
Formalisation of
CW-complexes

Hannah Scholz
Born 21st July, 2003 in Bonn, Germany

22nd August, 2024

Bachelor’s Thesis Mathematics

Advisor: Prof. Dr. Floris van Doorn

Second Advisor: Prof. Dr. Philipp Hieronymi

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

Introduction 5

1 The mathematics of CW-complexes 7
1.1 Definition and basic properties of a CW-complex 7
1.2 Constructions . 13

1.2.1 Skeletons as CW-complexes . 13
1.2.2 Disjoint union of CW-complexes . 14
1.2.3 Image of a homeomorphism . 14
1.2.4 Subcomplexes . 14
1.2.5 Product of CW-complexes . 17

2 Lean and mathlib 27
2.1 The type theory of Lean . 27
2.2 Implicit arguments and typeclass inference 28

3 Lean formalisation of CW-complexes 31
3.1 Definition and basic properties of a CW-complex 31
3.2 Constructions . 35

3.2.1 Miscellaneous constructions . 36
3.2.2 Subcomplexes . 36
3.2.3 Product of CW-complexes . 37

Conclusion 41

German summary 43

Symbol Index 45

Bibliography 47

3

Introduction

Theorem provers are used to formally verify proofs using strict logical frameworks in digital
systems. They can help ensure that every detail of a proof is indeed correct and their
libraries provide correct and connected accounts of mathematical theories with complete
proofs.

The programming language and proof assistant Lean is among these theorem provers.
Its extensive mathematical library mathlib, of which the development is largely community
driven, has made it, among other reasons, a popular theorem prover both for students
contributing small amounts of work as mathematical side projects and also for scientists who
specialise in formalisation to manage ambitious projects with many contributors. Mathlib
itself could be considered one such project. This thesis aims to contribute to and build
upon this enormous amount of previous work by formalising CW-complexes in Lean, a
concept that is not yet part of mathlib.

Lean itself was primarily developed by Leonardo de Moura, who co-founded the Lean
focused research organisation that has taken on the development for five years in 2023
[FRO24]. The latest version is called Lean 4. More about the technical details of Lean 4
can be found in [MU21].

The accompanying library mathlib is available on GitHub at https://github.com/
leanprover-community/mathlib4. This repository has just over 300 different contribu-
tors and multiple new pull requests every day that get approved or rejected by the 28
maintainers. While mathlib is largely focused on providing a cohesive system of founda-
tional mathematical theories, there have been a multiple large formalisations of advanced
mathematical content based on mathlib, which also contributed to the library along the
way.

Here are two examples: In the Liquid Tensor Experiment, given to the Lean community
by Peter Scholze as a challenge, Johan Commelin, Adam Topaz and other contributors
formalised a theorem by Peter Scholze and Dustin Clausen from condensed mathematics
[Com22]. In addition, Floris van Doorn, Patrick Massot and Oliver Nash have formalised
the existence of sphere eversions, a concept from differential topology, showing that geo-
metric areas of mathematics can also be successfully formalised in Lean [DMN23].

There are also several large-scale ongoing projects of which we again present two ex-
amples: Floris van Doorn is currently leading a formalisation of a generalisation of Car-
leson’s theorem, a theorem from fourier analysis, by Christoph Thiele and his collaborators
[Bec+24]. Additionally, there is a project led by Kevin Buzzard that aims to reduce the
renowned Fermat’s Last Theorem to mathematical facts already known by mathematicians
in the 1980s, a starting point similar to that of Andrew Wiles and Richard Taylor, who
first proved this theorem in 1995 [Buz24].

As mentioned above, one important concept that is currently missing in mathlib is CW-
complexes. They were first invented by Whitehead in 1949 in [Whi18] to state and prove the
famous Whitehead theorem, which says that a continuous map between CW-complexes that

5

https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/mathlib4

Contents

induces isomorphisms on all homotopy groups is a homotopy equivalence. CW-complexes
are especially useful when doing calculations, for example, of singular homology and coho-
mology. One reason is that their skeletal structure allows one to use induction. Since we are
interested in providing a basic theory of CW-complexes, we will not focus on applications
but instead on basic properties. An introduction to CW-complexes and their applications
can be found in [LW69].

Our mathematical discussion will mostly be based on [Hat01]. In chapter 1 we will
discuss CW-complexes from a purely mathematical perspective. Chapter 2 gives a short
introduction to some aspects of Lean that will be useful to understand the formalisation of
most of the content of chapter 1 which we will cover in chapter 3. Note that the focus of
this thesis is the formalisation of CW-complexes. The accompanying code can be found at
https://github.com/scholzhannah/CWComplexes. Throughout this thesis we will link
to code either from our formalisation or from mathlib. These links will be mark with this
symbol : �.

6

https://github.com/scholzhannah/CWComplexes

1 The mathematics of CW-complexes

1.1 Definition and basic properties of a CW-complex
The modern definition of a CW-complex is the following:

Definition 1.1.1. Let X be a topological space. A CW-complex on X is a filtration
X0 ⊆ X1 ⊆ X2 ⊆ . . . such that

(i) For every n ≥ 0 there is a pushout of topological spaces

∐
i∈In

Sn−1
i Xn−1

∐
i∈In

Dn
i Xn

∐
i∈In

qn
i

∐
i∈In

ji

∐
i∈In

Qn
i

where In is any indexing set and ji : Sn−1
i → Dn

i is the usual inclusion for every i ∈ In.

(ii) We have X =
⋃

n≥0 Xn.

(iii) X has weak topology, i.e. A ⊆ X is open ⇐⇒ A ∩ Xn is open in Xn for every n.

Xn is called the n-skeleton. An element en ∈ π0(Xn \ Xn−1) is called an (open) n-cell. Qn
i

is called a characteristic map.

In this thesis we will however focus on the historical definition of CW-complexes first
presented by Whitehead, which can be found in [Whi18].

Definition 1.1.2. Let X be a Hausdorff space. A CW-complex on X consists of a family
of indexing sets (In)n∈N and a family of maps (Qn

i : Dn
i → X)n≥0,i∈In s.t.

(i) Qn
i |int(Dn

i) : int(Dn
i) → Qn

i (int(Dn
i)) is a homeomorphism. We call en

i := Qn
i (int(Dn

i))
an (open) n-cell (or a cell of dimension n) � and en

i := Qn
i (Dn

i) a closed n-cell � .

(ii) For all n, m ∈ N, i ∈ In and j ∈ Im where (n, i) ̸= (m, j) the cells en
i and em

j are
disjoint.

(iii) For each n ∈ N, i ∈ In, Qn
i (∂Dn

i) is contained in the union of a finite number of
closed cells of dimension less than n.

(iv) A ⊆ X is closed iff Qn
i (Dn

i) ∩ A is closed for all n ∈ N and i ∈ In.

7

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L84-L86
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L88-L90

1.1. Definition and basic properties of a CW-complex

(v)
⋃

n≥0
⋃

i∈In
Qn

i (Dn
i) = X.

We call Qn
i a characteristic map and ∂en

i := Qn
i (∂Dn

i) the frontier of the n-cell for any i
and n � . Additionally we define Xn :=

⋃
m<n+1

⋃
i∈Im

em
i and call it the n-skeleton of X

for −1 ≤ n ≤ ∞ � . �

For the rest of the section let X be a CW-complex.

Remark 1.1.3. Property (iii) in the above definition is called closure finiteness. Property
(iv) is called weak topology. Whitehead named CW-complexes closure finite complexes with
weak topology after these two properties [Whi18].

