 𝑡 ⋅ 𝑎 − 𝑡 ⋅ 𝑏 = 𝑠 ⋅ 𝑥 + 𝑠 ⋅ 𝑦

⇔ 𝑡(𝑎 − 𝑏) = 𝑠(𝑥 − 𝑦) |𝑠 ∶= 𝑡(𝑎 − 𝑏)
𝑥 − 𝑦

⇔ 𝑡(𝑎 − 𝑏) = 𝑡(𝑎 − 𝑏)
𝑥 − 𝑦 (𝑥 − 𝑦)

⇔ 𝑡(𝑎 − 𝑏) = 𝑡(𝑎 − 𝑏)

”⇐∶” Claim 𝑡 = 𝑠(𝑥−𝑦)
𝑎−𝑏 is a solution.

Proof.

𝑡 ⋅ 𝑎 + (1 − 𝑡)𝑏 = 𝑧 |𝑧 ∶= 𝑠 ⋅ 𝑥 + (1 − 𝑠)𝑦 + (𝑎 − 𝑥)
⇔ 𝑡 ⋅ 𝑎 − 𝑡 ⋅ 𝑏 + 𝑏 = 𝑠 ⋅ 𝑥 − 𝑠 ⋅ 𝑦 + 𝑦 + (𝑎 − 𝑥) | − 𝑦; 𝑎 − 𝑥 = 𝑏 − 𝑦

⇔ 𝑡(𝑎 − 𝑏) = 𝑠(𝑥 − 𝑦) |𝑡 ∶= 𝑠(𝑥 − 𝑦)
𝑎 − 𝑏

⇔ 𝑠(𝑥 − 𝑦)
𝑎 − 𝑏 (𝑎 − 𝑏) = 𝑠(𝑥 − 𝑦)
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Definition 2.13. The direction vector of a line 𝑙 is the vector 𝑙.𝑧1 − 𝑙.𝑧2.

Definition 2.14. Two lines 𝑙1 and 𝑙2 are parallel’ if there exists a 𝑘 such that
𝑙1.𝑧1 − 𝑙1.𝑧2 = 𝑘 ⋅ (𝑙2.𝑧1 − 𝑙2.𝑧2).
Lemma 2.15 (Parallel imp parallel’). If two lines 𝑙1 and 𝑙2 are parallel’ they are
parallel.

Remark 2.16. The other direction holds as well, but is not needed.

Proof. Let 𝑙1 and 𝑙2 be two lines with 𝑙1.𝑧1 − 𝑙1.𝑧2 = 𝑘 ⋅ (𝑙2.𝑧1 − 𝑙2.𝑧2). We have to
show that 𝑙1 = {𝑧 + 𝑟 ∣ 𝑧 ∈ 𝑙2}, i.e. ∃𝑟 ∶ 𝑙1 = {𝑧 + 𝑟 ∣ 𝑧 ∈ 𝑙2}.
First we remark that 𝑘 ≠ 0 since 𝑙1.𝑧1 ≠ 𝑙1.𝑧2. We define 𝑟 ∶= 𝑦1−𝑦2 and show that
𝑙1 = {𝑧 + 𝑟 ∣ 𝑧 ∈ 𝑙2}. For 𝑧 to be in 𝑙1 is equivalent to 𝑧 = 𝜆𝑥1 + (1 − 𝜆)𝑦1 for some
𝜆0. For 𝑧 to be in {𝑥+𝑦1 −𝑦2 ∣ 𝑧 ∈ 𝑙2} is wquivalent to the existence of 𝜆 such that

𝑧 = 𝜆𝑥2+(1−𝜆)𝑦2+𝑦1−𝑦2 = 𝜆(𝑥2−𝑦2)+𝑦1
𝜆=𝜆0∗𝑘= 𝜆0𝑘(𝑥2−𝑥2)−𝑦1

𝑥1−𝑦1=𝑘(𝑥2−𝑦2)= 𝜆0(𝑥1−𝑦1)+𝑦1.

Lemma 2.17 (Parallel imp equal). If two lines 𝑙1 and 𝑙2 are parallel’ and intersect,
then they are equal.

Proof. Let 𝑧 ∈ 𝑙1 ∩ 𝑙2. Then we use lemma 2.10 to get 𝑙1 = 𝑙2 ⇔ {𝜆(𝑥1 − 𝑦1) ∣
𝜆 ∈ ℝ} = {𝜆(𝑥2 − 𝑦2) + 𝑧 ∣ 𝜆 ∈ ℝ}. Since for every 𝜆 we have 𝜆(𝑥1 − 𝑦2) + 𝑥 =
𝜆 ⋅ 𝑘(𝑥2 − 𝑦2) + 𝑧 we get 𝑙1 = 𝑙2.

2.3 The Set 𝑀∞

In order to work with the set of constructable points, it is necessary to have some
basic lemmas at one’s disposal. While these may appear to be trivial on paper, they
are invaluable when undertaking a formalisation.

Lemma 2.18 (ℳ ⊆ 𝐼𝐶𝐿(ℳ)). Every set 𝑀 is included in the constructable points
of 𝑀 , i.e.

𝑀 ⊆ 𝐼𝐶𝐿(𝑀)
Proof. Follows from the definition of 𝐼𝐶𝐿(𝑀).

Lemma 2.19 (ℳ𝑖 Monoton). The set ℳ𝑖 is monoton, i.e.

ℳ𝑖 ⊆ ℳ𝑖+1.

This can be generalised to

∀𝑚 ∶ ∀𝑛 ≤ 𝑚 ∶ ℳ𝑛 ⊆ ℳ𝑚.

Proof. Follows from the definition of ℳ𝑖.
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Lemma 2.20 (ℳ in ℳ𝑖). The set ℳ is in ℳ𝑖, i.e.

ℳ ⊆ ℳ𝑖.

Proof. Combining the fact that ℳ0 = ℳ 2.8 and the monotonity of ℳ𝑖 2.19 we get
the result.

Lemma 2.21 (ℳ𝑖 in ℳ∞). The set ℳ𝑖 is in ℳ∞, i.e.

ℳ𝑖 ⊆ ℳ∞.

Proof. Follows from the definition of ℳ∞.

Lemma 2.22 (ℳ in ℳ∞). The set ℳ is in ℳ∞.

Proof. Combining ℳ ⊆ ℳ𝑖 2.20 and ℳ𝑖 ⊆ ℳ∞ 2.21 we get the result.

Lemma 2.23 (ℳ∞ iff ℳ𝑖). A point 𝑧 is in ℳ∞ if and only if 𝑧 is in ℳ𝑖 for some
𝑖.

Proof. Follows from the definition of ℳ∞.

Corollary 2.24 (𝐿(ℳ∞) iff 𝐿(ℳ𝑖)). A line 𝑙 is in ℒ(ℳ∞) if and only if 𝑙 is in
ℒ(ℳ𝑖) for some 𝑖.

Proof. Follows from 2.23 and the fact that every line in ℒ(ℳ∞) is defined by two
points in ℳ∞.

Corollary 2.25 (𝐶(ℳ∞) iff 𝐶(ℳ𝑖)). A circle 𝑐 is in 𝒞(ℳ∞) if and only if 𝑐 is in
𝒞(ℳ𝑖) for some 𝑖.

Proof. Follows from 2.23 and the fact that every circle in 𝒞(ℳ∞) is defined by three
points in ℳ∞.

To construct new points in the next section2.4 we still need to show that every
intersection of lines and circles is in ℳ∞.

Lemma 2.26 (Intersection of lines in ℳ∞). For two lines 𝑙1, 𝑙2 ∈ ℒ(ℳ∞) is 𝑙1∩𝑙2 ∈
ℳ∞.

Proof. By corollary 2.24 and the monotonity of ℳ𝑖 2.19 we get that there exists an
𝑛 such that 𝑙1, 𝑙2 ∈ ℒ(ℳ𝑛). Therfore 𝑙1 ∩ 𝑙2 ∈ ℳ𝑛+1

2.21
⊆ ℳ∞.

Remark 2.27. To formalise the lemmas 2.23, 2.24 and 2.25 one should use filters
in Lean.

Lemma 2.28 (Intersection of line and circle in ℳ∞). For a line 𝑙 ∈ ℒ(ℳ∞) and
a circle 𝑐 ∈ 𝒞(ℳ∞) is 𝑙 ∩ 𝑐 ∈ ℳ∞.

10



Proof. By corollary 2.24 and 2.25 we get that there exists an 𝑛 such that 𝑙 ∈ ℒ(ℳ𝑛)
and 𝑐 ∈ 𝒞(ℳ𝑛). Therfore 𝑙 ∩ 𝑐 ∈ ℳ𝑛+1

2.21
⊆ ℳ∞.

Lemma 2.29 (Intersection of circles in ℳ∞). For two circles 𝑐1, 𝑐2 ∈ 𝒞(ℳ∞) it
follows that 𝑐1 ∩ 𝑐2 ∈ ℳ∞.

Proof. By corollary 2.25 we get that there exists an 𝑛 such that 𝑐1, 𝑐2 ∈ 𝒞(ℳ𝑛).
Therfore 𝑐1 ∩ 𝑐2 ∈ ℳ𝑛+1

2.21
⊆ ℳ∞.

2.4 Basic constructions
It is now possible to construct fundamental points in 𝑀∞ using a compass and ruler,
which can subsequently be employed to create a field structure and special properties
on 𝑀∞. Consequently, the following constructions are based on the assumption that
𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 .

Lemma 2.30 (Negative complex numbers). For 𝑧 ∈ 𝑀∞ it follows that −𝑧 ∈ 𝑀∞.

This construction is taken from [6].
To get the point −𝑧 we can use the second intersection of the line through 0 and 𝑧
with the circle with center 0 and radius ‖𝑧‖.2.1

Proof. Define 𝑙 = {0, 𝑧} and 𝑐 = {0, dist (0, 𝑧)}.
By assumption 0, 𝑧 ∈ 𝑀∞, so 𝑙 ∈ ℒ(ℳ∞) and 𝑐 ∈ 𝒞(ℳ∞).
Claim 1: −𝑧 is in 𝑙.

Proof. By the definition of 𝑙 ∶= {𝜆0 + (1 − 𝜆)𝑧 ∣ 𝜆 ∈ ℝ} with 𝜆 = 2 we get 2 ⋅ 0 +
(1 − 2)𝑧 = −𝑧.

Claim 2: −𝑧 is in 𝑐.

Proof. Unfolding the definition of 𝑐 ∶= {𝑥 ∈ ℂ ∣ ‖𝑥 − 0‖ = dist (0 𝑧)}. By the
definition of the distance we get ‖0 − (−𝑧)‖ = dist (0 𝑧).

