
On the Formalization of
the Simplicial Model of

HoTT

Kunhong Du
Born 18.02.2000 in Guangdong, China

05.02.2025

Master’s Thesis Mathematics

Advisor: Prof. Dr. Floris van Doorn

Second Advisor: Prof. Dr. Peter Koepke

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 1

2 Contextual categories 3
2.1 The category associated to a type theory 3
2.2 Contextual categories . 5
2.3 Logical structures on a contextual category 7

3 Consistency, models and initiality 9
3.1 Consistency . 9
3.2 Models and initiality . 10
3.3 The formalization of initiality . 10

4 Locally cartesian closed categories 11
4.1 Definitions and first properties . 11
4.2 Dealing with chosen pullbacks . 12

5 Building contextual categories from universes 17
5.1 Universes . 17
5.2 Logical structures on a universe . 19

6 The simplicial model 27
6.1 Fibres and well-ordered morphisms . 27
6.2 Construction of the universe . 29

6.2.1 The functor Wα . 29
6.2.2 The simplicial sets Wα and W̃α 32
6.2.3 The functor Uα, the simplicial sets Uα and Ũα 35

6.3 Logical structures . 37

7 Conclusion 39

A Type theory 41
A.1 Martin-Löf type theory . 41

A.1.1 Structural rules . 41
A.1.2 Logical rules . 42
A.1.3 The univalence axiom . 43

A.2 Pure type systems . 44
A.2.1 Definition . 44
A.2.2 The syntactic category of PTS 45

Chapter 1

Introduction

Homotopy Type Theory (HoTT) is a modern foundation of mathematics that integrates
concepts from type theory and homotopy theory, providing a rich and versatile frame-
work for reasoning about structures and transformations in mathematics. [6] One of the
cornerstone principles of HoTT is the univalence axiom, which asserts that equivalent
mathematical structures (types) can be identified. The univalence axiom has profound
implications for the expressive power and philosophical interpretation of mathematics
within HoTT.

A critical challenge in HoTT is to ensure the consistency of the univalence axiom.
This task was first addressed by Kapulkin, Lumsdaine and Voevodsky who constructed
a model in which the univalence axiom is validated. [8] Their work introduced the
simplicial model, which is based on the category of Kan complexes. This construction
not only confirmed the internal consistency of the univalence axiom but also provided
deep insights into the interplay between type theory and homotopy theory.

To rigorously formalize the simplicial model, the use of formal proof assistants be-
comes essential. Lean, a powerful interactive theorem prover, has emerged as a leading
tool for the formalization of mathematics. Moreover, Mathlib, a Lean library, provides
rich content in category theory and simplicial sets, laying a solid foundation for our
purpose. Leveraging these capabilities, this thesis aims to formalize key aspects of the
simplicial model in Lean, bridging the gap between theoretical constructs and their
mechanized formalizations.

By developing a formal and verifiable framework for parts of the simplicial model,
this work not only seeks to deepen our comprehension of HoTT and its semantics but
also highlights the practical utility of proof assistants like Lean in advancing modern
mathematics.

Chapter 2 introduces contextual categories as a framework for modeling type the-
ories, where objects are viewed as contexts and morphisms as substitutions. We also
present the term model a type theory in this framework. Some details on the formal-
ization are discussed.

In Chapter 3, we clarify the meaning of consistency of a type theory and explain
how it is proven through the initiality of the term model and the existence of a model.

Chapter 4 serves as an interlude to the main construction, presenting the basic
theory of locally cartesian closed categories, the categorical setting in which our con-
structions take place. In particular, we discuss strategies for handling chosen pullbacks
in Lean

1

Chapter 5 reduces the construction of a contexutal categorical model to a universe
and its associated logical structures, automatically solving the coherence issues in this
process.

Chapter 6 presents the core theory of the simplicial model. Roughly, types are
viewed as Kan fibrations in this model.

2

Chapter 2

Contextual categories

2.1 The category associated to a type theory
As a heuristic, we consider the following construction.

Example 2.1.1. Let T be a Martin-Löf type theory (see Appendix A.1). Then its
syntactic category CpTq is defined as follows:

• The objects are the contexts rx1:A1, ..., xn:Ans up to definitional equality and re-
naming of free variables.

• A morphism
f : rx1:A1, ..., xn:Ans Ñ ry1:B1, ..., ym : Bms

is an equivalence class of sequences of terms pf1, ..., fmq such that

x1:A1, ..., xn:An $ f1:B1

x1:A1, ..., xn:An $ f2:B2rf1{y1s

¨ ¨ ¨

x1:A1, ..., xn:An $ fm:Bmrf1, ..., fm´1{y1, ..., ym´1s

where two sequences pf1, ..., fmq and pg1, ..., gmq are equivalent if for each i

x1:A1, ..., xn:An $ fi “ gi : Birf1, ..., fi´1{y1, ..., yi´1s.

Note that the morphism really encodes the data we need to do substitution, so we
can write yrf s for the substitution yrf1, ..., fn{y1, ..., yns.

• The identity morphism of rx1:A1, ..., xn:Ans is exactly px1, ..., xnq.

• The composition is defined as follows. Given

rx1:A1, ..., xn:Ans
pf1,...,fmq
ÝÝÝÝÝÝÑ ry1:B1, ..., ym:Bms

pg1,...,gkq
ÝÝÝÝÝÑ rz1:C1, ..., zk:Cks,

pg1, ..., gkq ˝ pf1, ..., fmq is
pg1rf s, ..., gkrf sq,

i.e., the sequence after substitution.

3

CpTq has a tree structure.

1. the root is the empty context rs.

2. the depth (grading) is the length of the context.

3. the root rs is the only object with zero depth.

4. any object except for the root has a unique parent. For all n P N, the parent of
rx1:A1, ..., xn`1:An`1s is rx1:A1, ..., xn:Ans.

5. There is a canonical map from the child to its parent:

rx1:A1, ..., xn`1:An`1s
px1,...,xnq
ÝÝÝÝÝÑ rx1:A1, ..., xn:Ans,

which is called the canonical projection and denoted by p.

Judgments viewed in CpTq

Derivable judgments in T are one-to-one corresponded to morphisms (if we identify
objects with the identity morphisms) in CpTq.

Γ $ A type ô Γ, x:A ctx ô an object in CpTq.
Γ $ a:A ô A section of the canonical projection p : rΓ, x:As Ñ rΓs: If Γ $ a:A

is derivable, then so is Γ $ A type. There is a morphism pidΓ, aq : rΓ, x:As Ñ rΓs

such that p ˝ pidΓ, aq “ pidΓq ˝ pidΓ, aq “ idrΓ,x:As. Conversely, if there is a section
s : rΓ, x:As Ñ rΓs, then by definition of morphisms in CpTq, the last term of s is a
derivable judgment Γ $ a : A for some a.

Judgmental equalities in T clearly correspond to the strict equality in CpTq.

Remark. It follows from our discussion that CpTq contains exactly all the information
of T. With CpTq, we can basically put aside the syntax and work with type theory
categorically.

Substitutions in CpTq

Let Γ “ rx1:A1, ..., xn:An, xn`1:An`1s and ∆ “ ry1:B1, ..., ym:Bms. Let

f “ pf1, ..., fmq : ∆ Ñ ft Γ “ px1:A1, ..., xn:Anq.

Define
f˚Γ :“ ry1:B1, ..., ym:Bm, ym`1:An`1rf ss

and
qpfq :“ pf1, ..., fn, ym`1q.

Note that ftpf˚Γq “ ∆, hence we have the following diagram

ry1:B1, ..., ym:Bm, ym`1:An`1rf ss rx1:A1, ..., xn`1:An`1s

ry1:B1, ..., ym:Bms rx1:A1, ..., xn:Ans

qpfq

pf˚Γ pΓ

f

It clearly commutes. Furthermore, it is a pullback: given compatible pg1, ..., gmq :
∆1 Ñ ∆ and ph1, ..., hn`1q : ∆

1 Ñ Γ, the unique lift is pg1, ..., gm, hn`1q : ∆ Ñ f˚Γ.

4

This construction is exactly the counterpart of (simultaneous) syntactic substitu-
tion: given a context rx1:A1, ..., xn:Ans, one of its extension rx1:A1, ..., xn`1:An`1s and a
sequence of terms pf1, ..., fnq under a context ∆, we can substitute all the xi’s in An`1

and obtain an extension of ∆. Note that by the universal property of pullbacks, we can
also do substitution of terms in CpTq.

On feature that needs noting is that the (chosen) pullbacks are strictly functorial.
We check it commutes with composition. With the data in the diagram above, we
consider a morphism

g “ pg1, ..., gmq : ∆1
“ rz1:C1, ..., zk:Cks Ñ ∆.

Then

An`1rf1, ..., fn{x1, ..., xnsrg1, ..., gm{y1, ..., yms “ An`1rg ˝ f{x1, ..., xns

by design. Hence pf ˝ gq˚∆ “ f˚pg˚∆q and

qpf ˝ gq “ pf ˝ g, zk`1q “ pf, ym`1q ˝ pg, zk`1q “ qpfq ˝ qpgq.

Other structural rules like Var, Wkg are also validated automatically in CpTq.

2.2 Contextual categories
The notion of contextual categories dates back to [4]. The key point is to package the
structural rules of a type theory into a category.

Definition 2.2.1 [ContextualCategory]. A contextual category is a category C with
the following data:

1. a grading gr : Ob C Ñ N. Denote Obn for objects with grading n.

2. an object 1 such that

(a) 1 is the unique object with grading 0.
(b) 1 is terminal is C.

3. for each n P N, a map ftn : Obn`1 C Ñ Obn C. Since no confusion will arise, we
will suppress the subscripts.

4. for each n P N and X P Obn`1 C, a map (called the canonical projection) pX :
X Ñ ftpXq.

5. for each n P N, X P Obn`1 C and f : Y Ñ ftX, an object f˚X with a map
qpfq : f˚X Ñ X such that

(a) ftpf˚Xq “ X.
(b) the diagram

f˚X X

Y ftX

qpfq

pf˚X pX

f

is a pullback (called the canonical pullback).

5

(c) these pullbacks are strictly functorial (in other words, q is functorial): for
all X P Obn`1pXq,

i. 1˚
ftXX “ X and qp1ftXq “ 1X .

ii. for f : Y Ñ ftX and g : Z Ñ Y , pf ˝ gq˚X “ g˚pf˚Xq and qpf ˝ gq “

qpfq ˝ qpgq.

CpTq is obviously a contextual category. It also tells us how to view judgments of a
type theory in a contextual category:

Context Γ Object rrΓss

Type statement Γ $ A type Canonical projection rrpΓ.Ass

Typing statement Γ $ x:A Section of the projection
Judgmental equality (Strict) equality

Before addressing the formalization, we should make a few comments on the general
principles of formalizing category theory in Lean.