These two different notions are equivalent:

Proposition 1.1.4. Definition 1.1.1 and 1.1.2 are equivalent.

The proof to this proposition is long, tedious and not relevant to this thesis, so we will
skip it here. It can be found as the proof of Proposition A.2. in [Hat01]. From here on,
the term CW-Complex will always refer to the older Definition 1.1.2. As such, keep in
mind that throughout this thesis any CW-complex will, by definition, be assumed to be
Hausdorff.

Remark 1.1.5. The name open n-cell and the notation ∂en
i can be confusing as an open

n-cell is not necessarily open and ∂en
i is not necessarily the boundary of en

i .

But at least the notion of a closed n-cell makes sense:

Lemma 1.1.6. en
i is compact � and closed � for every n ∈ N and i ∈ In. Similarly ∂en

i

is compact � and closed � for every n ∈ N and i ∈ In.

Proof. Dn
i is compact. Therefore its image Qn

i (Dn
i) = en

i is compact as well. In a Hausdorff
space any compact set is closed. � Thus en

i is closed. The proof for ∂en
i works in the same

way.

And the following is also true:

Lemma 1.1.7. en
i = en

i for every n ∈ N and i ∈ In. �

Proof. Since en
i ⊆ en

i and en
i is closed by the lemma above, the left inclusion is trivial. So

let us show now that en
i ⊆ en

i . This statement can be rewritten as Qn
i

(
Dn

i

)
⊆ Qn

i (Dn
i). It

is generally true for any continuous map that the closure of the image is contained in the
image of the closure. � Thus we are done.

Now let us define what it means for a CW-complex to be finite:

Definition 1.1.8. Let X be a CW-complex. We call X of finite type if there are only
finitely many cells in each dimension, i.e. if In is finite for all n ∈ N. � X is said to be
finite dimensional if there is an n ∈ N such that X = Xn. � Finally, X is called finite if
it is of finite type and finite dimensional. �

If we already know that the CW-complex we want to construct will be finite or of finite
type, we can relax some of the conditions:

8

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L92-L94
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L143-L146
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L47-L76
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L151-L152
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L154-L155
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L157-L158
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L160-L161
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Topology/Separation.lean#L1759-L1764
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L163-L169
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Topology/ContinuousOn.lean#L676-L678
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L33-L36
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L28-L31
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L38-L43

1.1. Definition and basic properties of a CW-complex

Remark 1.1.9.

(i) For a CW-complex of finite type, condition (iii) in Definition 1.1.2 follows from the
following: For each n ∈ N, i ∈ In Qn

i (∂Dn
i) is contained in

⋃
m≤n−1

⋃
i∈Im

em
i . �

(ii) Additionally, for a finite CW-complex, condition (iv) in Definition 1.1.2 follows from
the other conditions. �

Proof. Let us begin with statement (i). Take n ∈ N and i ∈ In. We need to show that
Qn

i (∂Dn
i) is contained in a finite number of cells of a lower dimension. But by assumption,

we have Qn
i (∂Dn

i) ⊆
⋃

m≤n−1
⋃

i∈Im
em

i which in this case consists of finitely many cells.
Now we can move on to statement (ii). We need to prove condition (iv) of Definition 1.1.2,
i.e.

A ⊆ X is closed ⇐⇒ en
i ∩ A is closed for all n ∈ N and i ∈ In.

For the forward direction, notice that en
i ∩ A is just the intersection of two closed sets by

assumption and Lemma 1.1.6. As such it is closed. For the backward direction, take an
A ⊆ X such that en

i is closed for all n ∈ N and i ∈ In. We need to show that A is closed.
But using condition (v) of Definition 1.1.2 we get

A = A ∩
⋃

n≥0

⋃
i∈In

en
i =

⋃
n≥0

⋃
i∈In

(A ∩ en
i)

which by assumption is a finite union of closed sets, making A closed.

We can also think about the n-skeletons as being made up of open cells:

Lemma 1.1.10. Xn =
⋃

m<n+1
⋃

i∈Im
em

i for every −1 ≤ n ≤ ∞. �

Proof. We show this by induction over −1 ≤ n ≤ ∞. For the base case, assume that
n = −1. Then we get X−1 =

⋃
m<0

⋃
i∈Im

em
i = ∅ =

⋃
m<0

⋃
i∈Im

em
i .

For the induction step, assume that that the statement is true for n. We now show that
it also holds for n + 1.

Xn+1 =
⋃

m<n+2

⋃
i∈Im

em
i

=
⋃

i∈In+1

en+1
i ∪

⋃
m<n+1

⋃
i∈Im

em
i

=
⋃

i∈In+1

en+1
i ∪ Xn

(1)=
⋃

i∈In+1

en+1
i ∪

⋃
m<n+1

⋃
i∈Im

em
i

=
⋃

i∈In+1

en+1
i ∪

⋃
i∈In+1

∂en+1
i ∪

⋃
m<n+1

⋃
i∈Im

em
i

(2)=
⋃

i∈In+1

en+1
i ∪

⋃
m<n+1

⋃
i∈Im

em
i

=
⋃

m<n+2

⋃
i∈Im

em
i

9

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L45-L72
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L74-L122
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L320-L322

1.1. Definition and basic properties of a CW-complex

Note that (1) holds by induction and (2) holds by closure finiteness (property (iii) in
Definition 1.1.2).

Now we can move on to the case n = ∞.

X∞ =
⋃

m<∞+1

⋃
i∈Im

em
i

=
⋃

m<∞+1

⋃
l<m+1

⋃
i∈Il

el
i

=
⋃

m<∞+1
Xm

(1)=
⋃

m<∞+1

⋃
l<m+1

⋃
i∈Il

el
i

=
⋃

m<∞+1

⋃
i∈Im

em
i

Where (1) holds by induction.

This also enables us to write X as a union of open cells:

Corollary 1.1.11. X =
⋃

n≥0
⋃

i∈In
en

i . �

When we want to show that a set A ⊆ X is closed, the weak topology (property (iv)
in 1.1.2) lets us reduce that question to an individual cell. It is then often convenient to
perform strong induction over the dimension of that cell. To this end, we want to prove a
lemma that makes this repeated process easier. We first need the following:

Lemma 1.1.12. Let A ⊆ X be a set and n a natural number. Assume that for every
m ≤ n and j ∈ Im the intersection A ∩ em

j is closed. Then A ∩ ∂en+1
j is closed for every

j ∈ In+1. �

Proof. By closure finiteness of X (property (iii) in 1.1.2), there is a set E of cells of dimen-
sion lower than n + 1 such that ∂en+1

j ⊆
⋃

e∈E e. This gives us

A ∩ ∂en+1
j = A ∩

⋃
e∈E

e ∩ ∂en+1
j =

⋃
e∈E

(A ∩ e) ∩ ∂en+1
j .

⋃
e∈E(A ∩ e) is closed as a finite union of sets that are closed by assumption and ∂en+1

j is
closed by Lemma 1.1.6. Therefore, the intersection is also closed.

Now we can move on to the lemma that we actually want. We can think of this lemma
as being a weaker condition than the weak topology i.e. property (iv) in 1.1.2.

Lemma 1.1.13. Let A ⊆ X be a set such that for every n > 0 and j ∈ In either A ∩ en
j or

A ∩ en
j is closed. Then A is closed. �

Proof. Since X has weak topology, it is enough to show that A ∩ en
j is closed for every

n ∈ N and i ∈ In. We show this by strong induction over n. For the base case n = 0,
notice that e0

j is a singleton, and the intersection with a singleton is either that singleton
or empty. As such, the intersection is closed in both cases.