By claim 1 and 2 we get that −𝑧 ∈ 𝑙 ∩ 𝑐. Futhermore −𝑧 is in 𝑀∞, after lemma
2.28.

Lemma 2.31 (Addition of complex numbers). For 𝑧1, 𝑧2 ∈ 𝑀∞ it follows that
𝑧1 + 𝑧2 ∈ 𝑀∞.

This construction is taken from [6].
One can construct the point 𝑧1 + 𝑧2 by drawing a circle with center 𝑧1 and radius
‖𝑧2‖ and a circle with center 𝑧2 and radius ‖𝑧1‖ and taking the intersection of the
two circles.2.2
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ℜ

ℑ

𝑧

−𝑧

Figure 2.1: Construction of −𝑧

Proof. First we have the case that 𝑧1 ≠ 𝑧2.
Define 𝑐1 = {𝑧1, dist (0 𝑧2)} and 𝑐2 = {𝑧2, dist (0 𝑧1)}.
By assumption 0, 𝑧1, 𝑧2 ∈ 𝑀∞, so 𝑐1, 𝑐2 ∈ 𝒞(ℳ∞) and since 𝑧1 ≠ 𝑧2 we get 𝑐1 ≠ 𝑐2.
Claim 1: 𝑧1 + 𝑧2 is in 𝑐1.

Proof. By the definition of 𝑐1 ∶= {𝑥 ∈ ℂ ∣ ‖𝑥−𝑧1‖ = dist (0 𝑧2)} and of the distance
we get ‖𝑧1 − (𝑧1 + 𝑧2)‖ = dist (0 𝑧2).

Claim 2: 𝑧1 + 𝑧2 is in 𝑐2.

Proof. Using that 𝑐2 ia definded as 𝑐2 ∶= {𝑥 ∈ ℂ ∣ ‖𝑥 − 𝑧2‖ = dist (0 𝑧1)} and the
definition of the distance we get ‖𝑧2 − (𝑧1 + 𝑧2)‖ = dist (0 𝑧1).

By claim 1 and 2 we get that 𝑧1 + 𝑧2 ∈ 𝑐1 ∩ 𝑐2. Futhermore 𝑧1 + 𝑧2 is in 𝑀∞,
after lemma 2.29.

If we have 𝑧1 = 𝑧2 we can define 𝑐1 = {𝑧1, dist (0 𝑧1)} and 𝑙 = {0, 𝑧1} and get
that 𝑧1 + 𝑧2 = 𝑧1 + 𝑧1 ∈ 𝑐1 ∩ 𝑙.

Corollary 2.32 (Subtraction of complex numbers). For 𝑧1, 𝑧2 ∈ 𝑀∞ it follows that
𝑧1 − 𝑧2 ∈ 𝑀∞.

Proof. By lemma 2.30 and 2.31 we get 𝑧1 − 𝑧2 = 𝑧1 + (−𝑧2) ∈ 𝑀∞.

Corollary 2.33 (Construction of parallel lines). For 𝑙 ∈ ℒ(ℳ∞) and 𝑧 ∈ 𝑀∞ it
follows that ∃𝑙′ ∈ ℒ(ℳ∞) with 𝑧 ∈ 𝑙′ and 𝑙‖𝑙′.
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ℜ

ℑ

𝑧1

𝑧2

𝑧1 + 𝑧2

Figure 2.2: Construction of 𝑧1 + 𝑧2

Proof. Let 𝑙 be a line through 𝑥, 𝑦 ∈ ℳ∞ and 𝑧 ∈ ℳ∞.
After corollary 2.32 we get 𝑧 − 𝑥 ∈ ℳ∞ and therfore 𝑧 − 𝑥 + 𝑦 ∈ ℳ∞2.31.
Define 𝑙′ = {𝑧, 𝑧−𝑥+𝑦}, then 𝑙′ ∈ ℒ(ℳ∞) and since a line is defined by two points
and we moved them the same distance (𝑧 − 𝑥) 𝑙′ is parallel to 𝑙.2.12

Lemma 2.34 (Complex conjugation). For 𝑧 ∈ 𝑀∞ it follows that 𝑧 ∈ 𝑀∞.

This construction is taken from [6].
Draw two circles one with center 0 and radius ‖𝑧‖ and a second with center 1 and
radius ‖𝑧 − 1‖ and take the intersection of the two circles.2.3

Proof. Define 𝑐1 = {0, dist (0, 𝑧)} and 𝑐2 = {1, dist (1, 𝑧)}.
By assumption 0, 1, 𝑧 ∈ 𝑀∞, so 𝑐1, 𝑐2 ∈ 𝒞(ℳ∞).
Claim 1: 𝑧 is in 𝑐1.

Proof. The definition of 𝑐1 can be written in the following form:

{𝑥 ∈ ℂ ∣ ‖𝑥 − 0‖ = dist (0 𝑧)}.

Using the definition of the distance, we obtain the following result:

‖0 − 𝑧‖ = ‖𝑧‖ = ‖𝑧‖ = dist (0 𝑧).

Claim 2: 𝑧 is in 𝑐2.

Proof. From the definition of 𝑐2 ∶= {𝑥 ∈ ℂ ∣ ‖𝑥−1‖ = dist (1 𝑧)} and the definition
of the distance, we can derive the following:

‖1−𝑧‖ = ‖𝑧−1‖ = √(ℜ(𝑧) − 1)2 + ℑ(𝑧)2 = √(ℜ(𝑧) − 1)2 + ℑ(𝑧)2 = ‖𝑧−1‖ = dist (1 𝑧).
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By claim 1 and 2 we get that 𝑧 ∈ 𝑐1 ∩ 𝑐2. Futhermore 𝑧 is in 𝑀∞, after lemma
2.29.

ℜ

ℑ

𝑧

𝑧

Figure 2.3: Construction of 𝑧

Lemma 2.35 (Construction 𝚤𝑟 ∈ ℳ∞). For 𝑟 ∈ ℝ∩𝑀∞ it follows that 𝚤 ⋅ 𝑟 ∈ 𝑀∞.

The first step is to construct the imaginary axis, which is achieved by drawing
a line, designated as 𝑙, that passes through two circles with centres at −1 and 1
and radii of 2. The second step is to construct the point, designated as 𝚤𝑟, which
is achieved by drawing a circle with a centre at 0 and a radius of 𝑟, and taking the
intersection with the imaginary axis. (Fig2.4)

Proof. First we construct the imaginary axis. Define 𝑐1 = {−1, 2} and 𝑐2 = {1, 2}.
Claim 1: 𝑐1, 𝑐2 ∈ 𝒞(ℳ∞)

Proof. By assumption and lemma 2.30 we get −1, 1 ∈ 𝑀∞. Using dist (−11) = 2
we get 𝑐1, 𝑐2 ∈ 𝒞(ℳ∞), by the definition of the circle.

Claim 2: 𝚤
√
3 and −𝚤

√
3 are in 𝑐1 ∩ 𝑐2.

Proof. Unfolding the definition of 𝑐1 ∶= {𝑥 ∈ ℂ ∣ ‖𝑥 + 1‖ = 2} and 𝑐2 ∶= {𝑥 ∈ ℂ ∣
‖𝑥 − 1‖ = 2}. By the definition of the distance we get ‖ − 𝚤

√
3 + 1‖ = √1 + 3 = 2

and ‖𝚤
√
3 − 1‖ = √1 + 3 = 2.

Now we define 𝑙 = {𝚤
√
3,−𝚤

√
3}.

Claim 3: 𝑙 ∈ ℒ(ℳ∞)

Proof. By claim 2 and 2.29 we get 𝚤
√
3,−𝚤

√
3 ∈ 𝑀∞, so 𝑙 ∈ ℒ(ℳ∞).

To get 𝚤𝑟 we define 𝑐 = {0, |𝑟|}.
Claim 4: 𝚤𝑟 is in 𝑐 ∩ 𝑙.
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Proof. It is clear that 𝚤𝑟 ∈ 𝑐. Now using the definition of 𝑙 and 𝜆 = 𝑟
2
√
3+ 1

2
we get

( 𝑟
2
√
3+ 𝑟

2
)𝚤
√
3 + (1 − 𝑟

2
√
3+ 𝑟

2
)(−𝚤

√
3) = 𝚤𝑟.

Therfore 𝚤𝑟 ∈ 𝑀∞ after lemma 2.28.

ℜ

ℑ

1−1
𝑟

𝚤𝑟

Figure 2.4: Construction of 𝚤𝑟

Corollary 2.36 (Construction of 𝚤). 𝚤 ∈ 𝑀∞.

Proof. By lemma 2.35 with 𝑟 = 1 and the definition of ℳ we get 𝚤 ∈ 𝑀∞.

Lemma 2.37 (Construction of real part). For 𝑧 ∈ 𝑀∞ it follows that 𝑧.𝑟𝑒 ∈ 𝑀∞.

To get the point 𝑧.𝑟𝑒 we draw a line through 𝑧 and 𝑧. Then 𝑧.𝑟𝑒 is the intersection
with the real line, defined by 0 and 1.2.5

Proof. Without loss of generality we can assume that 𝑧 ∈ ℂ ∖ ℝ.
Define the lines 𝑙 = {𝑧, 𝑧} and 𝑙ℜ = {1, 0}.
By using Lemma 2.34, they are in ℒ(ℳ∞).
To show that 𝑧.𝑟𝑒 ∈ 𝑙 ∩ 𝑙ℜ we use 𝑡 ∶= 1/2 for 𝑙 and 𝑡 ∶= 𝑧.𝑟𝑒 for 𝑙ℜ.

Lemma 2.38 (Construction of imaginary part). For 𝑧 ∈ 𝑀∞ it follows that 𝑧.𝑖𝑚 ∈
𝑀∞.

To get the point 𝑧.𝑖𝑚 we draw a line through 𝑧 and 𝑧 − 1. Now we get 𝚤 ⋅ 𝑧.𝑖𝑚
by taking the intersection with the imaginary line, defined by 0 and 𝚤. To get 𝑧.𝑖𝑚
draw a circle trough 𝚤 ⋅ 𝑧.𝑖𝑚 and take the intersection with the real line.2.6

Proof. Define the lines 𝑙 = {𝑧, 𝑧 − 1} and 𝑙ℑ = {𝚤, 0}.
Now it is analog to the proof of lemma 2.37, that 𝑧.𝑖𝑚 ⋅ 𝚤 ∈ 𝑙 ∩ 𝑙ℑ.