In Mathlib, the type of morphisms of a category is defined dependently as follows:

class Quiver (V : Type u) where
Hom : V Ñ V Ñ Sort v

Therefore, morphisms with only propositionally equal sources and targets do not have
the same type, which results in typing errors when we compare them with Eq or other
dependent types. To avoid such issues, it is best to require that the equalities between
objects are definitional. Or at least, it would be better to ensure the morphisms we want
to compare have definitionally equal sources and targets. When this is not feasible—for
instance, when the equalities of objects are additional data—use eqToHom or HEq instead
of rw or cast, as the latter approach usually leads to the so-called dependent type theory
hell.

class PreContextualCategory (α : Type u) extends Category α where
gr : α Ñ N
one : α
one_gr : gr one = 0
one_uniq {x : α} : gr x = 0 Ñ x = one
one_terminal : IsTerminal one
ft : α Ñ α
ft_one : ft one = one
ft_gr {n : N} (x : α): gr x = n + 1 Ñ gr (ft x) = n
proj (x : α) : x ÝÑ ft x

class PreContextualCategory.NR {α : Type u} [PreContextualCategory α]
(x : α) : Prop where

nr : gr x ‰ 0

class ContextualCategory (α : Type u) extends PreContextualCategory α where
pb {x y : α} [NR x] (f : y ÝÑ ft x) : α
pb_fst {x y : α} [NR x] (f : y ÝÑ ft x) : pb f ÝÑ x
gr_pb {x y : α} [NR x] {f : y ÝÑ ft x} : gr (pb f) ‰ 0
nr_pb {x y : α} [NR x] {f : y ÝÑ ft x} : NR (pb f) := xgr_pby

6

ft_pb {x y : α} [NR x] {f : y ÝÑ ft x} : ft (pb f) = y
isPullback {x y : α} [NR x] (f : y ÝÑ ft x) :

IsPullback (pb_fst f) (proj (pb f) " eqToHom ft_pb) (proj x) f
pullback_id_obj {x : α} [NR x]: pb (1 (ft x)) = x
pullback_id_map {x : α} [NR x] :

HEq (pb_fst (1 (ft x))) (1 x)
pullback_comp_obj {x y z : α} [NR x] {f : y ÝÑ ft x} {g : z ÝÑ y} :

pb (g " f) = pb (g " eqToHom (ft_pb (f := f)).symm)
pullback_comp_map {x y z : α} [NR x] {f : y ÝÑ ft x} {g : z ÝÑ y} :

HEq (pb_fst (g " f)) (pb_fst (g " eqToHom ft_pb.symm) " pb_fst f)

The first consideration is that, since the chosen pullbacks are only defined for non-
root objects, it would be easiest to define a class for them to avoid repeatedly writing
out the explicit proof. Therefore, we split the definition into two parts.

Another point to mention is the use of eqToHom and HEq. As discussed above, since
ft (pb f) and y are only equal propositionally as extra data, it is unavoidable to
connect, for example, morphisms to ft(pb f) and morphisms from f via eqToHom to
pass the type-check. We choose HEq over eqToHom ... " ... = ... due to its clarity
in presentation. They are essentially equivalent:

lemma eqToHom_comp_iff_heq {X X’ Y : C} {f : X ÝÑ Y} {g : X’ ÝÑ Y}
(hX : X’ = X) :

eqToHom hX " f = g Ø HEq f g

2.3 Logical structures on a contextual category
If T has further logical rules, CpTq will be equipped with the corresponding data tauto-
logically. For example, if T has Π-types, then CpTq validates the corresponding rules.
This will be clear by considering the formation rule of Π-types. Suppose we have an
object Γ and the extension Γ.A.B. Then by definition of CpTq, Γ is a (well-formed)
context and we have Γ, x : A $ B type. By Π-Form, we have Γ $ Πx:AB, which in
turn gives an object Γ.Πx:AB as an extension of Γ. Similarly, every other rule holds
tautologically.

This inspires us to define extra structures on a contextual category to serve as the
categorical counterparts of logical rules. Before that, let us denote pA0, A1, ..., Anq for
an object in C such that

ftipA0, A1, ..., Anq “ pA0, A1, ..., An´iq

for all 1 ď i ď n. In particular, pA0, A1, ..., Anq has length ě n. We also denote pAi

to be the canonical projection pA0, ..., Aiq Ñ pA0, ..., Ai´1q. When we quantify over
pA0, A1, ..., Anq, we really mean to quantify over an object A0 and its extensions of
length n.

Definition 2.3.1 [ContextualCategory.Pi_type]. A Π-type structure on a contextual
category C consists of:

1. (Π-Form) for all pΓ, A,Bq, an object pΓ,ΠpA,Bqq.

7

2. (Π-Intro) for all pΓ, A,Bq and a section b : pΓ, Aq Ñ pΓ, A,Bq, a section λpbq :
Γ Ñ pΓ,ΠpA,Bqq.

3. (Π-Elim) for all pΓ, A,Bq and sections k : Γ Ñ pΓ,ΠpA,Bqq and a : Γ Ñ pΓ, Aq,
a map apppk, aq : a Ñ pB in the slice category of over Γ.

4. (Π-Comp) for all pΓ, A,Bq and sections a : Γ Ñ pΓ, Aq and b : pΓ, Aq Ñ pΓ, A,Bq,
we have apppλpbq, aq “ b ˝ a.

5. (Stable under substitution) for all f : ∆ Ñ Γ, and suitable pΓ, A,Bq, a, b, k, we
have

f˚
pΠpA,Bqq “ Πpf˚A, f˚Bq

λpf˚bq “ f˚λpbq

apppf˚k, f˚aq “ f˚
papppk, aqq

Remark. The third and forth term are a little different than the direct translation of
syntax. For Π-Elim, the conclusion Γ $ fpaq : Bpaq should correspond to the section
of pΓ, Bra{xsq. But it is essentially equivalent by the universal property of pullback.
Unfolding this equivalence, term 4 is equivalent as well.

Similarly we can define other logical structures on a contextual category C (even
for type theory other than MLTT, see Appendix A.2.2). As we discussed above, CpTq

is equipped with all the type structures corresponded to those logical rules of T in a
completely tautological way.

8

Chapter 3

Consistency, models and initiality

3.1 Consistency
As mentioned in the introduction, the consistency of the univalence axiom, or the
consistency of HoTT remained unresolved until the discovery of the simplicial model.
But what exactly do we mean by consistency?

Definition 3.1.1. A type theory is inconsistent if all types are inhabited. It is consistent
if it is not inconsistent.

In particular, it is clear from the elimination rule of the empty type 0 that T with
0 is inconsistent if and only if 0 is inhabited by a closed term (i.e, a term with type 0
under empty context).

Theorem 3.1.2. MLTT is consistent.

Section A.4 of [6] presents a sketch of the proof. The idea is that: every term in
MLTT can be normalized to a normal form and there is no term in normal form having
type 0.

However, after adding the univalence axiom, the previous argument no long applies,
since the term univalencepA,Bq does not simplify.

Remark. The reader may notice when talking about the system of type theory, we make
a difference between rules and axioms. This is not because of the form of presentation.
In fact, all the rules and axioms can be presented in either proof tree or in if-then
clauses. The distinction lies in the computational nature. Rules in the form of “forma-
tion, introduction and elimination” are computational, justified by the corresponding
computation rule, while the computational interpretation of axioms is not guaranteed.
In particular, the univalence has no computational interpretation when formulated as
an axiom in the form of Definition A.1.1.

To prove the consistency of HoTT, we may want to continue the work on MLTT. For
the latest progress in this approach, see [2], where HoTT is proved to have homotopy
canonicity. Alternatively, we may also approach the problem by exhibiting a semantic
model.

9

3.2 Models and initiality
Having mentioned the word “model” several times, it’s time to clarify what we mean
by it and what we want with it.

Definition 3.2.1. A model of type theory in contextual categories is a contextual cate-
gory with all the logical structures corresponding to the logical rules and axioms of the
type theory.

Remark. We emphasis that what we define are “models in contextual categories” because
type theory can be modelled in other structures, such as categories with attributes
(which are very similar to contextual categories), categories with families, display map
categories, etc.

In contrast to the classical model theory settings, having a model does not imply
the consistency of a type theory. In fact, for any type theory T, CpTq is a model
of T, albeit it contains only tautological information and hence says nothing about
consistency. Therefore, to argue about the consistency, we need the following initiality
theorem.

Theorem 3.2.2. If C is a model of T, then there is a unique functor from CpTq to C
preserving all the contextual structures. In other words, CpTq is initial among all the
models of T.

Suppose T is inconsistent, i.e., 0 is inhabited in CpTq. By the initiality theorem, the
interpretation of 0 is inhabited in every model of T. Therefore, to prove the consistency
of T, it suffices to find a model where the interpretation of 0 is not inhabited.

To conclude, the ultimate goal is to construct a contextual category (theoretically in
ZFC or practically in Lean) with all the logical structures of MLTT and the univalence
axiom such that the interpretation of 0 is not inhabited. In doing so, the consistency
of HoTT (relative to ZFC or Lean) is proved in light of initiality.

3.3 The formalization of initiality
Historically, the correctness of Theorem 3.2.2 was a subject of debate, as no one had
provided a complete proof for sufficiently large type theories, particularly MLTT, until
[10]. In [8], it is still regarded as a conjecture.

The initiality of MLTT with Π, Σ, Id and a hierarchy of universes was formalized
in Agda [3]. Although we would hope to achieve the same in Lean, the task is too
extensive to complete within the given time constraints. However we have succeeded
in formalizing a relatively smaller type theory, called pure type systems, and also its
syntactic category (see Appendix A.2). With this, we argue that it is possible to
formalize MLTT, its syntactic category and initiality in Lean, leaving it for further
research.

10

Chapter 4

Locally cartesian closed categories

Before delving into the construction, we present here the basic theory of locally cartesian
closed categories, which serves as the categorical settings for our work. The reasons for
this choice will be explained below

4.1 Definitions and first properties
Definition 4.1.1. A category C with finite products is cartesian closed if for any object
Y , the functor ´ ˆ Y : C Ù C has a right adjoint rY,´s.

It is well known that there is an adjunction

ttheories in simply typed λ-calculusu Ô tcartesian closed categoriesu.

When moving from simple type theory to dependent type theory, one need a slight
generalization of Definition 4.1.1.

Definition 4.1.2. Let C be a category with pullbacks. It is said to be locally cartesian
closed if one the following equivalent properties holds:

1. (CategoryTheory.LocallyCartesianClosed). for any morphism f : X Ñ Y ,
the pullback functor f˚ : C {Y Ñ C {X has a right adjoint Πf : C {X Ñ C {Y .

2. (CategoryTheory.OverCartesianClosed). for any object X, the slice category
C {X is cartesian closed.

Remark. In a category with pullbacks, any choice of pullbacks along a morphism f form
a functor. In Lean, it is chosen by by Classical.choose. See Section 4.2 for detailed
discussion.

Remark. Πf provides an interpretation of the formation of Π-types. In fact, (exten-
sional) Martin-Löf type theories are biequivalent to locally cartesian closed categories
[5]. This is reason why it is chosen as the setting we work in.

The second property is the reason why it’s named “locally” cartesian closed.
Only the proof that the second property implies the first one has been formalized

[CategoryTheory.LocallyCartesianClosed.instOfOverCartesianClosed], since we
don’t need the other direction. The formalization is entirely attributed to [7].

11

We will see in Chapter 6 that the simplicial model heavily relies on the fact that
simplicial sets form a locally cartesian closed category. In fact, it is true for all presheaf
categories.

Theorem 4.1.3 [CategoryTheory.instLocallyCartesianClosedPresheaves]. Any
presheaf category is locally cartesian closed.

The proof has the two steps:

1. (CategoryTheory.instCartesianClosedPresheaves) Any presheaf category is
cartesian closed.