10

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L324-L325
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L387-L401
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L403-L418

1.1. Definition and basic properties of a CW-complex

For the induction step, assume that for every m ≤ n the statement already holds. We
now need to show it for n + 1. By assumption either A ∩ en+1

j or A ∩ en+1
j is closed. The

second case is just what we wanted to show.
In the first case, we can use that A ∩ en+1

j = (A ∩ ∂en+1
j) ∪ (A ∩ en+1

j). The left part of
the union is closed by Lemma 1.1.12 applied to the induction hypothesis. The right part of
the union is closed by the assumption of our case. The union is therefore also closed.

We can use the lemma we just proved to show that the n-skeletons are closed:

Lemma 1.1.14. Xn is closed for every n ∈ N. �

Proof. By the previous Lemma 1.1.13, it is enough to show that for every m ∈ N and
j ∈ Im either Xn ∩ em

j or Xn ∩ em
j is closed. We differentiate two cases based on whether

m < n + 1. First assume that m < n + 1 holds. Then by the definition of Xn we get
Xn ∩ em

j = (
⋃

m<n+1
⋃

i∈Im
em

i) ∩ em
j = em

j which is closed by Lemma 1.1.6. Now assume
that it does not hold. Then by Lemma 1.1.10 we get Xn∩em

j = (
⋃

m<n+1
⋃

i∈Im
em

i)∩em
j = ∅

where the last equality holds because the open cells are pairwise disjoint by property (ii)
in Definition 1.1.2. The empty set is trivially closed.

Another fact that can be quite helpful is a version of closure finiteness using open cells:

Lemma 1.1.15. For each n ∈ N and i ∈ In, ∂en
i is contained in the union of a finite

number of open cells of dimension less than n. �

Proof. We show this by strong induction on n. For the base case n = 0 notice that ∂e0
i is

empty.
For the induction step, assume that the statement holds for all m ≤ n. We need to show

that it also holds for n + 1. By closure finiteness there is a finite set E of cells of dimension
less than n + 1 such that ∂en+1

i ⊆
⋃

e∈E e. If we can show that for every e ∈ E there is a
finite set Ee of cells of dimension less than n + 1 such that e ⊆

⋃
e′∈Ee

e′, we would then be
done since ∂en+1

i ⊆
⋃

e∈E e ⊆
⋃

e∈E

⋃
e′∈Ee

e′.
So take e ∈ E. By the induction hypothesis there is a finite set E′

e of cells of a lesser
dimension than that of e such that ∂e ⊆

⋃
e′∈E′

e
e′. This gives us e = ∂e∪e ⊆ (

⋃
e′∈E′

e
e′)∪e,

which finishes the proof.

Let us now look at some more ways to show that sets in X are closed.

Lemma 1.1.16. A ⊆ X is closed iff A ∩ Xn is closed for every n ∈ N. �

Proof. The forward direction follows directly from Lemma 1.1.14. For the backward direc-
tion, take A ⊆ X such that A ∩ Xn is closed for every n. Since X has weak topology we
need to show that A ∩ en

i is closed for every n ∈ N and i ∈ In. But A ∩ en
i = A ∩ Xn ∩ en

i

which is closed by assumption and Lemma 1.1.6.

When we use this lemma with induction, we might want the following for the induction
step:

Lemma 1.1.17. Let A ⊆ X. A ∩ Xn+1 is closed iff A ∩ Xn and A ∩ en+1
j are closed for

every j ∈ In+1. �

11

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L27
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L420-L452
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L29-L36
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L38-L83

1.1. Definition and basic properties of a CW-complex

Proof. For the forward direction notice that A ∩ Xn = A ∩ Xn+1 ∩ Xn, which is closed
by assumption and Lemma 1.1.14, and A ∩ en+1

j = A ∩ Xn+1 ∩ en+1
j , which is closed by

assumption and Lemma 1.1.6. For the backwards direction we apply Lemma 1.1.13. We
now need to show that for every m ∈ N and j ∈ Im either A ∩ em

j or A ∩ em
j is closed. We

differentiate three different cases. First let us look at the case m ≤ n. Then

A ∩ Xn+1 ∩ em
j = A ∩ em

j = A ∩ Xn ∩ em
j

which is closed by assumption and Lemma 1.1.6. Now we consider m = n + 1. Then
A ∩ Xn+1 ∩ en+1

j = A ∩ en+1
j , which is closed by assumption. Lastly, we show the claim for

m > n + 1. Here we get A ∩ Xn+1 ∩ em
j = A ∩ (

⋃
l<n+1

⋃
i∈Il

el
j) ∩ em

j = ∅, where we used
Lemma 1.1.10 and the fact that different open cells are disjoint (property (ii) in Definition
1.1.2). The empty set is obviously closed.

With that we can write a new strong induction principle for showing that sets in a
CW-complex are closed:

Lemma 1.1.18. Let A ⊆ X be a set such that for all n ∈ N, if for all m ≤ n the
intersection A ∩ Xm is closed, then for all j ∈ In+1 the intersection A ∩ en+1

j is closed.
Then A is closed. �

Proof. By Lemma 1.1.16 it is enough to show that for all n ∈ N the set A ∩ Xn is closed.
We do strong induction over n starting at −1. For the base case notice that X−1 = ∅.
Now for the induction step, assume that A ∩ Xm is closed for all m ≤ n. We need to show
that A ∩ Xn+1 is closed as well. By the previous lemma, it is enough to show that A ∩ Xn

and A ∩ en+1
j are closed for all j ∈ In+1. But the first one is closed by induction hypothesis

and the second one is closed by our assumption applied to the induction hypothesis.

We can now use all these new techniques to show some important properties of CW-
complexes:

Lemma 1.1.19. X0 is discrete. �

Proof. We want to show that every set A ⊆ X0 is closed in X0. It is enough if A is
closed in X. We apply Lemma 1.1.13. Take n > 0 and i ∈ In. We show that A ∩ en

i

is closed. But using Lemma 1.1.10 and that different open cells are disjoint, we have
A ∩ en

i = A ∩ X0 ∩ en
i = A ∩ (

⋃
m<1

⋃
j∈Im

em
j) ∩ en

i = ∅, which is closed.

The proof of the following lemma is based on the proof of Proposition A.1. in [Hat01].

Lemma 1.1.20. For every compact set C ⊆ X the set of all open cells en
i such that

en
i ∩ C ̸= ∅ is finite. �

Proof. Assume towards a contradiction that the set S := {n ∈ N, i ∈ In | en
i ∩ C ̸= ∅}

is infinite. For every pair (n, i) ∈ S pick a point pn,i ∈ en
i ∩ C. Since the open cells are

pairwise disjoint, we know that the set P := {pn,i | (n, i) ∈ S} is also infinite. We will now
show that P is discrete and compact. Then P must be finite, which is a contradiction. For
both compactness and discreteness we will need that every set A ⊆ P is closed in X.