Now we can project 𝑧.𝑖𝑚 ⋅ 𝚤 on the real axis by drawing a circle with center 0
and radius ‖𝑧.𝑖𝑚‖ and taking the intersection with the real axis.
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ℜ

ℑ

𝑧

𝑧.𝑟𝑒

𝑧

0 1

Figure 2.5: Construction of 𝑧.𝑟𝑒

ℜ

ℑ

𝑧

𝑧.𝑖𝑚

𝑧 − 1
𝚤 ⋅ 𝑧.𝑖𝑚

0

𝚤

1

Figure 2.6: Construction of 𝑧.𝑖𝑚
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Corollary 2.39 (𝑧 ∈ 𝑀∞ ⇒ 𝑧.𝑟𝑒, 𝑧.𝑖𝑚 ∈ 𝑀∞). For 𝑧 ∈ ℂ. 𝑧 is in 𝑀∞ if and only
if 𝑧.𝑟𝑒, 𝑧.𝑖𝑚 ∈ 𝑀∞.

Proof. ”⇒:” If 𝑧 ∈ 𝑀∞ then 𝑧.𝑟𝑒, 𝑧.𝑖𝑚 ∈ 𝑀∞ after lemma 2.37 and 2.38.
”⇐:” If 𝑧.𝑟𝑒, 𝑧.𝑖𝑚 ∈ 𝑀∞ then 𝑧.𝑟𝑒 + 𝚤𝑧.𝑖𝑚 ∈ 𝑀∞ after lemma 2.31 and lemma
2.35.

Lemma 2.40 (Multiplication of positve real numbers). For 𝑎, 𝑏 ∈ 𝑀∞∩ℝ it follows
that 𝑎 ⋅ 𝑏 ∈ 𝑀∞.

This construction is taken from [4].
To get the point 𝑎 ⋅ 𝑏 we draw a line trough 𝑎 and 𝚤 and a parallel line through 𝚤𝑏.
The intersection of the second line with the real axis is 𝑎 ⋅ 𝑏.2.7

Proof. Define the three lines 𝑙 = {𝑎 + 𝚤𝑏 − 𝚤, 𝚤𝑏} and 𝑙ℜ = {1, 0}.
Claim 1: 𝑙 ∈ ℒ(ℳ∞)

Proof. By assumption 𝑏 ∈ 𝑀∞ so after Lemma 2.35 𝚤𝑏 ∈ 𝑀∞. Futhermore 𝑙2 ∈
ℒ(ℳ∞) after Claim 1 and Lemma 2.33.

Claim 2: 𝑙ℜ ∈ ℒ(ℳ∞)

Proof. By assumption 0, 1 ∈ 𝑀∞, so 𝑙ℜ ∈ ℒ(ℳ∞).

To show that 𝑎⋅𝑏 ∈ 𝑀∞ we need to show that 𝑙∩𝑙ℜ ∈ 𝑀∞2.26. That 𝑎𝑏 ∈ 𝑙ℜ∩𝑙 is
clear after definition 𝑡 = 𝑎𝑏. For 𝑎𝑏 ∈ 𝑙 we use 𝑡 = 𝑏 and get 𝑡(𝑎+𝚤𝑏−𝚤)+(1−𝑡)𝚤𝑏 𝑡∶=𝑏=
𝑏𝑎 + 𝚤𝑏2 − 𝚤𝑏 + 𝚤𝑏 − 𝚤𝑏2 = 𝑎 ⋅ 𝑏.

Remark 2.41. This construction uses parallel lines, but it is not needed for the
proof of the lemma.

ℜ

ℑ

𝚤

𝑎

𝚤𝑏

𝑎𝑏

Figure 2.7: Construction of 𝑧1 ⋅ 𝑧2

Corollary 2.42 (Multiplication of complex numbers). For 𝑧1, 𝑧2 ∈ 𝑀∞ it follows
that 𝑧1 ⋅ 𝑧2 in 𝑀∞.
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ℜ

ℑ

𝚤

1

𝚤𝑎

𝑎−1

Figure 2.8: Construction of 𝑧−1

Proof. Let 𝑧1 = 𝑎 + 𝚤𝑏 and 𝑧2 = 𝑐 + 𝚤𝑑. Then

𝑧1 ⋅ 𝑧2 = (𝑎 + 𝚤𝑏) ⋅ (𝑐 + 𝚤𝑑) = (𝑎 ⋅ 𝑐 − 𝑏 ⋅ 𝑑) + 𝚤(𝑎 ⋅ 𝑑 + 𝑏 ⋅ 𝑐).

By combining the Lemmas 2.40, 2.31, 2.32, 2.37 and 2.38 we get that 𝑧1 ⋅ 𝑧2 ∈
𝑀∞.

Lemma 2.43 (Invers of a pos real number). If 𝑎 ∈ 𝑀∞ ∩ ℝ, then 𝑎−1 is in 𝑀∞.

This can be constructed analog to the multiplication of positve real numbers.
Using the fact that 𝑎 ⋅ 𝑎−1 = 1. Draw a line through 1 and 𝚤𝑎 and a parallel line
through 𝚤. The intersection of the second line with the real axis is 𝑎−1. (Fig. 2.8)

Proof. The proof is analogous to that of Lemma 2.40. It requires only two lines:
𝑙 = {1 − 𝚤𝑧 + 𝚤, 𝚤} and 𝑙ℜ = {1, 0}.
With out loss of generality we can assume that 𝑎 ≠ 0.
The fact that they are in ℒ(ℳ∞) follows analog to the proof of Lemma 2.40.
Thus we have just to show that 𝑧−1 ∈ 𝑙, i.e. ∃𝑡 ∶ 𝑡(1 − 𝚤𝑎 + 𝚤) + (1 − 𝑡)𝐼 = 𝑎−1

𝑡(1 − 𝚤𝑎 + 𝚤) + (1 − 𝑡)𝚤 𝑡∶=𝑎−1
= 𝑎−1 − 𝑎−1𝚤𝑎 + 𝑎−1𝚤 + 𝚤 − 𝑎−1𝚤 = 𝑎−1.

The rest follows analog.

Corollary 2.44 (Inverse of a complex number). If 𝑧 ∈ 𝑀∞, then 𝑧−1 is in 𝑀∞.

Proof. For 𝑧 ∈ 𝑀∞ we can write 𝑧 = 𝑎 + 𝚤𝑏 with 𝑎, 𝑏 ∈ ℝ. Then

𝑧−1 = 1
𝑧 = 𝑧

𝑧𝑧 = 𝑎 − 𝚤𝑏
𝑎2 + 𝑏2 = (𝑎 − 𝚤𝑏) ⋅ (𝑎𝑎 + 𝑏𝑏)−1.

It is now possible to combine the lemmas for addition 2.31, subtraction 2.32, multi-
plication 2.42 and the corollary for the inverse of a positive real number 2.43 with
the part concerning the existence of real and imaginary components 2.39 in order to
conclude that 𝑧−1 ∈ 𝑀∞.
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Lemma 2.45 (Angle in 𝑀∞). If 0 ≠ 𝑧 = 𝑟 ⋅ 𝑒𝚤𝛼 ∈ 𝑀∞, then 𝑒𝚤𝛼 ∈ 𝑀∞.

For the construction we draw a line through 0 and 𝑧 and take the intersection
with the unit circle. 2.9

Proof. Let 𝑙 be a line through 0 and 𝑧 and 𝑐 be the unit circle. Then 𝑙∩𝑐 = {𝑒𝚤𝛼}. The
rest follows from the construction of the intersection of a line and a circle2.29.

ℜ

ℑ

0 1

𝑧

𝑒𝚤𝛼

Figure 2.9: Construction of 𝑒𝚤𝛼

Corollary 2.46 (Midpoint in 𝑀∞). If 𝑧1, 𝑧2 ∈ 𝑀∞, then 𝑧1+𝑧2
2 ∈ 𝑀∞.

Proof. Combining the lemmas for addition2.31, multiplication2.42 and the invers of
a complex number2.44 we get that 𝑧1+𝑧2

1+1 ∈ 𝑀∞.

Lemma 2.47 (Halving of an angle). For 𝛼 ∈ [0, 2𝜋), if 𝑒𝚤𝛼 ∈ 𝑀∞, then 𝑒𝚤𝛼
2 ∈ 𝑀∞.

Proof. For 𝛼 ≠ 0 ≠ 𝜋 we take the intersection of the unit circle with the line through
0 and and the mipiont of 𝑒𝚤𝛼 and 1.

For 𝛼 = 0 we get 𝑒𝚤𝛼
2 = 1 and for 𝛼 = 𝜋 we get 𝑒𝚤𝛼

2 = 𝚤.

Lemma 2.48 (Construction of radius). If 𝑧 = 𝑟 ⋅ 𝑒𝚤𝛼 ∈ 𝑀∞, then 𝑟 ∈ 𝑀∞.

Remark 2.49. The radius is the distance from 0 to 𝑧, which is the same as ‖𝑧‖.

We get the radius by taking the intersection of the real axis with a circle in zero
with radius dist (0, 𝑧). 2.10

Proof. We use the fact that 𝑟 = ‖𝑧‖ = √ℜ(𝑧)2 + ℑ(𝑧)2. Since we have spilt 𝑟 in
already constructed parts, we get that 𝑟 ∈ 𝑀∞.

Lemma 2.50 (Root of pos real number). If 𝑟 ∈ 𝑀∞ ∩ ℝ≥0, then
√𝑟 is in 𝑀∞.
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ℜ

ℑ

0 1

𝑧

𝑟

Figure 2.10: Construction of 𝑟 = ‖𝑧‖

This construction is taken from [6].
Draw a circle trough 0 and 𝑟 and a line through 1 parallel to the imaginary axis.
Project the intersection to the real axis, using a circle with center 0 and you get

√𝑟.
(Fig. 2.11)

Proof. Without loss of generality we can assume that 𝑟 ≥ 1. Otherwise we can use
the fact that

√𝑟 = 1√
𝑟−1 . The initial step is to define the following lines and circles:

𝑙1 ∶= {𝑧1 ∶= 1; 𝑧2 ∶= 𝚤 + 1}
𝑙ℜ ∶= {𝑧1 ∶= 0; 𝑧2 ∶= 1}
𝑐1 ∶= {center ∶= 𝑟

2 ; radius ∶= dist (0, 𝑟
2)}

𝑐2 ∶= {center ∶= 0; radius ∶= dist (0,√𝑟)}
It can be observed that both 𝑙1 and 𝑙ℜ are elements of 𝐿(𝑀), and that 𝑐1 is an
element of 𝐶(𝑀). Furthermore, it can be demonstrated that the

√𝑟 is an element
of 𝑙ℜ ∩ 𝑐2. Consequently, the only remaining step is to show that 𝑐2 is an element
of 𝐶(𝑀), which is equivalent to proving that there exists a 𝑧 in 𝑀∞ that is also an
element of 𝑐2. This is possible since 0 is an element of 𝑀∞.
Claim: There exists a 𝑧 ∈ 𝑙1 ∩ 𝑐1, such that 𝑧 ∈ 𝑐2.