2. (CategoryTheory.CategoryOfElements.OverIsoElementsPresheaves) For a
presheaf P in a presheaf category Cop

Ù Set, the slice category over P is equivalent
to the presheaf category P el Ù Set. (See the remark below Theorem 6.2.8).

The proof strategy is inspired by [7]. Both of these statements follow directly from
theorems already in Mathlib. We omit the details here. But we would like to make one
comment on the universe issues.

Generally, we define a presheaf category to have codomain as the universe that the
morphisms lie in. In Lean, it means for C : Type u with an instance Category.{v,u}
C, the presheaf category is Cop Ù Type v. Indeed, almost all the results related to
presheaves in Mathlib are formalized in this way.

However, SSet, which is viewed as the presheaf category on the simplex category, is
defined polymorphically in Lean : SSet.{u} := simplexCategory Ù Type u, where
the objects and morphisms of simplexCategory are in Type 0. As a result, those
results on presheaves in Mathlib do not apply to SSet. In order to use them here, we
need to slightly modify the codes. In particular, we need to replace every occurrence of

1. Cop Ù Type v by Cop Ù Type max v w. Then it applies to SSet since in Lean
Type (max 0 u) = Type u definitionally.

2. yoneda by yonedaULift, a polymorphic version of yoneda. Roughly, it’s yoneda
postcomposed with uliftFunctor

3. yonedaEquiv by yonedaULiftEquiv.

Though the modified versions are indeed the generalization conceptually, but they are
not corollaries of each other in Lean, since ULift.{0,0} is not definitionally equal to
id. Their relation is more comparable to lemmas of groups written in ‘+’ or ‘¨’.

4.2 Dealing with chosen pullbacks
When formalizing categories, general issue arises: we cannot treat isomorphic objects
as identical, as is often done in informal mathematics. The same thing happens when
we want to apply the adjunction f˚ % Πf to the pullbacks given by a universe (Defini-
tion 5.1.1), they simply do not match.

The first solution that might come to mind is to modify the definition of locally
cartesian closed categories by including chosen pullbacks as additional data and defining

12

the adjunctions based on them. However, this approach may complicate the proofs of
related properties. Furthermore, a universe provides only some pullbacks, which are
insufficient to define a pullback functor for every morphism in the category. Define
some pullbacks via the universe and the others using Classical.choice? No, this is
definitely the last thing we want to do in Lean.

It turns out that perhaps the best solution is to formalize the informality, i.e.,
identify isomorphic objects via isomorphisms. Let f : X Ñ Y be a morphism and
f˚ % Πf an adjunction. Let W Ñ X be a random pullback of Z Ñ Y along f , as
indicated in the following diagram. We have a unique isomorphism from W Ñ f˚Z in
C {X. Then for any P Ñ X, we have an bijection

HomC {XpW,P q – HomC {Y pZ,ΠfP q

given by composing the isomorphism with HomC {Xpf˚Z, P q – homC {Y pZ,ΠfP q.

f˚Z P ΠfP

W Z

X Y

–

{

f

The bijection has an obvious naturality on P . For h : P Ñ P 1,

HomC {XpW,P q HomC {Y pZ,ΠfP q

HomC {XpW,P 1q HomC {Y pZ,ΠfP
1q

h˝´ Πfh˝´

The naturality on the left is slightly trickier. For h : Z Ñ Z 1 and two pullback
squares as in the following diagram, there is a lift l : W Ñ W 1 by the universal
property of pullbacks.

W 1 P Z 1 ΠfP

W Z

X Y

l

{

h

f

The following square commutes

HomC {XpW 1, P q HomC {Y pZ 1,ΠfP q

HomC {XpW,P q HomC {Y pZ,ΠfP q

´˝l ´˝h

13

The bijections together with the naturality on both sides provide all the information
of the adjunction. They work smoothly with the a random pullback, in particular, the
chosen pullbacks of a universe.

Now, we can formalize the following lemmas. Note that we use ´tr to denote
transpose along the adjunction in either direction.

Lemma 4.2.1.
ΠgA

A C Πg1A1

B A1 C 1

B1

f i kg

j f 1
g1

Given a diagram as above, if the bottom square is a pullback then there is natural map
ΠgA Ñ Πg1A1 making the right square commute. [CategoryTheory.LocallyCartesian
Closed.pushforward.isPullbackLift] [CategoryTheory.LocallyCartesianClosed
.pushforward.isPullbackLift_fst]

If the left square is also a pullback, then so is the right square. [CategoryTheory.Loc
allyCartesianClosed.pushforward.isPullback]

Proof. For f : X Ñ Y , we denote the functor C {X Ñ C {Y : g ÞÑ f ˝ g by Σf .
The map ΠgA Ñ Πg1A1 is given as follows:
First notice that for any φ in C {C, there is a unique isomorphism g1˚˝Σkφ – Σj˝g

˚φ.
Then consider the map

g1˚ΣkΠgf – Σjg
˚Πgf

Σjεgpf 1q
ÝÑ Σjf

i
Ñ f 1,

where εg is the counit.
Taking the transpose via the adjunction g1˚ % Πg1 gives us the desired map.
The commutativity is because the transpose is a map ΣkΠgf Ñ Πg1f 1 in the C {C 1.
Now assume the left square is also a pullback. We give a informal proof that the right

one is also a pullback, meaning that we identify all the isomorphic objects as identical.
This is of course not true and should be taken care of when doing formalization. More
concretely, we need to use the alternative versions of adjunction we present above.

14

D

g˚D ΠgA

A C Πg1A1

B A1 C 1

B1

u

v

w

g˚u

v1

f i kg

j f 1
g1

w1

ϕ

Let u : D Ñ C and v : D Ñ Πg1A1 be maps such that the outer square commutes.
We want to prove there exists a unique w1 such that the two triangle commutes.

For existence, let v1 be the transpose of v under g1˚ % Πg1. Notice that we identify
g˚D with g1˚D. Then on the left, the condition of lift is satisfied, as

j ˝ g˚u “ g1˚
pk ˝ uq “ g1˚

pΠgf
1
˝ vq “ f 1

˝ v1

where the first two equalities are unstrict identification of pullbacks, the last one follows
from the naturality of adjunction.

Now there is a lift w : g˚D Ñ A, which give the desired w1 via the adjunction:
1. Πgf ˝ w1 “ u by design.
2. ϕ˝w1 “ pi˝ εqtr ˝w1 “ ppi˝ εq ˝ g˚w1qtr “ pi˝wqtr “ v1tr “ v. The second equality

follows from naturality.
Uniqueness simply follows from the fact that, via the adjunction, every lift on the

right corresponds to lift on the left, which is unique.

Lemma 4.2.2 [CategoryTheory.LocallyCartesianClosed.pushforward.adj_lift
_eq_lift_adj]. In the settings of the Lemma 4.2.1, suppose further there are pullbacks
E ´ D ´ B ´ C and E 1 ´ D1 ´ B1 ´ C 1, a map d : D Ñ D1, and a commutative square
D ´ D1 ´ C ´ C 1. Let e : E Ñ E 1 denote the lift.

E A D ΠgA

E 1 A1 D1 Πg1A1

B C

B1 C 1

xbtr

e i

b̂

d φ

btr b

g

Let b : D1 Ñ Πg1A1. Denote btr : E 1 Ñ A1 the transpose and b̂ : E Ñ A the lift.
Then the lift xbtr : D Ñ ΠgA coincides with the transpose b̂tr.

Also, let a : E 1 Ñ A1. We have xatr “ âtr.

15

Proof. By the uniqueness of lift, it suffices to show that the following squares commutes

E A

E 1 A1

b̂tr

e i

btr

We compute,

i ˝ b̂tr “ i ˝ ε ˝ g˚
pb̂q

“ pφ ˝ b̂qtr

“ pb ˝ dq
tr

“ btr ˝ e

It follows that xbtr “ b̂tr. Applying this to atr obtains xatr “ âtr.

Lemma 4.2.3 [CategoryTheory.LocallyCartesianClosed.pushforward.trans_co
mp]. The construction in Lemma 4.2.1 is functorial, i.e., in the following diagram, with
two pullback squares on the bottom and two commutative squares on the left, the map
Φ : ΠgA Ñ Πg2A2 given by the pasted squares is the composition of the maps φ, φ1

obtained by small squares.

ΠgA

A C Πg1A1

B A1 C 1 Πg2A2

B1 A2 C2

B2

φ
Φ

f i k φ1g

j f 1
i1 k1g1

j1 g2

Proof. Denote ε : g˚ΠgA Ñ A, ε1 : g1˚Πg1A1 Ñ A1 to be the counits. Then

Φ “ pi1
˝ i ˝ εq

tr

“ pi1
˝ ε1

˝ g1˚φq
tr

“ pi1
˝ ε1

q
tr

˝ φ

“ φ1
˝ φ

16

Chapter 5

Building contextual categories from
universes

5.1 Universes
The major obstruction to constructing a contextual categories lies in choosing suitable
pullbacks such that they are strictly functorial. To solve this, we introduce the notion
of universe. This “universe” does correspond to the type-theoretic universe, but here
the naming mainly refers to its universality in a categorical sense.

Definition 5.1.1 [Universe]. Let C be a category. A universe in U is a pair of objects
U,U 1 and a morphism p : Ũ Ñ U , and for each map f : X Ñ U , an object pX; fq and
a pair of morphisms Pf : pX; fq Ñ f and Qf : pX; fq Ñ Ũ such that the square

pX; fq Ũ

X U

Qf

Pf
p

f

is a pullback.

Definition 5.1.2 [Universe.Chain]. Fix a universe p : Ũ Ñ U . We define the notion
of pX; f1, ..., fnq inductively.

1. When n “ 0, pX; q “ X.

2. If pX; f1, ..., fn´1q is defined and fn : pX; f1, ..., fn´1q Ñ U , then pX; f1, ..., fnq is
the chosen pullback of fn along p.

The motivation behind the definition is that we want to define a contextual category
where every canonical projection is a pullback along p. As the following diagram implies,
in that case, qpgq can be chosen as the lift of pullback. By the property of the pullbacks,
the left square is again a pullback.

pY ; f ˝ gq pX; fq Ũ

Y X U

qpgq

g f

{ {

17

To formalize Definition 5.1.2 in Lean, we use inductive families.

inductive Chain (U : Universe C) : C Ñ C Ñ Type (max u v)
| nil X : U.Chain X X
| cons (Y : C) (g : Y ÝÑ U.down) (c : U.Chain X Y) : U.Chain X (U.pt g)

This definition has the following good properties

1. Every Chain is either nil or cons Y g c. This property allows us to do conve-
nient case analysis when proving propositions of Chain.

2. ft (cons Y g c) = Y definitionally, consistent with our principles of formalizing
categories in Lean.

The following more direct approach, i.e., lists of morphisms satisfying certain propo-
sitions, does not enjoy these properties. That’s why we prefer the inductive definitions
over it.

structure Chain (U : Universe C) (X : C) where
obj : List (Σ x : C, x ÝÑ U.obj)
well_formed : Formed X obj

Indeed, we can construct a contextual category out of any universe in a category
with a terminal object.

Definition 5.1.3 [Universe.Chains.instChainsContextualCategory]. Given a cat-
egory C with a universe U and a terminal object 1, we define CU as follows:

• Ob CU :“ tpf1, ..., fnq|fi : p1; f1, ..., fi´1q Ñ U for all 1 ď i ď nu.