So let A ⊆ P . We apply Lemma 1.1.18. Assuming that for all m ≤ n the intersection
A ∩ Xm is closed, we need to show that A ∩ en+1

j is closed for every j ∈ In+1. Since

12

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L85-L96
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L108-L109
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L111-L214

1.2. Constructions

A ∩ en+1
j = (A ∩ ∂en+1

j) ∪ (A ∩ en+1
j) and A ∩ ∂en+1

j = A ∩ Xn ∩ ∂en+1
j is closed by

Lemma 1.1.6 and the assumption, it is enough to show that A ∩ en+1
j is closed. If the

intersection A ∩ en+1
j is empty, then we are done. So assume that there is an x ∈ A ∩ en+1

j .
Since x ∈ A ⊆ P there is (m, i) ∈ S such that pm,i = x. But the open cells of X are
pairwise disjoint, so it must be that (m, i) = (n + 1, j) and therefore pn+1,j = x. Thus
A ∩ en+1

j = {pn+1,j}, which is closed since every singleton in a Hausdorff space is closed.
This directly gives us that the subspace topology on P is discrete. For compactness,

notice that, by what we just did, P is closed and as a closed subset of the compact set
C it is also compact �. This is a contradiction to the fact that P is infinite as explained
above.

This lemma helps us prove the following characterisation of finite CW-complexes:

Lemma 1.1.21. X is a finite CW-complex iff X compact. �

Proof. For the forward direction we know that X =
⋃

n∈N
⋃

i∈In
en

i , which, by assumption
and Lemma 1.1.6, is compact as a finite union of compact sets.

The backward direction follows from Lemma 1.1.20 and Corollary 1.1.11.

1.2 Constructions

In this section we will discuss how to get new CW-complexes from existing ones. We can
start with some easy ones.

1.2.1 Skeletons as CW-complexes

The n-skeletons of a CW-complex X are again CW-complexes:

Lemma 1.2.1. Let −1 ≤ n ≤ ∞. Then Xn is a CW-complex together with the cells
Jm := Im for m < n + 1 and Jm = ∅ otherwise. �

Proof. We need to verify the five conditions of Definition 1.1.2. Conditions (i), (ii) and (iii)
follow directly from X fulfilling these conditions and condition (v) is given by the definition
of the n-skeleton. Thus we only need to worry about condition (iv), i.e. that Xn has weak
topology. It follows easily from Lemma 1.1.6 that for a set A ⊆ Xn that is closed in Xn the
intersection A ∩ em

i is closed in Xn for every m ∈ N and i ∈ Jm. We can therefore directly
consider the other direction. Let A ⊆ Xn be a set such that for every m ∈ N and i ∈ Jm

the intersection A ∩ em
i is closed in Xn. We need to show that A is closed in Xn. It suffices

to show that A is closed in X. By Lemma 1.1.13 we need to prove that for every m ∈ N and
i ∈ Im either A ∩ em

i or A ∩ em
i is closed. Let us start with the case i ∈ Jm. By assumption,

A ∩ em
i is closed in Xn. The definition of the subspace topology tells us that there exists a

closed set C ⊆ X such that C ∩Xn = A∩em
i . But since Xn is closed by Lemma 1.1.14, that

means that A ∩ em
i is also closed in X. So we are done for this case. For the case i /∈ Jm

notice that, by Lemma 1.1.10, we get A∩em
i ⊆ Xn ∩em

i = (
⋃

l<n+1
⋃

j∈Il
el

j)∩em
i = ∅ since

different open cells of X are disjoint. The empty set is obviously closed.

13

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Compactness/Compact.lean#L92-L95
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L298-L299
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L66-L67

1.2. Constructions

1.2.2 Disjoint union of CW-complexes

Additionally, we can get a CW-complex by taking the disjoint union of two CW-complexes:

Lemma 1.2.2. Let X and Y be two CW-complexes with indexing sets (I1,n)n∈N and
(I2,n)n∈N. Then X ⨿ Y is a CW-complex with indexing sets Jn := I1,n ∪ I2,n. �

Proof. We need to show that this construction satisfies the conditions of Definition 1.1.2.
Conditions (i), (ii), (iii) and (v) follow directly from X and Y fulfilling these conditions. So
we again only need to focus on condition (iv), i.e. the weak topology. The forward direction
follows in the same way as in a lot of the other proofs. For the backwards direction take
A ⊆ X ⨿ Y such that A ∩ en

i is closed in X ⨿ Y for every n ∈ N and i ∈ Jn. We need to
show that A is closed in X ⨿ Y . By the definition of the disjoint union topology, this is
equivalent to A ∩ X being closed in X and A ∩ Y being closed in Y . We will show this for
X. By the weak topology, it is enough to show that A ∩ X ∩ en

i is closed in X for every
n ∈ N and i ∈ I1,n. But we have A ∩ X ∩ en

i = (A ∩ en
i) ∩ X, which is closed in X by

assumption and the definition of the disjoint union topology.

1.2.3 Image of a homeomorphism

Homeomorphisms respect the CW-complex structure:

Lemma 1.2.3. Let X and Y be topological spaces and f : X → Y a homeomorphism. If
X is a CW-complex with indexing sets (In)n∈N and characteristic maps (Qn

i)n∈N,i∈In, then
Y is a CW-complex with the same indexing sets and characteristic maps (f ◦ Qn

i)n∈N,i∈In.
�

Proof. Properties (ii), (iii) and (v) of Definition 1.1.2 follow easily from the fact that f is a
bijection. Property (i) holds since we compose the characteristic maps with a homeomor-
phism. Let us lastly look at property (iv), i.e. the weak topology. We get:

A ⊆ Y is closed ⇐⇒ f−1(A) ⊆ Xis closed
⇐⇒ Qn

i (Dn
i) ∩ f−1(A) = f−1((f ◦ Qn

i)(Dn
i) ∩ A) ⊆ X is closed

⇐⇒ (f ◦ Qn
i)(Dn

i) ∩ A ⊆ Y is closed.

1.2.4 Subcomplexes

One important way to get a new CW-complex from an existing one is to consider subcom-
plexes, which we will discuss in this section.

Let X be a CW-complex. A subcomplex of X is defined as follows:

Definition 1.2.4. A subcomplex of X is a set E ⊆ X together with a set Jn ⊆ In for
every n ∈ N such that: �

(i) E is closed.

(ii)
⋃

n∈N
⋃

i∈Jn
en

i = E.

14

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L71-L136
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L140-L182
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L44-L52

1.2. Constructions

Note that here we want E to be the union of the open cells instead of the union of the
closed cells as in Definition 1.1.2. But we can prove the other version easily:

Lemma 1.2.5. Let E ⊆ X be a subcomplex. Then
⋃

n∈N
⋃

i∈Jn
en

i = E. �

Proof. Let n ∈ N and i ∈ Jn. It is enough to show that en
i ⊆ E. By Lemma 1.1.7 en

i = en
i .

Since E is closed by property (i) en
i ⊆ E is equivalent to en

i ⊆ E which is true by property
(ii).

Example 1.2.6. We have already proven that every n-skeleton is a subcomplex with
Lemma 1.1.14 and Lemma 1.1.10. � This section therefore provides us with an alternative
way to show that n-skeletons are CW-complexes.

Here are some alternative ways to define subcomplexes. These are taken from chapter
7.4 in [Jän01]. The proof that these three notions are equivalent can be found in there. We
will just show the implication that is useful to us.

Lemma 1.2.7. Let E ⊆ X and Jn ⊆ In for n ∈ N be such that

(i) For every n ∈ N and i ∈ In we have en
i ⊆ E.

(ii)
⋃

n∈N
⋃

i∈Jn
en

i = E.