Proof. In accordance with the theorem of Pythagoras, it can be demonstrated
that𝑧 = 1 ± 𝚤

√
𝑟 − 1. A further application of the Pythagorean theorem yields

the following result:

dist (0, 𝑧) 𝑧=1+𝚤
√
𝑟−1= √12 + (

√
𝑟 − 1)2 =

√
1 + 𝑟 − 1 = √𝑟 = dist (0,√𝑟).

Therefore, it can be concluded that
√𝑟 is also constructible.
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ℜ

ℑ

0 1 𝑟𝑟
2

√𝑟

Figure 2.11: Construction of
√𝑟

Corollary 2.51 (Square root of a complexnumber). If 𝑧 ∈ 𝑀∞, then
√𝑧 is in 𝑀∞.

Proof. 𝑧 = 𝑟 ⋅ 𝑒𝚤𝛼 with 𝑟 ∈ ℝ≥0 and 𝛼 ∈ ℝ. Then
√𝑧 = √𝑟 ⋅ 𝑒𝚤𝛼

2 . Now we can
use Lemma 2.48 and Lemma 2.50 to get that

√𝑧 ∈ 𝑀∞. For 𝑒𝚤𝛼
2 we can combine

Lemma 2.45 and Lemma 2.47. Now we get that
√𝑧 ∈ 𝑀∞, after Lemma 2.40.
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Chapter 3

Field of constructable Numbers

This chapter develops the field structure on 𝑀∞ and establishes a set of properties
that are utilized to establish a criterion for determining the constructability of a
point.

3.1 Field 𝑀∞

In this section, we will utilise the constructed points from sectoion 2.4 in order to
demonstrate that 𝑀∞ forms a conjugate (3.11) and quartic (3.5) closed field.

Theorem 3.1. For 𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 . 𝑀∞ is a subfield of ℂ.

Proof. To show that 𝑀∞ is a subfield of ℂ we have to show that 0, 1 ∈ 𝑀∞ and
𝑀∞ is closed under addition, multiplication, subtraction and division.

0, 1: This follows from 0, 1 ∈ 𝑀 and Lemma 2.22.

+: For 𝑧1, 𝑧2 ∈ 𝑀∞ we can construct 𝑧1 + 𝑧2 ∈ 𝑀∞. 2.31

∗: For 𝑧1, 𝑧2 ∈ 𝑀∞ we can construct 𝑧1 ⋅ 𝑧2 ∈ 𝑀∞. 2.42

−: For 𝑧 ∈ 𝑀∞ we can construct −𝑧 ∈ 𝑀∞. 2.30
−1: For 𝑧 ∈ 𝑀∞ with 𝑧 ≠ 0 we can construct 𝑧−1 ∈ 𝑀∞. 2.44

Remark 3.2. To prove that 𝑀∞ is a subfield of ℂ in Lean we have to create a new
instance with carrier 𝑀∞.

Remark 3.3. Since 𝑀∞ is a subfield of ℂ, 𝑀∞ is a field which is automatically
proved in Lean, by infer_instance.

Lemma 3.4. For 𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 it holds:

(i) 𝚤 ∈ 𝑀∞.
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(ii) For 𝑧 = 𝑥 + 𝚤𝑦 ∈ ℂ the following are equivalent:

1. 𝑧 ∈ 𝑀∞.
2. 𝑥, 𝑦 ∈ 𝑀∞.
3. 𝑥, 𝚤𝑦 ∈ 𝑀∞.

(iii) For 0 ≠ 𝑧 = 𝑟 exp(𝚤𝛼) ∈ ℂ the following are equivalent:

1. 𝑧 ∈ 𝑀∞.
2. 𝑟, exp(𝚤𝛼) ∈ 𝑀∞.

Proof. This lemma is a direct consequence of section 2.4.

(i): We can apply construction 2.36

(ii): We can apply construction 2.39 and 2.36.

(iii): We can apply construction 2.48 and 2.45.

quadratic closed
Definition 3.5 (quadratic closed field). A field 𝐹 is called quadratic closed if for
all 𝑥 ∈ 𝐹 there is a 𝑦 ∈ 𝐹 such that 𝑦2 = 𝑥.

Remark 3.6. An equivalent definition is that 𝐹 is quadratic closed if 𝐹 = {𝑎2 ∣ 𝑎 ∈
𝐹}.

Lemma 3.7. For 𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 , 𝑀∞ is quadratic closed.

Proof. It is established that 𝑀∞ is a field (see remark 3.3). Furthermore, the corol-
lary 2.51 provides a root 𝑧 1

2 of 𝑧 ∈ 𝑀∞.

𝑧 1
2 ∗ 𝑧 1

2 = 𝑧 1
2
2
= 𝑧2⋅ 12 = 𝑧.

Therefore 𝑀∞ is quadratic closed.

Conjugate closed
Definition 3.8. For a Set 𝑀 ⊂ ℂ we define the conjugate set of 𝑀 as

𝐶𝑜𝑛𝑗(𝑀) = {𝑧 ∣ 𝑧 ∈ 𝑀}

Lemma 3.9. For two sets 𝑀,𝑁 ⊂ ℂ

𝐶𝑜𝑛𝑗(𝑀 ∪𝑁) = 𝐶𝑜𝑛𝑗(𝑀) ∪ 𝐶𝑜𝑛𝑗(𝑁).
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Proof. For 𝑧 ∈ 𝐶𝑜𝑛𝑗(𝑀 ∪ 𝑁) there is a 𝑤 ∈ 𝑀 ∪ 𝑁 such that 𝑤 = 𝑧, therefore
𝑧 = 𝑤 ∈ 𝐶𝑜𝑛𝑗(𝑀) ∪ 𝐶𝑜𝑛𝑗(𝑁). The other direction is analog.

Lemma 3.10. For a set 𝑀 ⊂ ℂ it holds that 𝐶𝑜𝑛𝑗(𝐶𝑜𝑛𝑗(𝑀)) = 𝑀 .

Proof.

𝐶𝑜𝑛𝑗(𝐶𝑜𝑛𝑗(𝑀)) = 𝐶𝑜𝑛𝑗({𝑧 ∣ 𝑧 ∈ 𝑀}) = {𝑧 ∣ 𝑧 ∈ 𝑀} = {𝑧 ∣ 𝑧 ∈ 𝑀} = 𝑀.

Definition 3.11. We call a subset of ℂ conjugate closed if 𝑀 = 𝐶𝑜𝑛𝑗(𝑀).

Lemma 3.12. 𝑀∞ is conjugate closed.

Proof. We can apply construction 2.34 and the fact that 𝑧 = 𝑧 for all 𝑧 ∈ ℂ.

Lemma 3.13. For 𝑀 ⊆ ℂ 𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀) is conjugate closed.

Proof. We can apply Lemma 3.9 and 3.10.

𝐶𝑜𝑛𝑗(𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀)) = 𝐶𝑜𝑛𝑗(𝑀) ∪ 𝐶𝑜𝑛𝑗(𝐶𝑜𝑛𝑗(𝑀)) = 𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀).

Lemma 3.14. The set of rational numbers is conjugate closed.

Proof. For every 𝑟 ∈ ℚ we have 𝑟 = 𝑟.

Lemma 3.15. For 𝑀,𝑁 ⊆ ℂ with 𝑀 ⊆ 𝑁 it holds that 𝐶𝑜𝑛𝑗(𝑀) ⊆ 𝐶𝑜𝑛𝑗(𝑁).

Proof. For 𝑧 ∈ 𝐶𝑜𝑛𝑗(𝑀) there is a 𝑤 ∈ 𝑀 such that 𝑤 = 𝑧 and since 𝑀 ⊆ 𝑁 we
have 𝑤 ∈ 𝑁 and therefore 𝑧 ∈ 𝐶𝑜𝑛𝑗(𝑁).

Lemma 3.16. For a subfield 𝐹 of ℂ the conjugate set 𝐶𝑜𝑛𝑗(𝐹) is a subfield of ℂ.

Proof. We have to show that 0, 1 ∈ 𝐶𝑜𝑛𝑗(𝐹) and 𝐶𝑜𝑛𝑗(𝐹) is closed under addition,
multiplication, negation and inversion.

0, 1: Since 0, 1 ∈ 𝐹 and 0 = 0, 1 = 1 we have 0, 1 ∈ 𝐶𝑜𝑛𝑗(𝐹).

+: For 𝑧1, 𝑧2 ∈ 𝐹 we have 𝑧1 + 𝑧2 = ℜ(𝑧1 +𝑧2)− 𝚤 ⋅ ℑ(𝑧1 +𝑧2) = ℜ(𝑧1)+ℜ(𝑧2)−
𝚤 ⋅ (ℑ(𝑧1) + ℑ(𝑧2)) = 𝑧1 + 𝑧2. Therefore 𝐶𝑜𝑛𝑗(𝐹) is closed under addition.

−: For 𝑧 ∈ 𝐹 we have −𝑧 = ℜ(−𝑧) − 𝚤 ⋅ ℑ(−𝑧) = −(ℜ(𝑧) − 𝚤 ⋅ (ℑ(𝑧))) = −𝑧.
Therefore 𝐶𝑜𝑛𝑗(𝐹) is closed under negation.

∗: Since 𝑧1 ⋅ 𝑧2 = 𝑧1 ⋅ 𝑧2 we have 𝐶𝑜𝑛𝑗(𝐹) is closed under multiplication.
−1: Since 𝑧−1 = 𝑧−1 we have 𝐶𝑜𝑛𝑗(𝐹) is closed under inversion.
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Lemma 3.17. Let 𝐿 be a subfield of ℂ, with 𝐿 = 𝑐𝑜𝑛𝑗(𝐿). For all 𝑧 = 𝑥 + 𝚤𝑦 ∈ 𝐿
we have 𝑥, 𝚤𝑦 ∈ 𝐿.

Proof. Let 𝑧 = 𝑥+𝚤𝑦 ∈ 𝐿. Since 𝐿 is conjugate closed we know that 𝑧 = 𝑥−𝚤𝑦 ∈ 𝐿.
This implies

𝑧 + 𝑧
2 = 𝑥 ∈ 𝐿

and therefore also 𝚤𝑦 = 𝑧 − 𝑥 ∈ 𝐿.

Lemma 3.18. Let 𝐿 be a subfield of ℂ, with 𝐿 = 𝑐𝑜𝑛𝑗(𝐿), and 𝑧1, 𝑧2 ∈ 𝐿. For
𝑟 ∶= ‖𝑧1 − 𝑧2‖ we get that 𝑟2 ∈ 𝐿.