• CUppf1, ..., fnq, pg1, ..., gmqq :“ Cpp1; f1, ..., fnq, p1; g1, ..., gmqq

with identity morphisms and compositions in C.

• gr :“ length of the sequence

• 1CU
:“ pq, the empty sequence.

• ftpf1, ..., fn`1q “ ftpf1, ..., fnq.

• ppf1,...,fn`1q :“ Pfn`1

• Given pf1, .., fn`1q and α : pg1, ..., gmq Ñ pf1, ..., fnq.

α˚
pf1, ..., fnq :“ pg1, ..., gm, fn`1 ˝ αq,

and qpαq is given by the lift the pullback as in the following diagram:

p1; g1, ..., gm, fn`1 ˝ αq

p1; f1, ..., fn`1q Ũ

p1; g1, ..., gmq p1; f1, ..., fnq U

qpαq

Qfn`1˝α

p“Pfn`1˝α

{

Qfn`1

p

α fn`1

{

18

Proposition 5.1.4 [Universe.Chains.instChainsContextualCategory]. CU is a
contextual category.

Proof. The properties about pullbacks are the only nontrivial ones to check.
First note that Qpfn`1 ˝ αq “ Qfn`1 ˝ qpαq, and hence the fact that the big outer

square and the right square are pullbacks in C imply that the left square is a pullback
C. Also, a square in CU is a pullback if it is a pullback when viewed in C. Hence qpαq

together with Pfn`1˝α forms a pullback in CU .
Clearly id˚

pf1, ..., fnq “ pf1, ..., fnq and it follows from the uniqueness of the lift that
qpidq must also be identity.

Now let β : ph1, ..., hkq Ñ pg1, ..., gmq. By the associativity of composition, α˚β˚ “

pβ ˝ αq˚. Again, qpα ˝ βq “ qpαq ˝ qpβq follows from the uniqueness of the lift.

p1;h1, ..., hk, fn`1 ˝ α ˝ βq

p1; g1, ..., gm, fn`1 ˝ αq p1; f1, ..., fn`1q Ũ

p1;h1, ..., hkq p1; g1, ..., gmq p1; f1, ..., fnq U

qpβq qpα˝βq

qpαq

p

β α fn`1

{

The formalization of the proof is straightforward, with only one trick to note. To
prove any properties on non-nil chains (NR c in the codes), it suffices to prove them for
cons Y p c, since any non-nil chain has this form.

def cases_cons {h : (c : U.Chains t) Ñ [NR c] Ñ Sort w}
(h’ : @ {Y p c}, h (cons Y p c)) (c : U.Chains t) [NR c] :

h c

The observation particularly applies to those properties about pullbacks in the def-
inition of contextual categories. In this case, ft_pb holds definitionally:

lemma ft_pb_cons: ft (pb_cons f) = d := rfl

This would help us eliminate some occurrences of eqToHom and slightly simplify the
arguments.

5.2 Logical structures on a universe
From the previous section, we know that given any universe U , we can construct a
contextual category CU . The next question is: what data of U is required to equip CU

with various logical structures? We will focus on Π-type in this paper.
Let C be locally cartesian closed (Definition 4.1.2).
(For the formalization of Definition 5.2.1 and Proposition 5.2.2, see the file TypeStru

ctures.lean)

19

Definition 5.2.1. Given a universe U in C in a locally category closed category C,
define π1 : U ˆ Ũ Ñ U and π2 : U ˆ Ũ Ñ Ũ to be projections. Define UΠ to be the
domain of Πpπ2, which is illustrated as

U ˆ Ũ UΠ

Ũ U

π2 Πpπ2

p

Pulling back Πpπ2 along p induces αgen : Agen Ñ UΠ. The counit of the adjunction
gives a morphism

α2
gen : Agen “ p˚

pU ˆ Ũq Ñ U ˆ Ũ

or more precisely p˚Πppπ2q Ñ π2, as illustrated as the dashed line:

Agen U ˆ Ũ UΠ UΠ

Ũ U
p˚Πpπ2

π2

id

Πpπ2 Πpπ2

p

Define α1
gen : Agen Ñ U to be π1 ˝ α2

gen. Pulling back α1
gen along p induces βgen : Bgen Ñ

Agen.
To conclude, we have a diagram

Bgen Ũ

Agen Ũ U

UΠ U

βgen α1
gen

αgen p

Πpπ2

{

{

The subscript gen stands for “generic” as we have the following property:

Proposition 5.2.2. Let B p2
Ñ A

p1
Ñ Γ be a sequence with maps δ : Γ Ñ U , γ : A Ñ Ũ ,

δ1 : A Ñ U and γ1 : B Ñ Ũ exhibiting A Ñ Γ as pullbacks of p:

A Ũ B Ũ

Γ U A U

γ

p1 p

γ1

p2 p

δ δ1

{ {

Then there is a unique morphism Γ Ñ UΠ we denote by xA,By such that we have a
diagram

20

B Bgen Ũ

A Agen Ũ U

Γ UΠ U

p2 βgen

p1

α1
gen

αgen p

xA,By Πpπ2

{ {

{ {

where Πpπ2 ˝ xA,By “ δ and similar equations hold for the other maps. In other words,
B

p2
Ñ A

p1
Ñ Γ, δ, γ, δ1 and γ1 are exhibited by pullbacks and compositions.

Proof. The proof is divided into 5 steps.
1. Note that γ is the pullback of δ along p. Define xA,By to be given by xδ1, γy :

A Ñ U ˆ Ũ under the adjunction:

A U ˆ Ũ Γ UΠ

Ũ U

xδ1,γy

γ π2

xA,By

δ Πpπ2

p

In particular, δ “ Πpπ2 ˝ xA,By.
2. Define l : A Ñ Agen to be the lift.

A

Agen Ũ

Γ UΠ U

l
γ

p1

{

αgen p

xA,By Πpπ2

{

Note that the right square is a pullback as desired. Or, if we flip the square,

A Agen

Ũ Γ UΠ

U

l

γ f αgen

p

xA,By

δ
Πpπ2

l is the pullback of xA,By along p.
3. We need to examine δ1 “ α1

gen ˝ l. This follows from the naturality of adjunction.
Recall l “ p˚xA,By and α2

gen is the counit:

A Agen U ˆ Ũ Γ UΠ UΠ

Ũ U

l αgen2 xA,By id

p

21

Hence we have
id α2

gen

xA,By α2
gen ˝ l

xδ1, γy

´˝xA,By ´˝l

It follows that δ1 “ π1 ˝ xδ1, γy “ π1 ˝ α2
gen ˝ l “ α1

gen ˝ l
4. B Ñ Bgen is defined to be the lift as in step 2.
5. To prove the uniqueness of xA,By, it suffices to show it corresponds to xδ1, γy

under the adjunction. Let φ be such a map. Using the same argument as in step 3, it
is reduced to show that α2

gen ˝ p˚φ “ xδ1, γy.
For the sake of clarity, we denote the pullback of Πpπ2 along p by q.

A

Agen Ũ

Γ UΠ U

p˚φ
γ

p1

{

q

αgen p

φ Πpπ2

{

Then q ˝ p˚φ “ γ since it’s lift, which implies π2 ˝α2
gen ˝ p˚φ “ γ. Also, α1 ˝ p˚φ “ δ1 by

assumption, which implies π1 ˝ α2
gen ˝ p˚φ “ δ1. It follows that α2

gen ˝ p˚φ “ xδ1, γy.

The formalization is straightforward, with heavy use of adjusted bijections described
in Section 4.2.

Definition 5.2.3 [Universe.Pi.Structure]. A Π-structure on a universe U consists
of a map

Π : UΠ
Ñ U

with an isomorphism, over UΠ

Π˚Ũ – ΠαgenBgen.

It is equivalent to data of a map Π̃ such that the square is a pullback:

Bgen ΠαgenBgen Ũ

Agen UΠ U

βgen

Π̃

Παgenβgen

αgen Π

{

Theorem 5.2.4 [Universe.Chains.Pi_type]. A Π-structure on a universe induces a
Π-type structure on CU .

Proof. Recall Π-type structure is defined in Definition 2.3.1.

22

1. (Π-Form) Recall in CU , every pΓ, A,Bq corresponds to pullbacks along certain
maps.

A Ũ B Ũ

Γ U A U

f
{

g
{

xAy xBy

Define ΠpA,Bq to be the canonical pullback of Π ˝ xA,By : Γ Ñ U .

2. (Π-Intro) Given a section b : pΓ, Aq Ñ pΓ, A,Bq, we want to construct a section
λpbq : Γ Ñ pΓ,ΠpA,Bqq.

a) First, we obtain a map btr via adjunction

A B Γ ΠfB

A Γ

b

id
g

btr

Πfg

f

b) Recall by Proposition 5.2.2, we have the follow diagram:

ΠfB

B Γ ΠαgenBgen

A Bgen UΠ

Agen

{

g {
xA,Byf

{

βgen αgen

By Lemma 4.2.1, there exists a map ΠfB Ñ ΠαgenBgen such that the right square
is a pullback. Therefore, ΠfB – xA,By˚ΠαgenBgen. Here the pullback is given by
canonical pullback of Π˚Ũ composed with the isomorphism in Definition 5.2.3.

c) In the slice category over Γ, we have

Πfg – xA,By˚Παgenβgen “ xA,By˚Π˚p “ pΠ ˝ xA,Byq˚p.

The last two equalities follow from our choice of the pullbacks. Finally, btr com-
posed with this isomorphism gives a section of pΠ ˝ xA,Byq˚p.

Γ ΠfB pΠ ˝ xA,Byq˚B

Γ

btr –

Πfg

pΠ˝xA,Byq˚p

23

3. (Π-Elim) Given sections h : Γ Ñ pΓ,ΠpA,Bqq and a : Γ Ñ pΓ, Aq, we want a
section apppk, aq : Γ Ñ pΓ, A,Bq.

Again we compose the isomorphism ΠpA,Bq :“ pΠ ˝ xA,Byq˚Ũ – ΠfB with f
and obtain a section of ΠfB. We still denote it by f by abusing the notation.
Then consider:

˚ B ΠfB ΠfB

A Γ

ϵ id

l
f

h

a

where ˚ is the pullback of ΠfB, the dashed line l is the section induced by pullback
(as a lift) and ϵ is the counit of the adjunction. Then ϵ˝l˝a is the required section.

4. (Π-Comp) Given sections a : Γ Ñ pΓ, Aq and b : pΓ, Aq Ñ pΓ, A,Bq, we have
apppλpbq, aq “ b ˝ a.

Unfolding the isomorphisms ΠpA,Bq – ΠAÑΓB we have used for every construc-
tion, we obtain

apppλpbq, aq :“ ϵ ˝ l ˝ a,

where ϵ is the counit of ΠfB as in (Π-elim) and l is the lift of btr as in (Π-intro).

Then it suffices to show ϵ ˝ l “ b, which follows from naturality.

A ˚ B Γ ΠAÑΓB ΠAÑΓB

A Γ

l

b

ϵ btr id

5. (Stable under substitution) for all f : ∆ Ñ Γ, and suitable pΓ, A,Bq, a, b, k, we
have

f˚
pΠpA,Bqq “ Πpf˚A, f˚Bq (1)

λpf˚bq “ f˚λpbq (2)
apppf˚k, f˚aq “ f˚

papppk, aqq (3)

(1) Note that xf˚A, f˚By “ xA,By ˝ f by uniqueness. Hence

Πpf˚A, f˚Bq “ pΠ ˝ pxf˚A, f˚Byqq
˚Ũ

“ pΠ ˝ xA,By ˝ fq
˚Ũ

“ f˚
ppΠ ˝ xA,Byq˚Ũq

“ f˚ΠpA,Bq

24

(2) By Lemma 4.2.1, we have the following diagram, where iΓ and i∆ are the
isomorphisms described in the construction of Π-Elim. Note that the upper square
on the right commutes.