Then E is a subcomplex of X. �

Proof. Property (ii) in Definition 1.2.4 is clear immediately. So we only need to show that
E is closed. We apply Lemma 1.1.13 which means we only need to show that for every
n ∈ N and i ∈ In either E ∩ en

i or E ∩ en
i is closed. So let n ∈ N and i ∈ In. We

differentiate the cases i ∈ Jn and i /∈ Jn. For the first one notice that by property (i) E
can be expressed as a union of closed cells: E =

⋃
m∈N

⋃
j∈Jn

em
j ⊆

⋃
m∈N

⋃
j∈Jn

em
j ⊆ E.

This gives us E ∩ en
i = en

i , which is closed by Lemma 1.1.6. Now for the case i /∈ Jn, the
disjointness of the open cells of X gives us that E ∩ en

i = (
⋃

m∈N
⋃

j∈Jn
em

j) ∩ en
i = ∅, which

is obviously closed.

And here is a third way to express the property of being a subcomplex:

Lemma 1.2.8. Let E ⊆ X and Jn ⊆ In for n ∈ N be such that

(i) E is a CW-complex with respect to the cells determined by X and Jn.

(ii)
⋃

n∈N
⋃

i∈Jn
en

i = E.

Then E is a subcomplex of X. �

Proof. We will show that this satisfies the properties of the construction above in Lemma
1.2.7. Property (ii) is again immediate. Property (i) combined with Definition 1.1.2 of a
CW-complex immediately gives us property (i) of Lemma 1.2.7.

Now we can show that a subcomplex is indeed again a CW-complex:

Lemma 1.2.9. Let E ⊆ X together with Jn ⊆ In for every n ∈ N be a subcomplex of the
CW-complex X. Then E is again a CW-complex with respect to the cells determined by Jn

and X. �

15

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L98-L108
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L410-L411
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L82-L89
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L54-L80
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L117-L174

1.2. Constructions

Proof. We show this by verifying the properties in the Definition 1.1.2 of a CW-complex.
Properties (i) and (ii) are immediate and we already covered property (v) in Lemma 1.2.5.

Let us consider property (iii) i.e. closure finiteness. So let n ∈ N and i ∈ Jn. By closure
finiteness of X we know that there is a finite set E ⊆

⋃
m<n In such that ∂en

i ⊆
⋃

e∈E e.
We define E′ := {em

j ∈ E | j ∈ Jm}. We want to show that ∂en
i ⊆

⋃
e∈E′ e. Take

x ∈ ∂en
i . Since ∂en

i ⊆
⋃

e∈E e, there is an em
j ∈ E such that x ∈ em

j . It is obviously
enough to show that j ∈ Jm. By Lemma 1.2.5 we know that x ∈ ∂en

i ⊆ en
i ⊆ E. But since

E =
⋃

m′∈N
⋃

j′∈Jm′ em′
j′ there is m′ ∈ N and j′ ∈ Jm′ such that x ∈ em′

j′ . We know that the
open cells of X are disjoint which gives us (m, j) = (m′, j′). That directly implies j ∈ Jm,
which we wanted to show.

Lastly we need to show property (iv), i.e. that E has weak topology. Like in a lot of our
other proofs, A ⊆ E being closed implies that A ∩ en

i is closed for every n ∈ N and i ∈ Jn.
So now take A ⊆ E such that A ∩ en

i is closed in E for every n ∈ N and i ∈ Jn. We need to
show that A is closed in E. It is enough to show that A is closed in X. We apply Lemma
1.1.13 which means we only need to show that for every n ∈ N and j ∈ In either A ∩ en

j

or A ∩ en
j is closed. We look at two cases. Firstly consider j ∈ Jn. Then A ∩ en

i is closed
in E by assumption. By the definition of the subspace topology this means that there
exists a closed set B ⊆ X such that A ∩ en

i = E ∩ B. But since E is closed by assumption
(i) of Definition 1.2.4 of a subcomplex, that means that A ∩ en

i is the intersection of two
closed sets in X making it also closed. Now let us cover the case j /∈ Jn. This gives us
A ∩ en

j ⊆ E ∩ en
j = (

⋃
m∈N

⋃
i∈Jm

em
i) ∩ en

j = ∅, where the last equality holds since the open
cells of X are pairwise disjoint. Thus A ∩ en

j = ∅, which is obviously closed.

Now let us look at some properties of subcomplexes:

Lemma 1.2.10. A union of subcomplexes (Ei)i∈ι of X with indexing sets (Ii,n)i∈ι,n∈N is
again a subcomplex of X with the indexing set

⋃
i∈ι Ii,n for every n ∈ N. �

Proof. We show that this construction satisfies the assumptions of Lemma 1.2.7. Property
(ii) follows easily from that the fact that each of the subcomplexes Ei is the union of its
open cells. So let us look at property (i). Take n ∈ N and j ∈

⋃
i∈ι Ii,n. Then there is a

i ∈ ι such that j ∈ Ii,n. With Lemma 1.2.5 we get en
j ⊆

⋃
n∈N

⋃
j∈Ii,n

en
j = Ei ⊆

⋃
i∈ι Ei,

which means we are done.

Remark 1.2.11. We say a subcomplex is finite, when it is finite as a CW-complex. It
is easy to see that taking a finite union of finite subcomplexes of X yields again a finite
subcomplex of X. �

Here are two examples of finite subcomplexes that we will need:

Example 1.2.12.

(i) Let i ∈ I0. Then e0
i is a finite subcomplex of X with the indexing sets J0 = {i} and

Jn = ∅ for n > 0. �

(ii) Let E together with the indexing sets (Jn)n∈N be a finite subcomplex of X and n ∈ N
and i ∈ In such that ∂en

i is included in a union of cells of E of dimension less than
n. Then E ∪ en

i together with J ′
n = Jn ∪ {i} and J ′

m = Jm for m ̸= n is a finite
subcomplex of X. �

16

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L190-L209
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L211-L224
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L246-L271
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L308-L334

1.2. Constructions

We will omit the proofs of these examples as they are quite direct to see.
This helps us get the following lemma:

Lemma 1.2.13. Let n ∈ N and i ∈ In. Then there is a finite subcomplex of X such that i
is among its cells. �

Proof. We show this by strong induction over n. The base case n = 0 is directly given by
the first example in 1.2.12. For the induction step assume that the statement is true for all
m ≤ n. We now need to show that it then also holds for n + 1. By closure finiteness of X
there is a finite set F of cells of X with dimension less than n+1 such that ∂en+1

i ⊆
⋃

e∈F e.
By induction each cell e ∈ F is part of a finite subcomplex Ee of X. By Lemma 1.2.10
and Remark 1.2.11,

⋃
e∈F Ee is again a finite subcomplex of X. The second example in

Example 1.2.12 now allows us to attach the cell en+1
i to this subcomplex yielding a finite

subcomplex with en+1
i among its cells.

Corollary 1.2.14. Every finite set of cells of X is contained in a finite subcomplex of X.
�

Proof. Let F be the set of finite cells. By the above Lemma 1.2.13 each cell e ∈ F is
contained in a finite subcomplex Ee. By Lemma 1.2.10 and Remark 1.2.11

⋃
e∈F Ee is

again a finite subcomplex of X and we obviously have
⋃

e∈F e ⊆
⋃

e∈F Ee.

Corollary 1.2.15. Let C ⊆ X be compact. Then C is contained in a finite subcomplex of
X. �

Proof. We know from Lemma 1.1.20 and property (v) in Definition 1.1.2 that C is contained
in a finite union of cells of X. And now the above corollary tells us that these finite cells,
and therefore C, is contained in a finite subcomplex of X.

1.2.5 Product of CW-complexes

In this subsection we will talk about the product of CW-complexes.