Proof. For 𝑧1 = 𝑥1 + 𝚤𝑦1 and 𝑧2 = 𝑥2 + 𝚤𝑦2 we have

𝑟 = ‖𝑧1 − 𝑧2‖ = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

and therefore
𝑟2 = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

After applying Lemma 3.17 we get 𝑟2 ∈ 𝐿.

Lemma 3.19. Let 𝐿 be a subfield of ℂ, with 𝐿 = 𝑐𝑜𝑛𝑗(𝐿). For 𝑖 = 1, 2, 3, 4 let
𝑧𝑖 = 𝑥𝑖 + 𝚤𝑦𝑖 ∈ 𝐿 with 𝑧1 ≠ 𝑧2 and 𝑧3 ≠ 𝑧4. Define

𝐺1 ∶= {𝜆𝑧1 + (1 − 𝜆)𝑧2 ∣ 𝜆 ∈ ℝ},
𝐺2 ∶= {𝜇𝑧3 + (1 − 𝜇)𝑧4 ∣ 𝜇 ∈ ℝ}.

If 𝐺1 ∩ 𝐺2 ≠ ∅ and 𝐺1 ≠ 𝐺2, it is equivalent

• 𝑧 ∈ 𝐺1 ∩ 𝐺2.

• There are 𝜆, 𝜇 ∈ ℝ such that:
1. 𝜆(𝑥1 − 𝑥2) + 𝜇(𝑥4 − 𝑥3) = 𝑥4 − 𝑥2
2. 𝜆(𝚤𝑦1 − 𝚤𝑦2) + 𝜇(𝚤𝑦4 − 𝚤𝑦3) = 𝚤𝑦4 − 𝚤𝑦2
3. 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2

In this case 𝑧 ∈ 𝐿.

Proof. The proof is divided into two parts. Initially, it is demonstrated that 𝑧
belongs to the intersection of 𝐺1 and 𝐺2, if and only if there exist real numbers
𝜆, 𝜇 ∈ ℝ, such that the equations 1, 2 and 3 are satisfied. Subsequently, it follows
that 𝑧 is an element of 𝐿.
Equations 1 and 2 are equivalent to the following:

𝜆𝑥1 + (1 − 𝜆)𝑥2 = 𝜇𝑥3 + (1 − 𝜇)𝑥4
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𝜆𝑦1 + (1 − 𝜆)𝑦2 = 𝜇𝑦3 + (1 − 𝜇)𝑦4
This is the definition of 𝑧 ∈ 𝐺1 ∩ 𝐺2, expressed in terms of its real and imaginary
parts.
The third equation is equivalent to 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2. This allows us to conclude
that 𝑧 belongs to 𝐺1 at the point where 𝐺1 and 𝐺2 intersect. Consequently, we can
assume that 𝑧 belongs to the intersection of 𝐺1 and 𝐺2.

Now we can show that 𝑧 is an element of 𝐿.
Since we know that z is equal to 𝜆𝑧1+(1−𝜆)𝑧2 and 𝑧1, 𝑧2 ∈ 𝐿 we only have to show
that 𝜆 ∈ 𝐿. Here for we use the equations from the first part of the proof.

𝐼 𝜆(𝑥1 − 𝑥2) + 𝜇(𝑥4 − 𝑥3) = 𝑥4 − 𝑥2
𝐼𝐼 𝜆(𝚤𝑦1 − 𝚤𝑦2) + 𝜇(𝚤𝑦4 − 𝚤𝑦3) = 𝚤𝑦4 − 𝚤𝑦2

Now we solve II for 𝜇

𝜆(𝚤𝑦1 − 𝚤𝑦2) + 𝜇(𝚤𝑦4 − 𝚤𝑦3) = 𝚤𝑦4 − 𝚤𝑦2 ∣ −𝜆(𝚤𝑦1 − 𝚤𝑦2)
⇔ 𝜇(𝚤𝑦4 − 𝚤𝑦3) = 𝚤𝑦4 − 𝚤𝑦2 − 𝜆(𝚤𝑦1 − 𝚤𝑦2) ∣ ÷𝚤(𝑦4 − 𝑦3)

⇔ 𝜇 = 𝚤𝑦4 − 𝚤𝑦2 − 𝜆(𝚤𝑦1 − 𝚤𝑦2)
𝚤𝑦4 − 𝚤𝑦3

Since we divided by 𝚤(𝑦4 − 𝑦3) we need to assume that 𝑦4 ≠ 𝑦3, so we need to first
handle the case 𝑦4 = 𝑦3.
If 𝑦4 = 𝑦3 we have 𝜆(𝚤𝑦1 − 𝚤𝑦2) = 𝚤𝑦4 − 𝚤𝑦2 and since 𝑦4 = 𝑦3 𝑦1 ≠ 𝑦2, because
otherwise both Lines would be parallel to the real line and therefore 𝐺1 = 𝐺2 or
𝐺1 ∩ 𝐺2 = ∅. Therefore 𝜆 = 𝚤𝑦4−𝚤𝑦2

𝚤𝑦1−𝚤𝑦2
. Using the fact that real part and the imagi-

nary part times 𝚤 are in 𝐿 3.17 we have written 𝜆 as a fraction of two elements in 𝐿.
It can thus be concluded that 𝜆 is in 𝐿, which implies that 𝑧 = 𝜆𝑧1+(1−𝜆)𝑧2 is in 𝐿.

Now we insert 𝜇 in I and solve for 𝜆.
𝜆(𝑥1 − 𝑥2) + 𝜇(𝑥4 − 𝑥3) = 𝑥4 − 𝑥2 ∣ 𝐼 ← 𝐼𝐼

⇔ 𝜆(𝑥1 − 𝑥2) +
𝚤𝑦4 − 𝚤𝑦2 − 𝜆(𝚤𝑦1 − 𝚤𝑦2)

𝚤𝑦4 − 𝚤𝑦3
(𝑥4 − 𝑥3) = 𝑥4 − 𝑥2 ∣ ⋅(𝚤𝑦4 − 𝚤𝑦3)

⇔𝜆(𝑥1 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3) + (𝚤𝑦4 − 𝚤𝑦2 − 𝜆(𝚤𝑦1 − 𝚤𝑦2))(𝑥4 − 𝑥3) = (𝑥4 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3) ∣ −(𝑥1 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3)
⇔ 𝜆((𝑥1 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3) − (𝚤𝑦4 − 𝚤𝑦2)(𝑥4 − 𝑥3)) = (𝑥4 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3) − (𝚤𝑦4 − 𝚤𝑦2)(𝑥4 − 𝑥3) ∣ ÷((𝚤𝑦4 − 𝚤𝑦3)(𝑥1 − 𝑥2) − (𝚤𝑦1 − 𝚤𝑦2)(𝑥4 − 𝑥3))

⇔ 𝜆 = (𝑥4 − 𝑥2)(𝚤𝑦4 − 𝚤𝑦3) − (𝚤𝑦4 − 𝚤𝑦2)(𝑥4 − 𝑥3)
(𝚤𝑦4 − 𝚤𝑦3)(𝑥1 − 𝑥2) − (𝚤𝑦1 − 𝚤𝑦2)(𝑥4 − 𝑥3)

We need to check that the denominator (𝑦4−𝑦3)(𝑥1−𝑥2)−(𝑦1−𝑦2)(𝑥4−𝑥3) is not
zero. Assume that its = then we would have (𝑦4−𝑦3)(𝑥1−𝑥2) = (𝑦1−𝑦2)(𝑥4−𝑥3),
which is equivalent to 𝑦4−𝑦3

𝑥4−𝑥3
= 𝑦1−𝑦2

𝑥1−𝑥2
. This would mean that the two lines are par-

allel and therefore 𝐺1 = 𝐺2 or 𝐺1 ∩ 𝐺2 = ∅.
Thus we can assume that the denominator is not zero and therefore we can write
𝜆 as a fraction of two elements in 𝐿. Therefore 𝜆 is in 𝐿, wich implies that
𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2 is in 𝐿.
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Lemma 3.20. Let 𝐿 be a subfield of ℂ, with 𝐿 = 𝑐𝑜𝑛𝑗(𝐿). For 𝑖 = 1, 2, 3 let
𝑧𝑖 = 𝑥𝑖 + 𝚤𝑦𝑖 ∈ 𝐿 with 𝑧1 ≠ 𝑧2, and let 𝑟 > 0 in ℝ with 𝑟2 ∈ 𝐿. Define

𝐺 ∶= {𝜆𝑧1 + (1 − 𝜆)𝑧2 ∣ 𝜆 ∈ ℝ},
𝐶 ∶= {𝑧 = 𝑥 + 𝚤𝑦 ∈ ℂ ∣ ‖𝑧 − 𝑧3‖ = 𝑟}.

Assume 𝐺 ∩ 𝐶 ≠ ∅; then the following are equivalent:

• 𝑧 ∈ 𝐺 ∩ 𝐶.

• There is a 𝜆 ∈ ℝ with 𝜆2𝑎 + 𝜆𝑏 + 𝑐 = 0 where

𝑎 ∶= (𝑥1 − 𝑥2)2 + (𝚤𝑦1 − 𝚤𝑦2)2,
𝑏 ∶= 2(𝑥1 − 𝑥2)(𝑥2 − 𝑥3) − 2(𝚤𝑦1 − 𝚤𝑦2)(𝚤𝑦2 − 𝚤𝑦3),
𝑐 ∶= (𝑥2 − 𝑥3)2 + (𝚤𝑦2 − 𝚤𝑦3)2 − 𝑟2,

and 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2.

In this case 𝑧 ∈ 𝐿(√𝑤) for an 𝑤 ∈ 𝐿.

Proof. First we have to show 𝑧 ∈ 𝐺 ∩ 𝐶 iff and only iff there exists a 𝜆 ∈ ℝ with
𝜆2𝑎 + 𝜆𝑏 + 𝑐 = 0 and 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2.