Πf˚φB Πpf˚A, f˚Bq

f˚B ∆ ΠφB ΠpA,Bq

f˚A B Γ

A

i∆,–

pf˚bqtr

f

iΓ,–

f˚b f˚φ

{

btr

b
φ

Then

λpf˚bq “ i∆ ˝ pf˚bqtr

“ i∆ ˝ f˚
pbtrq (by Lemma 4.2.2)

“ f˚
piΓ ˝ btrq (by uniqueness of lift)

“ f˚
pλpbqq

(3) Note the all the squares in the following diagram commute.

pf˚φq˚Πf˚φB f˚B Πf˚φB

φ˚ΠφB B ΠφB

f˚A ∆

A Γ

ϵ∆

ϵΓ

f˚φ
{

f˚k

f˚a
f

φ˚k φ

k

a

By the universal property, it suffices to show apppf˚k, f˚aq “ ϵ∆˝pf˚φq˚pf˚kq˝f˚a
is also a lift of apppk, aq along f :

25

∆

f˚B B

f˚A A

∆ Γ

apppf˚k,f˚aq

apppk,aq˝f

id

b

a

f

The left square commutes because app is designed to be a section.

We can compute

b ˝ ϵ∆ ˝ pf˚φq
˚
pf˚kq ˝ f˚a “ ϵΓ ˝ φ˚k ˝ a ˝ f

by unfolding the commutativity of the squares above. Then it follows that the
upper square also commutes.

26

Chapter 6

The simplicial model

In this chapter, we present the core theory of the simplicial model.

6.1 Fibres and well-ordered morphisms
Definition 6.1.1 [SSet.Fibre]. Let f : X Ñ Y be a map of simplicial sets. Let y P Yn,
define the fibre of y to be the preimage of y along fn : Xn Ñ Yn. We denote it by f´1pyq

Note that the terminology is not canonical, i.e., it does not refer to the categorical
fibres.

Definition 6.1.2 [SSet.WellOrderedHom]. A well-ordered morphism of simplicial sets
consists of

1. A map of simplicial sets f : X Ñ Y .

2. For all n, and all y P Yn, a well-order on the fibre f´1pyq.

Remark. Recall a well-order is a well-founded linear order. It enjoys a power uniqueness
property: given preorders on sets α and β, if the order on β is a well-order, then there
exists at most one order isomorphism between them.

Definition 6.1.3 [SSet.OrderIso]. For two well-ordered morphisms f : X Ñ Y and
f 1 : X 1 Ñ Y , an isomorphism between f and f 1 is an isomorphism of simplicial sets
φ : X Ñ X 1, such that

1. the diagram commutes :
X

X 1 Y

φ,–
f

f 1

2. for every y P Yn, φn|f´1pyq : f
´1pyq Ñ f 1´1pyq is an order isomorphism.

Remark. By virtue of the uniqueness property of well-orders, we observe that there
exists at most one isomorphism between two well-ordered morphisms. This is crucial,
as we will see later, and it is the reason why we consider well-ordered morphisms.

27

Now we might want to consider the collection of isomorphism classes of the well-
ordered morphisms. However, simply doing so will obtain a proper class rather than a
set. Therefore, we need a bound for restriction.

Definition 6.1.4 [SSet.SmallWO]. Let α be a cardinal. A well-ordered morphisms
f : X Ñ Y is α-small if for every y, the cardinality of f´1pyq is strictly smaller than
α.

Lemma 6.1.5 [SSet.instSmallΩ_obj0]. The collection of isomorphism classes of α-
small well-ordered morphisms is a set.

Proof. We provide a sketch of proof in the informal language of set theory.
The collection of all the sets with cardinality ă α modulo bijections

tS||S| ă αu{„

is a set. So is the collection

A “ tSn, n P N|@n P N, |Sn| ă αu{„

where „ is induced by the componentwise bijections. All the possible simplicial struc-
tures plus well-ordered structures on a representative of a fixed element in A is a set.
Hence such union over A is a set. It is clear that the union surjects onto the collection
of isomorphism classes of α-small well-ordered morphisms. It follows that the latter is
a set.

The formalization of this lemma in Lean is in a completely different style.

instance Setoid_SmallWO {α : Cardinal.{u}} {Y : SSet.{u}} :
Setoid (SmallWO α Y) where -- suppose we are in ‘Type u’

r := SmallWO.rel -- the equivalence relation as we described above
iseqv := SmallWO.relIseqv

def Ω_obj0 (α : Cardinal.{u}) (Y : SSet) : Type (u + 1) :=
Quotient (@Setoid_SmallWO Y α) -- take the quotient

The claim of Lemma 6.1.5 should then be formalized as

instance : Small.{u, u + 1} (Ω_obj0 α X)

Here, Small.{w, v} is a predicate for types in Type v saying that it is equivalent
to a type in Type w

class Small.{w, v} (α : Type v) : Prop where
equiv_small : D S : Type w, Nonempty (α » S)

With an instance of smallness, we can apply the function

def Shrink (α : Type v) [Small.{w} α] : Type w

allowing us to extract a type in the smaller universe. We can therefore define the key
type in the construction of the model

def Ω_obj (α : Cardinal.{u}) (Y : SSet) : Type u :=
Shrink (Ω_obj0 α Y)

28

The Lean proof follows the idea we present above, the crucial construction is

structure SmallFibresWithStructures.{u} (α : Cardinal.{u}) (X : SSet) :
Type u where

fibre {n : SimplexCategoryop} (x : X.obj n) : Shrink (Set.Iio α)
. . . -- fields of simplicial and small fibre structures

Here, Set.Iio α is the set of all the cardinals ă α, which is initially in Type (u + 1)
but dragged down to Type u by Shrink. Therefore, the structure itself lies in Type u.

Then we construct a function

def SmallFibresWithStructures.to:
SmallFibresWithStructures α X Ñ Ω_obj0 α X

and prove it is surjective. Finally, by virtue of the following theorem, we prove the
desired result.

theorem small_of_surjective {α : Type v} {β : Type w} [Small.{u} α]
{f : α Ñ β} (hf : Function.Surjective f) : Small.{u} β

6.2 Construction of the universe

6.2.1 The functor Wα

With Lemma 6.1.5, we can define

Definition 6.2.1 [SSet.Ω]. The functor Wα : sSetop Ñ Set is defined as follows.

1. WαpXq is the set of the isomorphism classes of small well-ordered morphisms on
X.

2. For a map of simplicial sets φ : X Ñ Y , and rf : X 1 Ñ Y s P WαpY q, φrf s “

rφ˚f s is the pullback of f along φ, with well-orders given by the pullback.

Remark. We elaborate a little further on the details of equipping orders on the pullback.
First note that, for a pullback of sets,

D C

A B

i

g
{

f

h

for all a P A, i|g´1paq : g´1paq Ñ f´1phpaqq is a bijection. Also, for a pullback of
simplicial sets, the evaluation on each layer is still a pullback. Hence, we can equip the
fibers of the pullback with (well-)orders via the bijections.

Remark. For Definition 6.2.1 to be well-defined, there are several things to be checked
before.

1. Taking pullback is sound with respect to the equivalence classes.

2. Wα satisfies the axioms of functor, i.e., Wαpidq “ id and Wαpf ˝ gq “ Wαpgq ˝

Wαpfq.

29

The proofs are straightforward but the formalization can be tricky, because we are
dealing with setoids and Shrink at the same time. We omit the details here.

Wα is denoted by Ω in the formalization, and Ω_obj and Ω_map are functions from
SSet to Type u rather than SSetop to Type u for convenience.

Theorem 6.2.2 [SSet.Ω.PreservesLimitsOfSize]. Wα preserves limits, i.e., given
a small diagram F : J Ù sSetop with a limit cone c, pWαq ˝ c is also a limit cone. In
particular, there is an isomorphism WαplimJ F q – limJ pWα ˝ F q.

The “small” diagrams are formalized as diagrams whose domain category has an
object type lying in a smaller universe. We do not need any assumption on its morphism
type.

instance Ω.PreservesLimitsOfSize.{u, v, w}
(α : Cardinal.{u}) [UnivLE.{v, u}] :

Limits.PreservesLimitsOfSize.{w, v} (Ω α)

Here, Limits.PreservesLimitsOfSize.{w, v} means the functor preservers all the
limit of the functor from a category with object types in Type v and morphism type in
Type w. UnivLE conceptually means v is smaller than or equal to u.

Now we present the proof along with its formalization.
Fix a small diagram F : J Ñ sSetop with a limit. We have a canonical morphism

from Ψ : WαplimF q Ñ limpWα ˝F q. The proof is finished once Ψ is proven to be an
isomorphism. Since we are in the category of sets, it suffices to prove Ψ is a bijection.

Let vj : Fj Ñ limF, j P J , uj : limpWα ˝F q Ñ WαpFjq be the legs of the respective
limit cone.

Injectivity:
Let f, g P WαplimF q such that Ψpfq “ Ψpgq. Then their pullbacks along vj are

isomorphic for all j P J , as illustrated below, where the triangles commute by design.

WαpFiq

WαplimF q limpWα ˝F q

WαpFjq

Wαpviq

Ψ

Wαpvjq

ui

uj

The rough idea is that, since fibres are invariant under pullbacks, the isomorphisms
between pullbacks provide an isomorphism between f and g.

In details, the construction is divided into several steps.
First we provide a way to construct isomorphisms between well-ordered morphisms

through Pieces. That is, we need only compatible order isomorphisms between corre-
sponding fibres.

def move {f : X ÝÑo Y} (φ : n ÝÑ m) {y : Y.obj n} (x : f´1 y) :
f´1 (Y.map φ y) := xX.map φ x, . . .y

structure Pieces where
orderIso {n : SimplexCategoryop} (y : Y.obj n) : f´1 y »o f’´1 y

30

compatible {n m : SimplexCategoryop} (φ : n ÝÑ m)
{y : Y.obj n} (x : f´1 y) :

orderIso (Y.map φ y) (move φ x) = move φ (orderIso y x)

Now the problem is reduced to finding a bunch of compatible order isomorphisms
f´1pxq – g´1pxq with x P plimF qn.

Recall that a diagram of sets Φ : I Ù Set with colimit has the jointly surjective
property, i.e., \iPIΦpiq Ñ colimΦ is surjective. Since the evaluation functors preserve
colimit, we have the following result.

Lemma 6.2.3 [SSet.Ω.PreservesLimit.jointly_surjective]. Let Φ : I Ù sSet be
a diagram of simplicial sets with colimit. For all n P N, x P pcolimΦqn, there exists
i P I and y P Φpiqn such that vipyq “ x where vi’s are the legs of the colimit.