Counterexample

We will first show that the product of two CW-complexes is not necessarily a CW-complex
with respect to the natural cell structure.

Remark 1.2.16. The statement that we would want but is unfortunately false is the
following:

Let X, Y be CW-complexes with families of characteristic maps (Qn
i : Dn

i → X)n∈N,i∈In

and (P m
j : Dm

j → Y)m∈N,j∈Jn . Then we would want to get a CW-structure on X × Y with
characteristic maps (Qn

i × P m
j : Dn

i × Dm
j → X × Y)n,m∈N,i∈In,j∈Jm . The indexing sets Kl

are given by Kl =
⋃

n+m=l In × Jm for every l ∈ N.

We will discuss a counterexample first presented by Dowker in [Dow52].
We firstly define the two relevant spaces:

17

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L336-L364
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L374-L384
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L386-L397

1.2. Constructions

Definition 1.2.17. Let X =
∨

i∈ι Ai where Ai is the unit interval for every i ∈ ι and ι is
the set of all infinite sequences in N. X has a 0-cell at the base point of the wedge sum,
which we will label 0X and assume to be the 0 of all of the intervals. The rest of the 0-cells
are the 1’s of the intervals. The 1-cells are the interiors of the intervals.

Lemma 1.2.18. X together with the described cell-structure is a CW-complex.

Proof. Firstly note that the wedge sum is defined to be
∨

i∈ι Ai :=
∐

i∈ι Ai/ ∼ where ∼ is
the equivalence relation identifying all the 0’s of the intervals. It is easy to see from the
definition that the wedge sum of Hausdorff spaces is again a Hausdorff space. We now need
to verify the five conditions of Definition 1.1.2. They are all relatively self-evident except
for condition (iv), which says that X needs to have weak topology. The forward direction
follows in the same way as always. For the backward direction take a set C ⊆ X such that
C ∩ en

i is closed for all the closed cells of X. Note that the only relevant information this
gives us is that C ∩ Ai is closed in X for every i ∈ ι. We need to show that C is closed in
X. By the quotient topology, C is closed in X if its preimage q−1(C) under the quotient
map q :

∐
i∈ι Ai →

∐
i∈ι Ai/ ∼ is closed in the disjoint union. But by the disjoint union

topology q−1(C) is closed iff q−1(C) ∩ Ai = C ∩ Ai is closed in Ai for every i ∈ ι, which is
true by assumption.

Definition 1.2.19. Let Y =
∨

j∈N Bk, where Bk is the unit interval for every j ∈ N. X
has a 0-cell at the base point of the wedge sum, which we will label 0Y and assume to be
the 0 of all of the intervals. The rest of the 0-cells are the 1’s of the intervals. The 1-cells
are the interiors of the intervals.

Lemma 1.2.20. Y together with the described cell-structure is a CW-complex.

Proof. Completely analogous to the proof of Lemma 1.2.18.

Lemma 1.2.21. The space X × Y is not a CW-complex with respect to the cell-structure
proposed in 1.2.16.

Proof. We show that X × Y does not have weak topology by finding a set that, by the
weak topology, should be closed in X × Y but is not. For i ∈ ι and j ∈ N we define
pi,j = (1/ij , 1/ij) ∈ Ai × Bj where ij is the j’th element of the sequence i. Set P := {pi,j |
i ∈ ι, j ∈ N}.

Let us first show that P would be closed if X × Y had weak topology. We need to show
that its intersection with every closed cell of X × Y is closed. The closed cells of X × Y are
the following: The 0-cells are products of 0-cells, i.e. singletons of the form (x, y) where
x ∈ {1i | i ∈ ι} ∪ {0X} and y ∈ {1j | j ∈ N} ∪ {0Y }. The intersection of P with any closed
0-cell is empty and therefore closed. The 1-cells are products of 0-cells with 1-cells. The
two different options are Ai × {x} with i ∈ ι and x ∈ {1i | i ∈ ι} ∪ {0X} and {y} × Bj with
y ∈ {1j | j ∈ N} ∪ {0Y } and j ∈ N. The intersection of P with any closed 1-cell is thus also
empty and closed. So lastly let us consider the 2-cells. They are of the form Ai × Bj with
i ∈ ι and j ∈ N. For the intersection we get P ∩ (Ai × Bj) = pi,j which is closed. Therefore
P would be closed in the weak topology.

Now we prove that P is not closed in X × Y . We show that the complement P c of P in
X × Y is not open by showing that every open neighbourhood of (0X , 0Y) contains a point

18

1.2. Constructions

of P . A base for the product topology is given by

{U × V | U ⊂ X is open in X, V ⊆ Y is open in Y}.

It is easy to see that it suffices to prove our desired property for the base. Now let us
examine, what open neighbourhoods of 0X in X look like. By the definition of the wedge
sum, an open neighbourhood of 0X is of the form

∨
i∈ι Ui, where Ui is an open neighbour-

hood of 0 in Ai for i ∈ ι. For each of the Ui’s there is an xi > 0 such that [0, xi) ⊆ Ui. It
is therefore enough to show our claim for these sets. Arguing in the same manner for Y
allows us to reduce our aim to the set

{(
∨
i∈ι

[0, xi)) × (
∨
j∈N

[0, yj)) | xi > 0 for all i ∈ ι, yj > 0 for all j ∈ N}.

Picking such an open neighbourhood (
∨

i∈ι[0, xi)) × (
∨

j∈N[0, yj)) we need to find a p in
P such that p is in that neighbourhood. We pick an i′ ∈ ι such that for every j ∈ N
we have i′

j > max(j, 1/yj). Then we pick j′ ∈ N such that j′ > 1/xi′ . That gives us
1/i′

j′ < 1/j′ < xj′ and 1/i′
j′ < yj′ , which means that

pi′,j′ = (1/i′
j′ , 1/i′

j′) ∈ [0, xi′) × [0, yj′) ⊆ (
∨
i∈ι

[0, xi)) × (
∨
j∈N

[0, yj)).

Thus P is not closed.

K-spaces and the k-ification

Before we can move on to discuss the product of CW-complexes, we need to discuss its
topology. Therefore, we will now study k-spaces and the k-ification.

A k-space, or also called a compactly generated space, is defined for our purposes as
follows. Note that we mean quasi-compactness when talking about compactness.

Definition 1.2.22. Let X be a topological space. We call X a k-space if

A ⊆ X is open ⇐⇒ for all compact sets C ⊆ X the intersection A ∩ C is open in C.

�

There are a lot of different definitions in the literature. The most popular ones all agree
on Hausdorff spaces. An overview of these different notions can be found on Wikipedia
[Wik24].

It will also be helpful to characterise k-spaces via closed sets:

Lemma 1.2.23. Let X be a topological space. X is a k-space iff

A ⊆ X is closed ⇐⇒ for all compact sets C ⊆ X the intersection A ∩ C is closed in C.

�

19

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L33-L39
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L43-L54

1.2. Constructions

Proof. We only show the forward direction as the backward direction follows in the same
way. Of the equivalence that we now need to show, the forward direction is trivial. Thus
let A ⊆ X be a set such that for all compact sets C ⊆ X, the intersection A ∩ C is closed
in C. It is enough to show that Ac is open. By definition of the k-space, that is the case
if for every compact set C ⊆ X the intersection Ac ∩ C is open in C. Take any compact
C ⊆ X. By assumption, A ∩ C is closed in C. Since A ∩ C is the complement of Ac ∩ C in
C, this immediately gives us that Ac ∩ C is open in C.