”⇒∶” If z belongs to the intersection of G and C, then z satisfies the equations
of C and G. Consequently

‖𝑧 − 𝑧3‖ = 𝑟 ∣ 0 ≤ ‖ ⋅ ‖ and 0 ≤ 𝑟
⇔ ‖𝑧 − 𝑧3‖2 = 𝑟2
⇔ (𝑥 − 𝑥3)2 + (𝚤𝑦 − 𝚤𝑦3)2 = 𝑟2 ∣ 𝑥 = 𝜆𝑥1 − 𝜆𝑥2 + 𝑥2 and

∣ 𝑦 = 𝜆𝑦1 − 𝜆𝑦2 + 𝑦2
⇔ (𝜆𝑥1 − 𝜆𝑥2 + 𝑥2 − 𝑥3)2+

(𝚤(𝜆𝑦1 − 𝜆𝑦2 + 𝑦2 − 𝑦3))2 = 𝑟2
⇔ 𝜆2((𝑥1 − 𝑥2)2 + (𝚤𝑦1 − 𝚤𝑦2)2)+

𝜆(2(𝑥1 − 𝑥2)(𝑥2 − 𝑥3) − 2(𝚤𝑦1 − 𝚤𝑦2)(𝚤𝑦2 − 𝚤𝑦3))+
(𝑥2 − 𝑥3)2 + (𝚤𝑦2 − 𝚤𝑦3)2 = 𝑟2

”⇐∶” Since 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2 we get 𝑧 in 𝐺 and can use the equations from the
first part of the proof to show that 𝑧 is in 𝐶.

Now we can show that there exists a 𝑤 ∈ 𝐿 such that 𝑧 ∈ 𝐿(√𝑤).
Since we know that 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2 and 𝑧1, 𝑧2 ∈ 𝐿 we only have to show that
𝜆 ∈ 𝐿(√𝑤). To do this, we use the equations from the first part of the proof. Since 𝜆
is a solution of a quadratic equation we now get that 𝜆 is equal to −𝑏±

√
𝑏2−4𝑎𝑐
2𝑎 . Since

𝑎, 𝑏, 𝑐 ∈ 𝐿 we get 𝑤 = 𝑏2 − 4𝑎𝑐 ∈ 𝐿 so 𝜆 ∈ 𝐿(√𝑤). Therefore 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2 is
in 𝐿(√𝑤).
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Lemma 3.21. Let 𝐿 be a subfield of ℂ, with 𝐿 = 𝑐𝑜𝑛𝑗(𝐿). For 𝑖 = 1, 2 let
𝑧𝑖 = 𝑥𝑖 + 𝚤𝑦𝑖 ∈ 𝐿 with 𝑧1 ≠ 𝑧2 and let 𝑟𝑖 > 0 in ℝ with 𝑟2𝑖 ∈ 𝐿. Define

𝐶1 ∶= {𝑧 = 𝑥 + 𝚤𝑦 ∈ ℂ ∣ ‖𝑧 − 𝑧1‖ = 𝑟1},
𝐶2 ∶= {𝑧 = 𝑥 + 𝚤𝑦 ∈ ℂ ∣ ‖𝑧 − 𝑧2‖ = 𝑟2}.

Assume 𝐶1 ∩ 𝐶2 ≠ ∅ and 𝐶1 ≠ 𝐶2. Then ther exists 𝑧1, 𝑧2 ∈ 𝐿 such that

𝐺 ∶= {𝜆𝑧1 + (1 − 𝜆)𝑧2 ∣ 𝜆 ∈ ℝ}

is a real line, and
𝐶1 ∩ 𝐶2 = 𝐺 ∩ 𝐶1 = 𝐺 ∩ 𝐶2.

For 𝑧 ∈ 𝐶1 ∩ 𝐶2 there is a 𝑤 ∈ 𝐿 such that 𝑧 ∈ 𝐿(√𝑤).

Proof. The initial step is to demonstrate that 𝑧 ∈ 𝐶1 ∩ 𝐶2 ⇔ ∃𝐺, 𝑧 ∈ 𝐺 ∩ 𝐶1 ∧ 𝑧 ∈
𝐺 ∩ 𝐶2.
”⇒”: If 𝑧 is to be in both 𝐺∩𝐶1 and 𝐺∩𝐶2, it must be the case that 𝑧 is in both
𝐶1 and 𝐶2. Consequently, it is also in 𝐶1 ∩ 𝐶2.
”⇐”: We begin by establishing that 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝐶1 ∩ 𝐶2 is equivalent to:

‖𝑧−𝑧1‖ = 𝑟1∧‖𝑧−𝑧2‖ = 𝑟2 ⇔ 2(𝑥2−𝑥1)𝑥−2(𝚤𝑦2−𝚤𝑦1)𝚤𝑦 = 𝑟21−𝑟22−𝑥2
1+𝑥2

2+(𝚤𝑦1)2−(𝚤𝑦2)2

The remaining task is to identify two elements in 𝐿 that satisfy the given equation.
This can be achieved by considering three cases: In the initial case, where 𝑥1 = 𝑥2,
it can be demonstrated that 𝑦1 ≠ 𝑦2, as otherwise it would follow that 𝐶1 = 𝐶2.
Here, we can choose

𝑧1 ∶= 1 + 𝚤(𝑟
2
1 − 𝑟22 + (𝚤𝑦2)2 − (𝚤𝑦1)2

−2(𝑦2 − 𝑦1)
)

𝑧2 ∶= 0 + 𝚤(𝑟
2
1 − 𝑟22 + (𝚤𝑦2)2 − (𝚤𝑦1)2

−2(𝑦2 − 𝑦1)
)

In the second case we have 𝑦1 = 𝑦2 and 𝑥1 ≠ 𝑥2. Here we can choose 1

𝑧1 ∶= (𝑟
2
1 − 𝑟22 + 𝑥2

2 − 𝑥2
1

2(𝑥2 − 𝑥1)
) + 𝚤𝑦1

𝑧2 ∶= (𝑟
2
1 − 𝑟22 + 𝑥2

2 − 𝑥2
1

2(𝑥2 − 𝑥1)
) − 𝚤𝑦1

1During the process of formalising this proof, it became evident that for 𝑦1 = 𝑦2 = 0 and 𝐿 ⊆ ℝ,
there does not exist a line 𝐺 with the property that 𝐺∩𝐶1 = 𝐺 ∩𝐶2 = 𝐶1 ∩ 𝐶2. This error can
also be found in the source [6] and was noticed too late, so it could not be corrected in time. The
existence of an 𝑤 such that 𝑧 ∈ 𝐿(√𝑤) is still correct and is the result we are interested in.
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For 𝑥1 ≠ 𝑥2 and 𝑦1 ≠ 𝑦2 chose

𝑧1 ∶= (𝑟
2
1 − 𝑟22 + 𝑥2

2 − 𝑥2
1 + (𝚤𝑦2)2 − (𝚤𝑦1)2 + 2(𝚤(𝑦2) − (𝚤𝑦1))(𝚤𝑦1)

2(𝑥2 − 𝑥1)
) + 𝚤𝑦1

𝑧2 ∶= (𝑟
2
1 − 𝑟22 + 𝑥2

2 − 𝑥2
1 + (𝚤𝑦2)2 − (𝚤𝑦1)2 + 2(𝚤(𝑦2) − (𝚤𝑦1))(𝚤𝑦2)

2(𝑥2 − 𝑥1)
) + 𝚤𝑦2

Since the points 𝑧1 and 𝑧2 lie in 𝐿, we can conclude that the line 𝐺 lies in the
set of lines of 𝐿. This allows us to apply the results stated in lemma 3.20 to obtain
𝑤, with the result that 𝑧 is contained within the set 𝐿(𝑤).

3.2 The Field 𝒦0

This section develops a conjugation-closed field that depends on the set ℳ.
Definition 3.22. Let (𝑀) ⊆ ℂ with 0, 1 ∈ ℳ. Define:

𝐾0 ∶= ℚ(ℳ∪ 𝐶𝑜𝑛𝑗(ℳ))
Lemma 3.23. Let 𝐾 be an conjugation closed intermediate field of ℚ and ℂ and
𝑀 ⊂ ℂ be a subset with 𝑀 = 𝑐𝑜𝑛𝑗(𝑀). Then 𝐾(𝑀) is conjugate closed.
Proof. In reference 3.16, it was demonstrated that for a field F, the field of complex
numbers, 𝐶𝑜𝑛𝑗(𝐹) is a field. It can thus be concluded that 𝐶𝑜𝑛𝑗(𝐾(𝑀)) is also a
field. As both 𝐾 and 𝑀 are subsets of 𝐾(𝑀), it can be inferred from lemma 3.15
that 𝐶𝑜𝑛𝑗(𝐾) 𝐶𝑜𝑛𝑗𝐶𝑙𝑜𝑠𝑒𝑑= 𝐾 and 𝐶𝑜𝑛𝑗(𝑀) 𝐶𝑜𝑛𝑗𝐶𝑙𝑜𝑠𝑒𝑑= 𝑀 are subsets of 𝐶𝑜𝑛𝑗(𝐾(𝑀)).
As 𝐾(𝑀) is the smallest subfield of ℂ that includes 𝐾 and 𝑀 , it can be concluded
that

𝐾(𝑀) ⊆ 𝐶𝑜𝑛𝑗(𝐾(𝑀)).
Furthermore, if we apply 𝐶𝑜𝑛𝑗 to both sides and again infer 3.15, we obtain

𝐶𝑜𝑛𝑗(𝐾(𝑀)) ⊆ 𝐶𝑜𝑛𝑗(𝐶𝑜𝑛𝑗(𝐾(𝑀))) = 𝐾(𝑀),
which leads to the conclusion that 𝐶𝑜𝑛𝑗(𝐾(𝑀)) = 𝐾(𝑀).
Corollary 3.24. For 𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 , 𝐾0 is conjugate closed.
Proof. By employing the preceding lemma, it is sufficient to demonstrate that ℚ and
𝑀 ∪𝐶𝑜𝑛𝑗(𝑀) are conjugate closed, which can be inferred from 3.14 and 3.13

Lemma 3.25. For 𝑀 ⊆ ℂ with 0, 1 ∈ 𝑀 it holds that 𝐾0 ⊆ 𝑀∞.
Proof. From the definition of 𝐾0 ∶= ℚ(𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀)), it can be seen that this is
the smallest subfield of ℂ containing both 𝑄 and 𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀). Consequently, it
is sufficient to demonstrate that both ℚ and 𝑀 ∪ 𝐶𝑜𝑛𝑗(𝑀) are contained within
𝑀∞. Since ℚ is contained in every subfield of ℂ, it is therefore also contained in
𝑀∞. Furthermore, since 𝑀 is contained in 𝑀∞ (see 2.22) and 𝑀 is conjugate closed
(3.12), we can conclude that 𝑀 ∪𝐶𝑜𝑛𝑗(𝑀) ⊆ ℚ.
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3.3 Classification of Constructable Numbers
The following section will demonstrate that for an element to be constructible, the
degree over 𝐾0 must be equal to 2𝑚 for some natural number 𝑚.