Applying Lemma 6.2.3 to F (note that F is diagram of the opposite category of sSet,
that’s why there is a switch of limit / colimit), we choose i and y for every x P plimF qn.
Then the isomorphism v˚

i f – v˚
i g gives us an order isomorphism f´1pxq – g´1pxq. It

follows from the uniqueness of the order isomorphism that the order isomorphisms are
independent of the choice of i and y. Also, if f´1pφpxqq – g´1pφpxqq is obtained from
v˚
i f

´1pφpxqq – v˚
i g

´1pφpxqq, then it’s obviously compatible. Hence, by independence,
the construction is compatible and we finish the proof of injectivity. The formalization
is straightforward. The only thing to notice is that we need Classical.choice to
define the isomorphism like most of the formalizations in Lean.

Surjectivity: Let f P limpWα ˝F q. Let fi : Yi Ñ Fi be a representative of
uipfq P WαpFiq. We want to construct a α-small well-ordered morphisms g : Y Ñ limF
whose image is f under Ψ.

For each x P plimF qn, choose i and y using Lemma 6.2.3 such that vipyq “ x and
let Yx :“ f´1

i pyq Ă Yi,n. We argue that the resulting Yx is independent of choice of i
and x.

For a diagram of sets Φ : I Ù Set, we define a relation on the pair tpi, xq|i P I, x P

Φiu by pi, xq ù pj, yq if there exists a morphism φ : i Ñ j such that Φpφqpxq “ y. We
denote the equivalence closure of this relation by «. This is one step in proving every
small diagram of sets has colimit. In particular, we have the following lemma

Lemma 6.2.4. Let Φ : I Ù Set be a diagram of sets with colimit. Let ci : Φpiq Ñ

colimΦ denote the legs of the cocone. For i, j P I, x P Φpiq and y P Φpjq, we have
cipi, xq “ cjpj, yq if and only if pi, xq « pj, yq.

Again, since the evaluation functors preserve colimit, we have a corresponding result
on simplicial sets.

Lemma 6.2.5 [SSetΩ.PreservesLimit.eqvGen_of_app_eq]. Let Φ : I Ù sSet be a
diagram of simplicial sets with colimit. Let ci : Φpiq Ñ colimΦ denote the legs of the
cocone. For i, j P I, x P Φpiqn and y P Φpjqn, we have cipi, xq “ cjpj, yq if and only if
pi, xq « pj, yq.

Induction on « shows that if pi, xq « pj, yq, then f´1
i pxq – f´1

j pyq. Hence, the
independence of choices is proved.

Define Yn to be the disjoint union of Yx over x P plimF qn. Now we want to equip
Y with a simplicial structure. The argument is similar to the one for injectivity. Given

31

y P f´1
i pxq Ă Yn and φ : n Ñ m, we want to define φy P Ym. This is clear if we identify

y P Yi,n, we just take φy Ă Yi,m. This is valid due to the independence of choice.
However, in formalization, we have to make clear of the informal use of “identifica-

tion”. This is what makes the related Lean code especially lengthy. For example, when
defining the simplicial structure of Yn,

map {n m} φ := by
intro z
let H := FibreOrderIsoOfAppEq c hc f

(choose_x hc (φ ~ z.fst)) (φ ~ choose_x hc z.fst)
(by rw [hom_naturality_apply, choose_spec_x, choose_spec_x]; rfl)

exact xc.pt.unop.map φ z.fst, H.symm (move φ z.snd)y

we need to explicitly point out the “identification” FibreOrderIsoOfAppEq.
The unavoidable use of FibreOrderIsoOfAppEq makes the seemingly easy proof of

functor axioms map_id and map_comp rather complicated, where we have to repeatedly
invoke the uniqueness of order isomorphisms. We omit the details here.

It remains to prove Ψpgq “ f . We recall another lemma about the category of sets.

Lemma 6.2.6. Let Φ : I Ù Set be a diagram of sets with limit. Let ci : limΦ Ñ Φpiq
denote the legs of the cone. Let x, y P limΦ. Then x “ y if and only if cix “ ciy for all
i P I.

Therefore it suffices to show uipΨpgqq “ uipfq for all i, which is again a prob-
lem of constructing isomorphisms of well-ordered morphisms. Note that the equality
is precisely Wαpviqpgq “ fi. For x P pFiqn, Wαpviqpgq´1pxq – g´1pvixq – f´1

i pxq.
The first isomorphism follows from the property of pullback (the first remark under
Definition 6.2.1) and the second one is by definition of g. With these ingredients, we
are ready to define Pieces. However, the challenge lies in proving their compatibility,
which resembles the situation with functor axioms mentioned earlier. We again omit
the details.

6.2.2 The simplicial sets Wα and W̃α

Definition 6.2.7 [SSet.W]. Define the simplicial set Wα as the composition

∆op yop

Ù sSetop
Wα
Ù Set

Theorem 6.2.8 [SSet.Ω.Corepresentable]. Wα is corepresented by Wα, i.e., there
is an natural isomorphism of functors

Wα – HomsSetp´,Wαq

Proof. By def,
Homp∆n,Wαq – pWαqn

def
“ Wαp∆n

q.

Recall, every simplicial set X is the colimit of its category of elements denoted
by Xel (see the remark below). Using Theorem 6.2.2 and the fact that Homp´,Wαq

32

preserves limits, we have

HompX,Wαq – limHomp∆n,Wαq

“ limWαp∆n
q

– Wαpcolim∆n
q

– WαpXq

Remark. For any presheaf P : SetJ , its category of elements P el is defined as follows:

• The objects are the pair pi, xq where x P Pi.

• The morphism between pi, xq and pj, yq are the morphisms f : i Ñ j such that
pPfqpxq “ y.

A diagram of presheaves F : P el,op Ù SetJ is given as the composition

P el,op π
Ù Jop y

Ù SetJ

where π is the obvious forgetful functor. Then P is the colimit of F .
This result has already been formalized in Mathlib. But similar to the formalization

of Theorem 4.1.3, it does not directly apply to sSet.{u}, whose codomain lies in a
higher universe Type u. Therefore, we need to modify the definition by postcomposing
yoneda with uliftFunctor.

def functorToRepresentables (X : SSet.{u}) :
X.Elementsop Ù SSet.{u} :=

(CategoryOfElements.π X).leftOp Ï (yoneda Ï uliftFunctor)

The related results need also be slighted adjusted.

Instead of a natural isomorphism of functors, corepresentability in Mathlib is defined
concretely as an equivalence of types with naturality:

structure CorepresentableBy (F : C Ù Type v) (X : C) where
homEquiv {Y : C} : (X ÝÑ Y) » F.obj Y
homEquiv_comp {Y Y’ : C} (g : Y ÝÑ Y’) (f : X ÝÑ Y) :

homEquiv (f " g) = F.map g (homEquiv f)

Therefore, the proof of Theorem 6.2.8 in Lean is precisely a composition of the three
natural equivalences presented in the proof. We elaborate on the details for the first
equivalence.

For a limit-preserving functor G : sSetop Ù D, we have the following result due to
uniqueness of limit up to isomorphisms.

def SSet.IsoOfPreservesLimit {D : Type w} [Category D]
(G : SSetop Ù D) (Y : SSet)
[HasLimit (Y.functorToRepresentables.op Ï G)]
[PreservesLimit Y.functorToRepresentables.op G] :

G.obj (op Y) – limit (Y.functorToRepresentables.op Ï G)

Note that f : Y Ñ X induces a natural transformation Xel,op Ï G Ñ Y el,op Ï G.
Hence the limit at the right, as a functor on Y , maps f : Y Ñ X to the following

33

def IsoOfPreservesLimit_comp (G : SSetop Ù D) (X Y : SSet) (f : Y ÝÑ X) :
limit (X.functorToRepresentables.op Ï G) ÝÑ

limit (Y.functorToRepresentables.op Ï G) :=
limit.pre _ (CategoryOfElements.map f).op.op

The naturality is described in the following lemma,

lemma IsoOfPreservesLimit_comp_hom :
G.map (op f) " (IsoOfPreservesLimit G Y).hom =

(IsoOfPreservesLimit G X).hom " (IsoOfPreservesLimit_comp G f)

Applying these to Homp´,Wαq, we obtain

def Ω.CorepresentableAux1.{u} (α : Cardinal.{u}) (Y : SSet) :
(Y ÝÑ W α) » limit (Y.functorToRepresentables.op Ï yoneda.obj (W α))

and its naturality.

Definition 6.2.9 [SSet.Ω.toHom]. Every equivalence class f of α-small well-ordered
morphisms Y Ñ X corresponds to a map X Ñ Wα via the isomorphism in Theo-
rem 6.2.8, We denote it by xf y.

Given an α-small well-ordered morphism f : Y Ñ X, we also denote xf y for the
map corresponded to the equivalence class of f by abusing the notation.

Definition 6.2.10 [SSet.Ω.toObj]. Every map f : X Ñ Wα corresponds to an equiv-
alence class of α-small well-ordered morphisms Y Ñ X via the isomorphism in Theo-
rem 6.2.8, We denote it by zf {.

Definition 6.2.11 [SSet.UniSmallWO]. Applying the isomorphism in Theorem 6.2.8 to
id : Wα Ñ Wα yields a α-small well-ordered morphism qα : ĂWα Ñ Wα.

Remark. We can have an explicit characterization of W̃α.

1. Under

HompWα,Wαq – Hompcolimp∆n
q,Wαq – limHomp∆n,Wαq – limWαp∆n

q,

id is sent to isomorphism classes pfx : X Ñ ∆n|x : ∆n Ñ Wαq.

2. According to the proof of surjectivity for Theorem 6.2.2, under

limWαp∆n
q – WαpWαq,

pfx : X Ñ ∆n|x : ∆n Ñ Wαq is sent to a well-ordered morphism Y Ñ Wα, where
Y is consisted of copies of pf : Y Ñ ∆n, s P f´1p1rnsqq ranging over the simplexes
of Wα.

In conclusion, the fibre of x P pWαqn “ Wαp∆nq along ĂWα Ñ Wα is a copy of the fibre
of 1rns along a representative of x (in the form of Y Ñ ∆n for some Y).

qα : ĂWα Ñ Wα is formalized as follows. Note that, we need to use Quotient.out
to choose a representative of the equivalence class, which is usually ignored in informal
writing as in Definition 6.2.11.

34

abbrev UniSmallWO0 := Ω.toObj (1 (W α)) -- the equivalence class

abbrev UniSmallWO := Quotient.out $ (equivShrink (Ω_obj0 α (W α))).symm
(UniSmallWO0 α) -- the representative

abbrev W’ := (UniSmallWO α).of -- the domain

Proposition 6.2.12 [SSet.UniSmallWO.universal]. qα : ĂWα Ñ Wα is strictly univer-
sal for α-small well-ordered morphisms, i.e., any α-small well-ordered can be realized
uniquely as a pullback of p.

Proof. Let f : X Ñ Wα be a morphism. By the naturality, the diagram commutes:

HompWα,Wαq WαpWαq

HompX,Wαq WαpXq

–

´˝f f˚

–

So,

id p : ĂWα Ñ Wα

f f˚p

Hence xf˚py “ f . By bijectivity, given g : Y Ñ X a well-ordered morphism,
g “ xgy˚p.

Proposition 6.2.13 [SSet.UniSmallWO.weaklyUniversal]. ĂWα Ñ Wα is weakly uni-
versal for α-small morphisms. (weakly = not neccessarily unique)

Proof. Every map of simplicial sets can be well-ordered, since every set can be well-
ordered.

6.2.3 The functor Uα, the simplicial sets Uα and Ũα

Definition 6.2.14 [SSet.Υ]. Let Uα Ă Wα be the subobject consisting of isomorphism
classes of α-small well-order Kan fibrations.