We also define a way to make any topological space into a k-space which we call the
k-ification:

Definition 1.2.24. Let X be a topological space. We can define another topological space
Xc on the same set by setting

A ⊆ Xc is open ⇐⇒ for all compact sets C ⊆ X the intersection A ∩ C is open in C.

� We call Xc the k-ification of X. �

It is easy to see that this gives us a finer topology:

Lemma 1.2.25. If A ⊆ X is open then A ⊆ Xc is open. �

Again, it it useful to characterise the closed sets in the k-ification:

Lemma 1.2.26. A ⊆ Xc is closed iff A ∩ C is closed in C for all compact sets C ⊆ X. �

Proof. Completely analogous to the proof of Lemma 1.2.23.

To show that the k-ification actually fulfils its purpose of turning any space into a k-space,
we first need the following lemma:

Lemma 1.2.27. A ⊆ X is compact iff A ⊆ Xc is compact. �

Proof. For the backward direction notice that Lemma 1.2.25 is another way of stating that
the map id: Xc → X is continuous. As the image of a compact set under a continuous
map, that makes A ⊆ X compact.

For the forward direction take A ⊆ X compact. To show that A ⊆ Xc is compact, take
an open cover (Ui)i∈ι of A in Xc. For every i ∈ ι there is, by definition of the k-ification,
an open set Vi ⊆ X such that Vi ∩ A = Ui ∩ A. (Vi)i∈ι is an (open) cover of A in X:

A = A ∩
⋃
i∈ι

Ui =
⋃
i∈ι

(A ∩ Ui) =
⋃
i∈ι

(A ∩ Vi) = A ∩
⋃
i∈ι

Vi ⊆
⋃
i∈ι

Vi.

Thus there is a finite subcover (Vi)i∈ι′ of A in X. (Ui)i∈ι′ is now a finite subcover of A in
Xc:

A = A ∩
⋃
i∈ι′

Vi =
⋃
i∈ι′

(A ∩ Vi) =
⋃
i∈ι′

(A ∩ Ui) = A ∩
⋃
i∈ι′

Ui ⊆
⋃
i∈ι′

Ui.

Now we are ready to move on to the promised lemma:

20

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L122-L146
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L119-L120
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L187-L193
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L148-L162
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L238-L243

1.2. Constructions

Lemma 1.2.28. Xc is a k-space for every topological space X. �

Proof. We need to show that a set A ⊆ Xc is open iff A ∩ C is open in C for every compact
set C ⊆ Xc. The forward implication is again trivial.

For the backward implication take a set A ⊆ Xc such that for every compact set C ⊆ Xc

the intersection A ∩ C is open in C. By the definition of the k-ification, it is enough to
show that for every compact set C ⊆ X the intersection A ∩ C is open in C. So let C ⊆ X
be a compact set. By Lemma 1.2.27, C is also compact in X. By assumption, this means
that A ∩ C is open in C ⊆ Xc (in the subspace topology of the k-ification). Thus there is
an open set B ⊂ Xc such that A ∩ C = B ∩ C. By the definition of the k-ification, B ∩ C
is open in C ⊆ X. That means there is an open set E ⊆ X such that B ∩ C = E ∩ C. But
that now gives us A ∩ C = B ∩ C = E ∩ C, with which we can conclude that A ∩ C is open
in C ⊆ X (in the subspace topology of the original topology of X).

If we already have a k-space, then the k-ification just maintains the topology of our space:

Lemma 1.2.29. Let X be a k-space. Then the topologies of X and Xc coincide. �

Proof. Notice that the characterisation of open sets in X and Xc respectively agree in this
setting.

Corollary 1.2.30. The k-ification is idempotent, i.e. (Xc)c = Xc.

Now we will characterise continuous maps to and from the k-ification. Going from the
k-ification is not a big issue:

Lemma 1.2.31. Let f : X → Y be a continuous map of topological spaces. Then f : Xc →
Y is continuous. �

Proof. This follows easily from Lemma 1.2.25.

More interesting questions are, when a map to the k-ification or a map from a k-ification
to a k-ification is continuous. The following two lemmas and proofs, that answer these
questions, are based on Lemma 46.4 of [Mun14]. The next lemma is the first step towards
the answer:

Lemma 1.2.32. Let X be a compact space and f : X → Y be a continuous map. Then
f : X → Yc is continuous. �

Proof. We want to show that for every closed A ⊆ Yc the preimage f−1(A) is closed in X.
Take any closed set A ⊆ Yc. We know by Lemma 1.2.26 that A ∩ C is closed in C for every
compact C ⊆ Y . As the image of a compact set, f(X) is compact. Thus A∩f(X) is closed
in f(X) ⊆ Y . By the definition of the subspace topology, there is a closed set B ⊆ Y such
that A ∩ f(X) = B ∩ f(x). Now we have

f−1(A) = f−1(A ∩ f(X)) = f−1(B ∩ f(X)) = f−1(B)

which is closed as the preimage of a closed set under a continuous map.

Now this helps us get the following lemma:

21

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L245-L258
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L260-L266
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L268-L273
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L284-L294

1.2. Constructions

Lemma 1.2.33. Let f : X → Y be a map of topological spaces such that for every compact
C ⊆ X, the restriction f |C : C → Y is continuous. Then f : Xc → Yc is continuous. �

Proof. The last lemma together with our assumption tells us that for every compact C ⊆ X,
the restriction f |C : C → Yc is continuous. To show the claim take any open A ⊆ Yc. We
need to show that f−1(A) ⊆ Xc is open. By definition of the k-ification this set is open if
for all compact sets C ⊆ X the intersection f−1(A) ∩ C is open in C. Take any compact
set C ⊆ X. As noted above, we now know that f |C : C → Yc is continuous. Or in
other words we know that for every open B ⊆ Yc there is an open set E ⊆ X such that
f−1(B) ∩ C = E ∩ C. Applying this to the set A ⊆ Yc gives us an open set E ⊆ X such
that f−1(A) ∩ C = E ∩ C. But that is just another way of stating that f−1(A) is open in
C ⊆ X.

That yields the following corollary:

Corollary 1.2.34. Let f : X → Y be a continuous map of topological spaces. Then
f : Xc → Yc is continuous. �

Proof. This situation trivially fulfils the conditions of the previous lemma.

If we look at the discussion of the product of CW-complexes in some topology books,
for example [Hat01] and [Lüc05], we will notice that the k-ification rarely gets discussed
in detail. One possible reason for this is that most common spaces that you encounter are
already k-spaces. Lemma 1.2.29 then allows you to ignore the k-ification entirely. We will
therefore discuss in the remainder of this section which spaces are k-spaces and which are
not. The first example are weakly locally compact spaces.

Definition 1.2.35. Let X be a topological space. We call X weakly locally compact if
every point x ∈ X has some compact neighbourhood. �

This property is in some sources just called locally compact. The following proof is from
Lemma 46.3 in [Mun14].

Lemma 1.2.36. Weakly locally compact spaces are k-spaces. �

Proof. Let X be a weakly locally compact space. Let A ⊆ X. We need to show that A
is open iff A ∩ C is open in C for every compact set C. The forward direction is trivial.
So assume that for every compact set C the intersection A ∩ C is open in C. A is open if
it is a neighbourhood of every point x ∈ A. So fix any x ∈ A. Since X is weakly locally
compact, x has a compact neighbourhood C. By definition of neighbourhoods there is an
open set U ⊆ C such that x ∈ U and we need to find an open set V ⊆ A such that x ∈ V .
We show that A ∩ U fulfils these conditions. It is obvious that A ∩ U ⊆ A and x ∈ A ∩ U .
So it is left to show that A ∩ U is open. By assumption A ∩ C is open in C. That means
that there is an open set B such that A ∩ C = B ∩ C. This now gives us

A ∩ U = A ∩ C ∩ U = B ∩ C ∩ U = B ∩ U

which is open as the intersection of two open sets.