Lemma 3.26. Let 𝐾,𝐿 be subfield of ℂ, with 𝐾 ≤ 𝐿. Then [𝐿 ∶ 𝐾] = 2 is equivalent
to the existence of a 𝑤 ∗ 𝑤 ∈ 𝐾 with 𝑤 ∉ 𝐾 and 𝐿 = 𝐾(𝑤).
Proof. (𝑖𝑖) ⟹ (𝑖): Let 𝑤 be as in (𝑖𝑖).Then

√𝑤 is a root of 𝑋2 −𝑤 ∈ 𝐾[𝑋]. Since√𝑤 ∉ 𝐾 this polynomial is irreducible in 𝐾[𝑋]. Therefore [𝐿 ∶ 𝐾] = 2.
(𝑖) ⟹ (𝑖𝑖): Let [𝐿 ∶ 𝐾] = 2 and 𝛼 ∈ 𝐿 ∖ 𝐾. Then 𝐾(𝛼) = 𝐿 and

𝜇𝛼,𝐾 = 𝑋2 + 𝑏𝑋 + 𝑐 𝑏, 𝑐 ∈ 𝐾
This implies

𝛼 = −𝑏
2 ±√𝑏2

4 − 𝑐

Now let 𝑤 ∶= 𝑏2
4 − 𝑐 ∈ 𝐾 then we get 𝐿 = 𝐾(𝛼) = 𝐾(√𝑤).

Lemma 3.27. For 𝑧 ∈ ℂ there exists an 𝑛 ≥ 0 and a chain

𝐾0 = 𝐿1 ⊂ 𝐿2 ⊂ … ⊂ 𝐿𝑛 ⊂ ℂ
of subfields of ℂ such that 𝑧 ∈ 𝐿𝑛 and [𝐿𝑖+1 ∶ 𝐿𝑖] = 2 for 𝑖 = 0,… , 𝑛 − 1. This is
equivalent to:
There is an intermediate field 𝐿 of ℂ/𝐾0 with 𝑧 ∈ 𝐿, so that 𝐿 arises from 𝐾0 by a
finite sequence of adjunctions of square roots.

Proof. ”⇒∶” Let 𝑛 be the smallest natural number such that there exists a chain of
subfields 𝐿1 ⊂ 𝐿2 ⊂ … ⊂ 𝐿𝑛 with 𝑧 ∈ 𝐿𝑛 and [𝐿𝑖+1 ∶ 𝐿𝑖] = 2 for 𝑖 = 0,… , 𝑛 − 1.
Now lemma 3.26 gives us that there exists a 𝑤 ∈ 𝐿𝑛−1 such that 𝐿𝑛 arises from
𝐿𝑛−1 by adjoining

√𝑤.
”⇐∶” Let 𝐿 be an intermediate field of ℂ/𝐾0 with 𝑧 ∈ 𝐿 and 𝐿 arises from 𝐾0 by a
finte sequence of adjunctions of square roots. Then there exists a chain of subfields
𝐿1 ⊂ 𝐿2 ⊂ … ⊂ 𝐿𝑛 with 𝑧 ∈ 𝐿𝑛 and 𝐿𝑖+1 ∶= 𝐿𝑖(

√𝑤𝑖) for 𝑖 = 0,… , 𝑛 − 1.

Lemma 3.28. For 𝑀𝑛 exists a chain of intermediate fields 𝐾0 ≤ 𝐾1 ≤ … ≤ 𝐾𝑛
such that 𝑀𝑖 ⊂ 𝐾𝑖 and 𝐾𝑖 ∶= 𝐾𝑖−1(𝑋𝑖) for a set of square roots 𝑋𝑖 of elements of
𝐾𝑖−1.

Proof. Induction over 𝑛
• Base case 𝑛 = 1:

𝐾0 ≤ 𝐾0 and 𝐾0 is conjugation closed 3.24.

• induction hypothesis:
Assume that for 𝑛 there is a chain of conjugation closed intermediate fields
𝐾0 ≤ 𝐾1 ≤ … ≤ 𝐾𝑛 such that 𝑀𝑖 ⊂ 𝐾𝑖 and 𝐾𝑖 ∶= 𝐾𝑖−1(𝑋𝑖) for a set of
square roots 𝑋𝑖 of elements of 𝐾𝑖−1.
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• Inductive step 𝑛 → 𝑛 + 1:
For 𝑧 ∈ 𝑀𝑛+1 there are four cases:

𝑧 ∈ 𝑀𝑛: By the induction hypothesis 𝑧 ∈ 𝐾𝑛 and 𝐾𝑛 is conjugation closed and
arises from 𝐾0 by a sequence of adjunctinos of square roots.

𝑧 ∈ 𝐼𝐿𝐿(𝑀𝑛): By the induction hypothesis 𝑧 ∈ 𝐼𝐿𝐿(𝐾𝑛) and using 3.19 we get that
𝑧 ∈ 𝐾𝑛.

𝑧 ∈ 𝐼𝐿𝐶(𝑀𝑛): By the induction hypothesis 𝑧 ∈ 𝐼𝐿𝐶(𝐾𝑛) and using 3.20 there is a
𝑤 ∈ 𝐾𝑛 such that 𝑧 ∈ 𝐾𝑛(

√𝑤) insert
√𝑤,√𝑤 to 𝑋𝑛.

𝑧 ∈ 𝐼𝐶𝐶(𝑀𝑛): By the induction hypothesis 𝑧 ∈ 𝐼𝐶𝐶(𝐾𝑛) and using 3.21 there is a
𝑤 ∈ 𝐾𝑛 such that 𝑧 ∈ 𝐾𝑛(

√𝑤) insert
√𝑤,√𝑤 to 𝑋𝑛.

Theorem 3.29 (constructable iff chain dergee2). For 𝑧 ∈ ℂ, 𝑧 ∈ 𝑀∞ is equivalent
to:
There is a 0 ≤ 𝑛 and a chain

𝐾0 = 𝐿1 ⊂ 𝐿2 ⊂ … ⊂ 𝐿𝑛 ⊂ ℂ

of subfields of ℂ such that 𝑧 ∈ 𝐿𝑛 and

[𝐿𝑖+1 ∶ 𝐿𝑖] = 2 for 𝑖 = 0,… , 𝑛 − 1.

Proof. ”⇐∶” It can be shown by induction that 𝐿𝑛 is contained within 𝑀∞. There-
fore, it can be inferred that 𝑧 is also contained within 𝑀∞.

• Base case 𝑛 = 1:
𝐿1 = 𝐾0 ⊆ 𝑀∞ 3.25.

• induction hypothesis:
Assume that for 𝑛: ∀𝑖 < 𝑛 ∶ 𝐿𝑖 ≤ 𝐿𝑖+1 ∧ [𝐿𝑖+1 ∶ 𝐿𝑖] = 2 implies 𝐿𝑛 ⊆ 𝑀∞.

• Inductive step 𝑛 → 𝑛 + 1:
Given that [𝐿𝑛+1 ∶ 𝐿𝑛] = 2, it follows from the conclusions of Lemma 3.26 that
there exists a 𝑤 ∈ 𝐿𝑛 with the property that

√𝑤 ∉ 𝐿𝑛 and 𝐿𝑛+1 = 𝐿𝑛(𝑤). By
the induction hypothesis, it can be inferred that 𝐿𝑛 ⊆ 𝑀∞. Since 𝑤 ∈ 𝐿𝑛 ⊆
𝑀∞ and 𝑀∞ is quadratic closed (3.7) 𝐿𝑛(𝑤) = 𝐿𝑛+1 ⊆ 𝑀∞.

”⇒∶” There exists a 𝑛 such that 𝑧 ∈ 𝑀𝑛, and we know that there exists a 𝐾𝑛 with
𝑀𝑛 ⊆ 𝐾𝑛 which is derived from 𝐾0 by successive adjoing square roots 3.28. We can
conclude that there is a 𝐾, which is derived from 𝐾0 by successive adjoining square
roots, and that 𝑧 ∈ 𝐾. Since 𝑀𝑖 is finite, we get that we adjoin finitely many square
roots and so we evoke 3.27.

Lemma 3.30. For 𝑧 ∈ ℂ, 𝑧 ∈ 𝑀∞ implies there exists a 𝑚 such that [𝑧 ∶ 𝐾0] = 2𝑚.
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Proof. By Theorem 3.29, it can be inferred that there exists a chain of subfields,
𝐾0 = 𝐿1 ⊂ 𝐿2 ⊂ ⋯ ⊂ 𝐿𝑛 ⊂ ℂ, with 𝑧 ∈ 𝐿𝑛 and [𝐿𝑖 ∶ 𝐿𝑖+1] = 2 for 𝑖 = 0, 1,… , 𝑛−1.
Moreover, the multiplicativity formula for degrees indicates that the degree of the
extension [𝐿𝑛 ∶ 𝐾0] is equal to the product of the degrees of the extensions [𝐿𝑛 ∶
𝐿𝑛−1] ⋅ [𝐿𝑛−1 ∶ 𝐿𝑛−2] ⋅ … [𝐿2 ∶ 𝐿1]. Thus, we have that [𝐿𝑛 ∶ 𝐾0] = 2𝑛. The fact that
𝑧 ∈ 𝐿𝑛 implies that 𝐾0(𝑧) ⊆ 𝐿𝑛. It thus follows that the index of the field extension
[𝐿𝑛 ∶ 𝐾0] = [𝐿𝑛 ∶ 𝐾0(𝑧)] ⋅ [𝐾0(𝑧) ∶ 𝐾0], which implies that [𝐾0(𝑧) ∶ 𝐾0] is a divisor
of 2𝑛.

Corollary 3.31. For 𝑧 ∈ ℂ, if there is no 𝑚 such that [𝑧 ∶ 𝐾0] = 2𝑚 then 𝑧 ∉ 𝑀∞.

Proof. Contraposition of Lemma 3.30.

Corollary 3.32. For 𝑧 ∈ ℂ, 𝑧 ∈ 𝑀∞ with [𝐾0 ∶ ℚ] = 2𝑛, if there is no 𝑚 such that
[𝑧 ∶ ℚ] = 2𝑚 then 𝑧 ∉ 𝑀∞.

Proof. A combination of the multiplicativity formula for degrees and corollary 3.31.
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Chapter 4

Ancient Construction Problems

This chapter will employ the results to demonstrate the impossibility of trisecting
the angle and doubling the cube. This formalisation is based on the work conducted
during my project in Bonn during the Lean Course WiSe 23/24: https://github.
com/Louis-Le-Grand/LeanCourse23Fork/tree/master/LeanCourse/Project

4.1 Doubling the cube
The doubling of the cube, also known as the Delian problem, represents an ancient
geometric problem. The objective is to construct the edge of a second cube whose
volume is double that of the first, using only a ruler and compass, given the edge of
a cube. The construction of a second cube with double the volume of the original
cube begins with a cube of volume 𝑎3, where 𝑎 is the length of an edge. Thus, a
cube with double the volume (2 ⋅ 𝑎3) has an edge length of the cube root of two
times the length of the original edge. If we now take the unit cube and reduce ℳ,
the problem is as follows:
Problem 4.1. Let ℳ = {0, 1}.