Here, the subobject simply means UαpXq Ă WαpXq for all X. Hence there is a
natural transformation Uα ãÑ Wα given by inclusions.

Definition 6.2.15 [SSet.U]. Similarly, define Uα to be the composition

∆op yop
Ù sSet

Uα
Ù Set .

Definition 6.2.16 [SSet.U.toW]. There is a morphism i : Uα Ñ Wα given by (set map)
in : Uαp∆nq ãÑ Wαp∆nq.

Now we are ready to define the key construction of the universe.

35

Definition 6.2.17 [SSet.UniSmallWOKan]. Define pα : Ũα Ñ Uα to be the pullback of
p along Uα Ñ Wα.

Lemma 6.2.18 [SSet.U.Kan_pullback_snd_simplex]. For any f : ∆n Ñ Uα, f˚pα is
a Kan fibration.

Proof. Since pα is defined as a pullback, the outer square is also a pullback

‚ Ũα W̃α

∆n Uα Wα

f˚pα

{

pα
{

qα

f

Hence f˚pα “ pi ˝ fq˚qα “ zi ˝ f { “ inzf { P Uαp∆nq. It follows that f˚pα is a Kan
fibration by definition of Uα.

Lemma 6.2.19 [SSet.UniSmallWOKan.Kan]. pα is a Kan fibration.

Proof. Let there be a commutative diagram

Λn
k

rUα

∆n Uα

pα

f

By the universal property of pullbacks,

Λn
k f˚

rUα
rUα

∆n ∆n Uα

f˚pα
{

pα

“ f

By Lemma 6.2.18, f˚pα is a Kan fibration, so the left square admits a lift and so does
the outer square.

Lemma 6.2.20 [SSet.Ω_obj.Kan_iff_factor]. An α-small well-ordered morphism
f : Y Ñ X is a fibration iff xf y : X Ñ Wα factors through Uα.

Proof. Ù Assume f : Y Ñ X is a fibration. Then the pullback of f along any simplex
x : ∆n Ñ X is a fibration and xf ypxq “ xx˚f y P Uα. Hence xf y factors through Uα.

ð The factorisation gives

Y

rUα
ĂWα

X Uα Wα

f

{

pα
{

It follows that the left square is a pullback. Since pα is a fibration, so is f .

36

Lemma 6.2.21 [SSet.Υ.Corepresentable]. Uα is corepresented by Uα.

Proof. For any X, UαpXq ãÑ WαpXq – HompX,Wαq has image HompX,Uαq, by
Lemma 6.2.20. Hence we have a bijection UαpXq – HompX,Uαq. The naturality
follows from the naturality of Wα

Theorem 6.2.22 [SSet.UniSmallWOKan.universal]. pα is strictly universal for α-
small well-ordered Kan fibrations.

Proof. Follows from the corepresentability of Uα as the proof of Proposition 6.2.12.

Theorem 6.2.23 [SSet.UniSmallWOKan.weaklyUniversal]. pα is weakly universal for
α-small Kan fibrations

Proof. As in Proposition 6.2.13, every map of simplicial sets can be well-ordered.

6.3 Logical structures
By Theorem 4.1.3, sSet is locally cartesian closed. We choose a pullback for every map
X Ñ Uα along pα : Ũα Ñ Uα and define a structure of universe (Definition 5.1.1) on sSet
[SSet.Uni]. sSetUα is then our simplicial model [SSet.Model]. The choice of pullbacks
does not matter, as the coherence issues is auotomatically solved by the construction
of sSetUα .

For sSetUα to be a model of HoTT, we need to prove

1. it has all the logical structures

2. it validates the univalence axiom

We have fully formalized the results about Π-types. By Theorem 5.2.4, it suffices
to provide a Π-structure (Definition 5.2.3) on sSetUα .

Recall αgen : Agen Ñ UΠ
α and βgen : Bgen Ñ Agen are both defined to be pullbacks of

pα and hence are Kan fibrations (See Definition 5.2.1). They are also α-small, because
α-smallness is stable under pullback [SSet.SmallFibre.stableUnderPullback] and
pα is α-small by design.

Therefore, if we have

1. Kan fibrations are stable under the dependent product of along a Kan fibration.
In other words, let f, g be a Kan fibration, then Πfg is also a Kan fibration.

2. α-smallness is stable under the dependent product along a α-small map.

then Παgenβgen : ΠαgenBgen Ñ UΠ
α is an α-small Kan fibration. By Theorem 6.2.23, there

is a map Π : UΠ
α Ñ Uα such that Παgenβgen is the pullback, or Παgenβgen – Π˚pα, precisely

the desired structure.
The first point is easy if we assume the knowledge from Quillen-Kan model structure

of simplcial sets. It is known that Kan fibrations and trivial cofibrations form a weak
factorization system. Also, Quillen-Kan model structure is right proper, i.e., trivial
cofibrations are stable under pullback along Kan fibrations. Then the first point follows
from Quillen adjuction. Unfortunately, neither of these classical results has been fully
formalized yet, due to the extensive prerequisites required, particularly in simplicial
homotopy theory.

Fot the second point, we need some assumptions on α. Recall a cardinality α is

37

1. regular if it is infinite and it equals its own cofinality.

2. a strong limit if it is not zero and it is closed under powersets

3. inaccessable if uncountable, regular and a strong limit.

We list some of useful properties. We use # to denote the cardinality of a set.

1. (Cardinal.pow_lt_of_isStrongLimit) If α is a strong limit caridnal and β, γ ă

α, then βγ ă α.

2. (Cardinal.prod_lt_bound_pow_of_lt_of_lt) Let α be a regular and strong
limit caridnal. For a set of sets tSi|i P Iu, if #I ă α and for all i, #Si ă α, then
\i Si ă α#I.

Lemma 6.3.1 [SSet.SmallFibre.stableUnderPushforward]. Let α be inaccessable.
Then α-smallness is stable under the dependent product along a α-small map.

Proof. Let f : X Ñ Y and g : Y Ñ Z be α-small. Let z P Zn. There is an obvious
bijection

Πgf
´1

pzq – HomsSet {Zpz,Πgfq

where we identify z with the map ∆n Ñ Z via Yoneda. By adjuction g˚ % Πg, we have

HomsSet {Zpz,Πgfq – HomsSet {Y pg˚z, fq.

HomsSet {Y pg˚z, fq injects into
ğ

kPN

ğ

yPg´1pzp∆n
k qq

th|h : pg˚zq
´1

pyq Ñ f´1
pyqu.

Fix k and y P g´1pzp∆n
kqq. #pg˚zq´1pyq ă α since pg˚zq´1pyq – z´1pgpyqq and ∆n

k is
finite. By smallness of f , #f´1pyq ă α. Therefore #th|h : pg˚zq´1pyq Ñ f´1pyqu ă α,
by strong limit.

Fix k, #g´1pzp∆n
kqq ă α, since g is α-small, zp∆n

kq is finite and α is infinite.
Finally it follows from regularity, strong limit and #N ă α that,

#
ğ

kPN

ğ

yPg´1pzq

th|h : pg˚zq
´1

pyq Ñ f´1
pyqu ă α

38

Chapter 7

Conclusion

This thesis has focused on formalizing the core theory of the simplicial model in the
context of Homotopy Type Theory (HoTT). A significant point achieved in this work
is the formalization of the simplicial model’s Π-structure (modulo a theorem from the
Kan-Quillen structures of simplicial sets), which successfully demonstrates its ability
to model dependent types.

While the formalization of most of the other structures, such as Σ-types, will follow
a similar approach, Id-types and universes pose challenges. Unfortunately, were unable
to address them within the limited time frame of this thesis. Additionally, we would
hope to formalize the proof that the simplicial model validates the univalence axiom.
However, this goal also remain out of reach due to the limited time and the extensive
prerequisites required from the theories of simplicial sets and model categories.

Despite these limitations, this thesis has established a solid foundation for further
formalization of the simplicial model. In future work, we look forward to formalizing the
remaining structures, incorporating the prerequisites needed for univalence, and finally
proving it. This effort not only deepens our understanding of the simplicial model and
univalence but also reinforces the role of formal proof assistants like Lean in advancing
mathematical research.

39

40

Appendix A

Type theory

A.1 Martin-Löf type theory
By a Martin-Löf type theory, we mean a type theory with

1. judgments : Γ ctx, Γ $ A type, Γ $ A “ B type, Γ $ a : A, Γ $ a “ b : A.

2. the structural rules in A.1.1

3. a selection of logical rules from A.1.2

A.1.1 Structural rules
ctx-EMPctx

x1:A1, ..., xn´1:An´1 $ xn : An
ctx-EXT

px1:A1, ..., xn:Anq ctx

px1:A1, ..., xn:Anq ctx
VBLE

x1:A1, ..., xn:An $ xi : Ai

Γ $ a : A Γ, x:A,∆ $ J
SUBST

Γ,∆ra{xs $ J ra{xs

Γ $ A type Γ,∆ $ J
WKG

Γ, x:A,∆ $ J

Γ $ A type
type-REFL

Γ $ A “ A type
Γ $ A “ B type

type-SYMM
Γ $ B “ A type

Γ $ A “ B type Γ $ B “ C type
type-TRAN

Γ $ A “ C type

Γ $ a : A
term-REFL

Γ $ a “ a : A
Γ $ a “ b : A

term-SYMM
Γ $ b “ a : A

Γ $ a “ b : A Γ $ b “ c : A
term-TRAN

Γ $ a “ c : A

41

A.1.2 Logical rules

Π-types

Γ, x:A $ B type
Π-FORM

Γ $ Πx:AB type
Γ, x:A $ b : B

Π-INTRO
Γ $ λx:Ab : Πx:AB type

Γ $ f : Πx:AB type Γ $ a : A
Π-ELIM

Γ $ fpaq : Bra{xs

Γ, x:A $ b : B Γ $ a : A
Π-COMP

Γ $ λx:Abpxq ¨ a “ bra{xs : Bra{xs

Σ-types

Γ, x:A $ B type
Σ-FORM

Γ $ Σx:AB type
Γ $ a : A Γ $ b : Bra{xs

Σ-INTRO
Γ $ pa, bq : Σx:AB type

Γ, z:Σx:AB $ C type Γ, x:A, y:B $ g : Crpx, yq{zs Γ $ p : Σx:AB
Σ-ELIM

Γ $ indΣx:ABpC, g, pq : Crp{zs

Γ, z:Σx:AB $ C type Γ, x:A, y:B $ g : Crpx, yq{zs

Γ $ a : A Γ $ b : Bra{xs
Σ-COMP

Γ $ indΣx:ABpC, g, pa, bqq “ gra, b{x, ys : Crpa, bq{zs

Id-types

Γ $ a : A type Γ $ b : A type
Id-FORM

Γ $ IdApa, bq type
Γ $ a : A

Id-INTRO
Γ $ refla : IdApa, aq type

Γ, x:A, y:A, p : IdApx, yq $ C type Γ, z:A $ c : Crz, z, reflz {x, y, ps

Γ $ q : IdApa, bq
Id-ELIM

Γ $ indIdApC, c, qq : Cra, b, q{x, y, ps

Γ $ a : A

Γ, x:A, y:A, p : IdApx, yq $ C type Γ, z:A $ c : Crz, z, reflz {x, y, ps
Id-COMP

Γ $ indIdApC, c, reflaq “ cra{zs : Cra, a, refla {x, y, ps

Empty type 0

Γ ctx 0-FORM
Γ $ 0 type

Γ, x: 0 $ C type
0-ELIM

Γ, x: 0 $ ind0pCq : C

Unit type 1

Γ ctx 1-FORM
Γ $ 1 type

Γ ctx 1-FORM
Γ $ ‹ : 1

Γ, x: 1 $ C type Γ $ d : Cr‹{xs
1-ELIM

Γ, x: 1 $ ind1pdq : C

42

Γ, x: 1 $ C type Γ $ d : Cr‹{xs
1-COMP

Γ $ ind1pdqr‹{xs “ d : Cr‹{xs

Inner universe U and El

$ U type x:U $ Elpxq type

U may have certain logical structures, such as Π-types:

Γ $ a : U Γ, x:Elpaq $ b : U
Γ $ πpa, bq : U

The inner Π-types π is said to be closed if the following rule holds:

Γ $ a : U Γ, x:Elpaq $ b : U
Γ $ Elpπpa, bqq “ Πx:Elpaq Elpbq type

Similar for other logical rules.