Is 3√2 ?∈ ℳ∞?
Lemma 4.2. ( 3√2 is irrational) The third root of 2 is an irrational number.
Proof. The following theorem will be used without proof, as it is already available
in MathLib:

Theorem*. For any 𝑥 ∈ (ℝ ∖ ℤ) if there exist an 𝑛 ∈ ℕ>0 and 𝑚 ∈ ℤ such that
𝑚 = 𝑥𝑛, then 𝑥 is rational.

The fact that ( 3√2)3 = 2, allows us to deduce that the only remaining task is to
prove that it is not an integer. This can be observed trough two relations.

2 1
3 < 2 (4.1)

2 1
3 > 1 (4.2)
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Lemma 4.3. 𝑃 ∶= 𝑋3 − 2 is irreducible over ℚ.

Proof. Since ℚ is 𝑎 subfield of ℂ[𝑋], we know that

𝑋3 − 2 = (𝑋 − 3√2)(𝑋 − 𝜁3 3√2)(𝑋 − 𝜁23 3√2)

Suppose 𝑃 is reducible, then

𝑋3 − 2 = (𝑋 − 𝑎)(𝑋2 + 𝑏𝑋 + 𝑐), with 𝑎, 𝑏, 𝑐 ∈ ℚ

In particular it has a zero in ℚ, so there is a rational number 𝑎 such that 𝑎3 = 2.
But we know that 𝜁3 3√2 and 𝜁23 3√2 are not real numbers and 3√2 is not rational 4.2.
So 𝑃 is irreducible over ℚ.

Theorem 4.4. The cube can’t be doubled using a compass and straightedge.

Proof. By applying the corollary 3.31, it is sufficient to proof that no 𝑚 ∈ ℕ exists
such that

2𝑚 ?= [ 3√2 ∶ ℚ(0, 1)] 0,1∈ℚ= [ 3√2 ∶ ℚ] = degree(𝜇ℚ, 3√2).
Since 𝑃 is irreducible over ℚ ??, monic and has 3√2 as a zero, we know that [ℚ( 3√2) ∶
ℚ] = 3. And since

3 ≡2 1 ≠ 0 ≡2= 2𝑚 ∀𝑚 ∈ ℕ
we can conclude that the cube can’t be doubled using a compass and straightedge.

4.2 Trisection of an angle
The trisection of an angle with a compass and ruler can be reduced to the following
problem:
Let ℳ = {𝑎, 𝑏, 𝑐} with 𝑎, 𝑏, 𝑐 not on a line and 𝛼 ∶= ∠(𝑏 − 𝑎, 𝑐 − 𝑎) be the resulting
angle. Then 𝛼 can be trisected if and only if there is a point 𝑑 ∈ ℳ∞ such that
∠(𝑏−𝑎, 𝑑−𝑎) = 𝛼/3. The use of a normed set ℳ = {0, 1, 𝑒𝑖𝛼} leads to the following
problem:

Problem 4.5. Let ℳ = {0, 1, exp(i𝛼)}.

Is exp(i𝛼/3) ?∈ ℳ∞?

In this context, since the numbers zero and one are rational numbers, it can be
concluded that 𝐾0 is equal to

𝐾0 = ℚ(ℳ∪ 𝐶𝑜𝑛𝑗(ℳ)) = ℚ(𝑒𝚤𝛼, 𝑒𝚤𝛼).

Given the corollary reference and the fact that 𝑒𝚤𝛼/3 is a zero of 𝑋3 − 𝑒𝚤𝛼 ∈
ℚ(𝑒𝚤𝛼, 𝑒𝚤𝛼)[𝑋], the following is equivalent:
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• exp(i𝛼/3) ∉ ℳ∞

• degree(𝜇𝑒𝚤𝛼/3,𝐾0
) = 3

• 𝑋3 − 𝑒𝚤𝛼 is irreducible over ℚ(𝑒𝚤𝛼, 𝑒𝚤𝛼)
The following section will demonstrate that the angle of 𝜋

3 = 60° is not trisectable.

Lemma 4.6. The degree of 𝐾0 = ℚ(𝑒𝚤𝜋
3 , 𝑒𝚤𝜋

3 ) is equal to 2.

Proof. For all real numbers 𝛼, we have that

exp(𝚤𝛼) = cos(𝛼) + 𝚤 sin(𝛼).
For 𝛼 = 𝜋/3 we get

cos(𝛼) = 1
2 and sin(𝛼) =

√
3
2

Therefore ℚ(𝑒𝚤𝜋
3 , 𝑒𝚤𝜋

3 ) is in ℚ(𝚤
√
3). And since 𝚤

√
3 is a zero of 𝑋2 +3, we know that

the degree of 𝐾0 less then 2. To show that the degree is not 1, we apply the fact
that 𝚤

√
3 ∉ ℚ.

Lemma 4.7. The angle 𝜋/3 = 60∘ can’t be trisected using a compass and straight-
edge.

Proof. By utilising the aforementioned lemma 4.6 to apply the corresponding corol-
lary 3.32, we can narrow our focus to the degree over ℚ. Now we use the fact that
if 𝑥 ∈ ℳ∞, then 𝑥.𝑟𝑒𝑎𝑙, 𝑥.𝑖𝑚𝑎𝑔 ∈ ℳ∞ 3.4. Thus we focus on cos(𝛼/3), which the
real part 𝑒𝚤𝜋

3 and a zero of

𝑓 ∶= 8𝑋3 − 6𝑋 − 1 ∈ ℚ[𝑋]
Suppose 𝑓 is reducible over ℚ, then 𝑓 has a rational zero 𝑎, since 𝑓 is of degree 3.
According to the rational root theorem, a root rational root of 𝑓 is of the form ±𝑝

𝑞
with 𝑝 a factor of the constant term and 𝑞 a factor of the leading coefficient. So the
only possible rational zeros of 𝑓 are

{±1,±1
2,±

1
4,±

1
8}.

One can check that none of these numbers are a zero of 𝑓 . So 𝑓 is irreducible over
ℚ and cos(𝛼/3) ∉ ℳ∞. Therefore

exp(i𝛼/3) ∉ ℳ∞

So the angle 𝜋/3 = 60∘ can’t be trisected using a compass and straightedge.

Theorem 4.8. A general angle can’t be trisected using a compass and straightedge.

Proof. Employ the previous lemma with the angle 𝜋/3.
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Chapter 5

A sample of Lean

The following chapter provides a concise overview of the author’s experience with
lean, the challenges encountered, and the author’s approach to formalisation.

However, it will not explain the operational logic of lean nor serve as a guide
to learning lean, as this is beyond the scope of this thesis. For those interested in
learning more about lean, I recommend consulting the following resources: https:
//leanprover-community.github.io/learn.html

5.1 Blueprint

Figure 5.1: Blueprint

✓ Indicates the statment is Formalised
# Links to the proof

Shows to the proof
Shows dependency

L∃∀N Links to the documentation

In order to structure my project, I em-
ploy the Lean Blueprint tool, created by
Patrick Massot. [5] This tool generates
a web version of the LaTeX file, which
provides an outline of the project and fa-
cilitates the integration of code with the
associated documentation. Please refer
to Figure 5.1 for an example of the link-
ing. Furthermore, it generates a depen-
dency graph 5.1, which illustrates the
extent of formalisation. The presented
approach is particularly beneficial for
larger-scale projects involving multiple
contributors, as evidenced in Terence Tao blog post. [7]
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Figure 5.2: Dependency Graph
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5.2 A sample of Lean code
The following is a representative sample of the Lean code, which is available in its en-
tirety on the GitHub repository of this project. https://github.com/Louis-Le-Grand/
Formalisation-of-constructable-numbers

I defined lines as a structure of two points 𝑧1 and 𝑧2. For this structure I then
define points by {𝜆𝑧1 + (1 − 𝜆)𝑧2 ∣ 𝜆 ∈ ℝ} which are all the points the line goes
through. I have omitted the condition 𝑧1 ≠ 𝑧2 because in some settings a line that
consists of only one point makes sense.

structure line where
(�z �z : �)

def line.points (l: line) : Set �:=
{(t : �) * l.�z + (1-t) * l.�z | (t : �)}

To define the circles, I used 𝑐 of ℂ as the centre and 𝑟 as the radius. For the
points, I could refer to spheres already defined in Mathilb, which had the advantage
that I could use existing lemmas about them.

structure circle where
(c : �)
(r : �)

def circle.points (c: circle) := Metric.sphere c.c c.r
noncomputable def circle.points' (c: circle) :=

�(c.c, c.�r : EuclideanGeometry.Sphere �)

To prove that 𝑀∞ is a subfile of ℂ, I had to define a new object of type subfile
of ℂ, and use 𝑀∞ as the subordinate carrier. This is because each object in Lean is
a type, and you cannot switch between types.

noncomputable def MField (M: Set �)(�h: 0 � M)(�h: �1 M):
Subfield � where

carrier := M_inf M
zero_mem' := by exact M_M_inf M �h
one_mem' := by exact M_M_inf M �h
add_mem' := by apply add_M_Inf M �h
neg_mem' := by apply z_neg_M_inf M �h
mul_mem' := by apply mul_M_inf M �h �h
inv_mem' := by apply inv_M_inf M �h �h

5.3 Conclusion
The proceeding was an account of the process by which the formalisation of ”The
Impossibility of Trisecting the Angle and Doubling the Cube” was reached. On the
one hand, working with lean demonstrates which aspects have not yet been resolved,
during the formalisation process and ensures that all outcomes will be accurate.
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However, it requires a more complex proof structure than is typically required,
rendering processes that are otherwise straightforward challenging to demonstrate.
Consequently, this approach is inherently time-consuming. This has resulted in the
following aspects not being completed in time.

In Lemma 3.21, while calculating the existence of the line through the intersec-
tion points of the two circles, it was found that for ℑ(𝑐1) = ℑ(𝑐2) = 0 , the lemma is
not true. Due to time limitations, these issues could not be addressed.

In the proof of Theorem 3.29 the fact that it is a finte adjunction of square roots
was not proven and the equivalence of Lemma 3.27 is not formalized.

It should be noted that proof of Lemma 3.26 was never forthcoming, as there
was a desire to prove the most general setting in order to contribute it to Mathlib.
However, due to the limitations of time, this was not feasible.

Nonetheless, I’m glad that I could make a small contribution to the formalization
of the 100 theorems in Lean.
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