A.1.3 The univalence axiom

If Γ, x:A $ B type and B does not depend on A, i.e., there is no occurrence of x in B,
we denote A Ñ B to be Πx:AB.

Now given Γ $ f : A Ñ B, we define

1. (Left inverse) LInvpfq :“ Σg:BÑAΠx:A IdApgpfpxq, xqq

2. (Right inverse) RInvpfq :“ Σg:BÑAΠx:B IdBpfpgpxq, xqq

3. (H-isomorphism) isHIsopfq :“ LInvpfq ˆ RInvpfq

4. (Type of h-isomorphisms) HIsopA,Bq :“ Σf :AÑB isHIsopfq

Suppose Γ $ A type. Let idA : A Ñ A be given by Γ, x:A $ x : A via Π-Intro. It is
obviously an h-isomorphism with inverses itself. Hence

Γ, x:A $ idA : HIsopA,Aq

Hence via the Id-Elim, we have

x, y:U, u: IdUpx, yq $ wx,y,u : HIsopElpxq,Elpyqq,

and again via Π-Intro,

x, y:U $ wx,y : IdUpx, yq Ñ HIsopElpxq,Elpyqq.

Finally, the univalence axiom is stated as follows:

Definition A.1.1.
x, y:U $ univalencepx, yq : isHIsopwx,yq,

where univalence is a primitive constant.

43

A.2 Pure type systems

A.2.1 Definition

Pure type system (PTS) is a form of typed lambda calculus with considerable flexibility
on sorts and their relations. (See [11] or [1] Section 5.2)

The specification S of a PTS consists of three sets

1. S the set of sorts

2. A Ă S ˆ S the set of axioms

3. R Ă S ˆ S ˆ S the set of relations

Fix V a countably infinite set of variables. The set T of pseudoterms is defined
using Backus–Naur form as

T “ V | S | T T | ΠV :T .T | λV :T .T .

One-step beta reduction Ñβ is the compatible closure of the relation

pλx:A.MqN ù M rN{xs

where rN{xs stands for the explicit substitution.
Beta reduction ↠β is the reflexive symmetric transitive closure of one-step beta

reduction Ñβ. Beta conversion »β is the equivalence closure of beta reduction ↠β.
The set T of pseudocontexts is defined as

C “ ¨ | C,V :T .

Define for a pseudocontext Γ, domΓ the sets of variables occurring in Γ. We say
px:Aq P Γ if Γ contains px:Aq.

The set J of pseudojudgements is defined as

J “ C $| C $ T : T .

The inference rules of PTS is then as follows

¨ $

Γ $ A : s
x R domΓ

Γ, x:A $ ¨

Γ $ ¨
ps1, s2q P A

Γ $ s1 : s2

Γ $ ¨
px : Aq P Γ

Γ $ x : A

Γ $ A : s1 Γ, x:A $ B : s2
ps1, s2, s3q P R

Γ $ Πx:A.B : s3

Γ $ A : s1 Γ, x:A $ B : s2 Γ, x:A $ b : B
ps1, s2, s3q P R

Γ $ λx:A.b : Πx:A.B

44

Γ $ f : Πx:A.B Γ $ a : A

Γ $ fa : Bra{xs

Γ $ a : A Γ $ A1 : s A »β A1

Γ $ a : A1

The formalization uses de Bruijn index, see PTS.lean. In particular, the pseu-
doterms are formalized as follows. Note that no free variables are mentioned in pi and
abs.
inductive PTerm (S : Specification)
| var : N Ñ PTerm S
| sort : S.sort Ñ PTerm S
| app : PTerm S Ñ PTerm S Ñ PTerm S
| pi : PTerm S Ñ PTerm S Ñ PTerm S
| abs : PTerm S Ñ PTerm S Ñ PTerm S

We have proven four important meta-properties of PTS, referring to [9].

1. (Confluence) If for pseudoterms A,B we have A »β B then there is a pseudoterm
C such that A ↠β C and B ↠β C.

2. (Weakening) If Γ $ A : s and Γ,∆ $ b : B (plus x R dompΓ,∆q), then

Γ, x:A,∆ $ b : B.

3. (Substitution) If Γ $ a : A and Γ, x : A,∆ $ b : B, then

Γ,∆ra{xs $ bra{xs : Bra{xs.

4. (Subject reduction) If Γ $ a : A and a ↠β a1 then Γ $ a1 : A.

A.2.2 The syntactic category of PTS

The morphisms (explicit substitutions) between two pseudocontexts are defined exactly
the same as in Theorem 2.1.1. We define a predicate
inductive isMor (Γ : PCtx S) : PCtx S Ñ PCtx S Ñ Type _
| nil : isMor Γ [] []
| cons : isMor Γ ∆ F Ñ (Γ $ simulSubst D 0 F : !s) Ñ

(Γ $ f : (simulSubst D 0 F)) Ñ isMor Γ (D :: ∆) (f :: F)

where simulSubst is the function of (syntactic) simultaneous substitutions.
Since we are using de Bruijn index, the identity morphism of x0:A1, ..., xn:An is

formalized as p#0, ...,#nq [PureTypeSystem.id]. Also, if Γ is well-formed, then its
identity is indeed a morphism
def id_isMor (Γ : PCtx S) (h : Γ $ ¨) :

isMor Γ Γ (id Γ)

This seemingly trivial result turns out to be difficult to prove, as it requires calculating
de Bruijn indices under simultaneous substitutions. Similar challenges arise when prov-
ing that the composition of two morphisms is itself a morphism [PureTypeSystem.pcomp
_isMor].

We define beta conversion for pseudocontexts.

45

1. One-step beta reduction Ñβ. For Γ “ x1:A1, ..., xn:An and Γ1 “ x1:A
1
1, ..., xm:A

1
m,

Γ Ñβ Γ1 if and only if m “ n and there exists i such that Ai Ñβ A1
i and Aj ” A1

j

for j ‰ i.

2. Beta reduction ↠β is the reflexive symmetric transitive closure of Ñβ

3. Beta conversion »β is the equivalence closure of ↠β.

We defined QCtx as well-formed contexts modulo »β. These are the objects of the
desired category.

structure Ctx (S : Specification) where
ctx : PCtx S
wf : Nonempty (ctx $ ¨)

def betac (Γ ∆ : Ctx S) : Prop :=
Nonempty (Γ.ctx »β ∆.ctx)

instance setoid (S : Specification) : Setoid (Ctx S) where
iseqv := betac.equivalence

def QCtx (S : Specification) := Quotient (Ctx.setoid S)

Morphisms are also considered modulo »β.

structure hom0 (Γ ∆ : Ctx S) where
seq : PCtx S
is : Nonempty (isMor Γ.ctx ∆.ctx seq)

def betac {Γ ∆ : Ctx S} (γ δ : hom0 Γ ∆) : Prop :=
Nonempty (γ.seq »β δ.seq)

instance setoid (Γ ∆ : Ctx S) : Setoid (hom0 Γ ∆) where
iseqv := betac.equivalence

def hom (Γ ∆ : QCtx S) : Type _ :=
Quotient (hom0.setoid Γ.out ∆.out)

instance : Category (QCtx S) where
Hom := hom
id := QCtx.id

Finally, we prove the data form a contextual category.

instance instCategory: Category (QCtx S)

instance instContextualCategory : ContextualCategory (QCtx S)

The idea of the proof is described in Theorem 2.1.1. Once again, the main challenge
lies in manipulating de Bruijn indices. We omit the details here and refer interested
readers to the code for further insights.

46

Bibliography

[1] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus
with types. Cambridge University Press, 2013.

[2] Rafaël Bocquet. Strict rezk completions of models of hott and homotopy canonicity.
arXiv preprint arXiv:2311.05849, 2023.

[3] Guillaume Brunerie. initiality. https://github.com/guillaumebrunerie/
initiality/tree/v2.0, 2020.

[4] John Cartmell. Generalised algebraic theories and contextual categories. Annals
of pure and applied logic, 32:209–243, 1986.

[5] Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed
categories and martin-löf type theories. Mathematical Structures in Computer
Science, 24(6):e240606, 2014.

[6] Institute for Advanced Study The Univalent Foundations Program. Homotopy
Type Theory: Univalent Foundations of Mathematics. Princeton, 2013.

[7] Sina Hazratpour. Poly. https://github.com/sinhp/Poly/blob/
c297c860ac70eddab7f8e4c41aae5fbd28edbcde/Poly/LCCC/Basic.lean, 2024.

[8] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univa-
lent foundations (after Voevodsky). Journal of the European Mathematical Society,
23(6):2071–2126, 2021.

[9] Vincent Siles and Hugo Herbelin. Equality is typable in semi-full pure type systems.
In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages 21–30.
IEEE, 2010.

[10] Taichi Uemura. Abstract and concrete type theories. PhD thesis, University of
Amsterdam, 2021.

[11] Floris van Doorn, Herman Geuvers, and Freek Wiedijk. Explicit convertibility
proofs in pure type systems. In Proceedings of the Eighth ACM SIGPLAN in-
ternational workshop on Logical frameworks & meta-languages: theory & practice,
pages 25–36, 2013.

47

https://github.com/guillaumebrunerie/initiality/tree/v2.0
https://github.com/guillaumebrunerie/initiality/tree/v2.0
https://github.com/sinhp/Poly/blob/c297c860ac70eddab7f8e4c41aae5fbd28edbcde/Poly/LCCC/Basic.lean
https://github.com/sinhp/Poly/blob/c297c860ac70eddab7f8e4c41aae5fbd28edbcde/Poly/LCCC/Basic.lean

	Introduction
	Contextual categories
	The category associated to a type theory
	Contextual categories
	Logical structures on a contextual category

	Consistency, models and initiality
	Consistency
	Models and initiality
	The formalization of initiality

	Locally cartesian closed categories
	Definitions and first properties
	Dealing with chosen pullbacks

	Building contextual categories from universes
	Universes
	Logical structures on a universe

	The simplicial model
	Fibres and well-ordered morphisms
	Construction of the universe
	The functor
	The simplicial sets and
	The functor , the simplicial sets and

	Logical structures

	Conclusion
	Type theory
	Martin-Löf type theory
	Structural rules
	Logical rules
	The univalence axiom

	Pure type systems
	Definition
	The syntactic category of PTS