Another big class of spaces which are k-spaces are sequential spaces.

22

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L303-L316
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L318-L323
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Filter.lean#L270-L274
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L69-L86

1.2. Constructions

Definition 1.2.37. A set A in a topological space X is sequentially closed if for every
convergent sequence contained in A its limit point is also in A. � The sequential closure
of a set A in X is defined as

scl(A) = {x ∈ X | there is a sequence (an)n∈N ⊆ A such that (an)n∈N converges to x}.

� A sequential space is a space in which all sequentially closed sets are closed. �

We will need the following characterisation of sequentially closed sets:

Lemma 1.2.38. A set A ⊆ X is sequentially closed iff A = scl(A). �

Proof. This is easy to see from the definitions.

The following proof is based on [Sco16] and Lemma 46.3 in [Mun14].

Lemma 1.2.39. Sequential Spaces are k-spaces. �

Proof. Let X be a Sequential Space. By Lemma 1.2.23 it is enough to show that

A ⊆ X is closed ⇐⇒ for all compact sets C ⊆ X the intersection A ∩ C is closed in C.

The forward direction is trivial. Let A be a set such that A ∩ C is closed in C for every
compact set C. Since X is a sequential space, it is enough to show that A is sequentially
closed, or by the previous lemma that A = scl(A). The inclusion A ⊆ scl(A) is obvious. For
the backward inclusion take x ∈ scl(A). We need to show that x ∈ A. By definition there
is a sequence (an)n∈N ⊆ A that converges to x. It is well known (and can be shown directly
from the definition of compactness) that the set {an | n ∈ N} ∪ x is compact as the set of
terms of a sequence together with the limit point of that sequence. � By assumption, that
gives us that A ∩ ({an | n ∈ N} ∪ x) is closed in {an | n ∈ N} ∪ x. In other words there is a
closed set B such that

A ∩ ({an | n ∈ N} ∪ x) = B ∩ ({an | n ∈ N} ∪ x).

With that we get

x ∈ A ⇐⇒ x ∈ A ∩ ({an | n ∈ N} ∪ x) = B ∩ ({an | n ∈ N} ∪ x) ⇐⇒ x ∈ B

and for all n ∈ N we get an ∈ B in the exact same way. Thus (an)n∈N ⊆ B. Since B
is in particular sequentially closed, this gives us x ∈ B, which is enough by the above
equivalence.

In particular sequential spaces include metric spaces:

Lemma 1.2.40. Metric spaces are sequential spaces.

Proof. Let X be a metric space and A be a sequentially closed set. We need to show
that A is closed which is equivalent to Ac being open. Assume towards a contradiction
that Ac is not open. Then there is a point x ∈ Ac such that for every n ∈ N the open
ball B1/n(x) contains a point xn ∈ A. But then we have a sequence (xn)n∈N ⊆ A that
converges to x ∈ Ac. Thus A is not sequentially closed. We have therefore arrived at a
contradiction.

23

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Sequences.lean#L53-L57
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Sequences.lean#L47-L51
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Sequences.lean#L87-L90
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Sequences.lean#L87-L89
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L88-L114
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Compactness/Compact.lean#L620-L622

1.2. Constructions

Corollary 1.2.41. Metric spaces are k-spaces.

Lastly we will discuss spaces that are not k-spaces:

Lemma 1.2.42. Let X be an anti-compact T1 space. Then Xc has discrete topology.

Proof. Let A ⊆ Xc be any set. We need to show that it is open. By the definition of the
k-ification, it is enough to show that A ∩ C is open in C for every compact set C ⊆ X.
Since X is anti-compact, C is finite. And by T1 every finite set has discrete topology. Thus
A ∩ C is open in C and Xc has discrete topology.

Corollary 1.2.43. Let X be a non-discrete anti-compact T1 space. Then X is not a
k-space.

Proof. This follows easily from the previous lemma and Lemma 1.2.29.

That leads us to our first concrete example of a space that is not a k-space:

Example 1.2.44. Let X be any uncountable set. Equip X with the cocountable topology,
i.e. let a set A ⊆ X be open iff A = ∅ or Ac is countable. Then X is not a k-space.

Proof. It is easy to see by going through the axioms that the cocountable topology is
indeed a topology. We will now show that this space satisfies the conditions of the previous
corollary. X is clearly non-discrete. To see that X is a T1 space take two distinct points a
and b. Now let A be the set X \{b}. This set is open since {b} is countable and it obviously
does not contain b. We lastly need to show that that X is anti-compact. To do that take
any set A ⊆ X. Pick an (if possible infinite) countable subset B ⊆ A. Now for every b ∈ B
define Ub = (X \ B) ∪ {b}. Since U c

b = B \ {b} is countable Ub, is open for every b ∈ B.
It is also easy to see that A ⊆

⋃
b∈B Ub. Thus (Ub)b∈B is an open cover of A. But since

for every b ∈ B there is no b′ ∈ B with b ̸= b′ and b ∈ Ub′ , (Ub)b∈B cannot have a proper
subcover. Therefore A can only be compact if all these possible covers are already finite.
That can only be the case if B and with that A are finite.

Other examples can be found on π-base [PiB24].

Constructing the product

We can now move on to discuss the correct version of Remark 1.2.16. For the rest of
the section let X, Y be CW-complexes with families of characteristic maps (Qn

i : Dn
i →

X)n∈N,i∈In and (P m
j : Dm

j → Y)m∈N,j∈Jn . We will write the cells of X as en
i and the cells

of Y as fm
j . We want to show:

Theorem 1.2.45. There is a CW-structure on (X × Y)c with characteristic maps (Qn
i ×

P m
j : Dn

i × Dm
j → (X × Y)c)n,m∈N,i∈In,j∈Jm. The indexing sets (Kl)l∈N are given by Kl =⋃

n+m=l In ×Jm for every l ∈ N and the cells are therefore of the form en
i ×fm

j for n, m ∈ N,
i ∈ In and j ∈ Jm. �

We will split the proof up into lemmas to have a better overview of the proof. Let us first
show that the issue that occurred with the counterexample in an earlier section in Lemma
1.2.21 works out here:

24

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L226-L377

1.2. Constructions

Lemma 1.2.46. (X × Y)c has weak topology, i.e. A ⊆ (X × Y)c is closed iff en
i × f

m
j ∩ A

is closed for all n, m ∈ N, i ∈ In and j ∈ Jm. �

Proof. The forward direction follows from the fact that the product of closed sets is closed
in the product topology and from Lemma 1.2.25 that tells us that the k-ification is finer
than the product topology.

Moving on to the backward direction we know by Lemma 1.2.29 that the k-ification is a
k-space and by Lemma 1.2.26 that A is closed if for every compact set C ⊆ (X ×Y)c, A∩C
is closed in C. Take such a compact set C. The projections pr1(C) and pr2(C) are compact
as images of a compact set. By Lemma 1.1.20 there are finite sets E ⊆ {en

i | n ∈ N, i ∈ In}
and F ⊆ {fm

j | m ∈ N, j ∈ Jm} s.t pr1(C) ⊆
⋃

e∈E e and pr2(C) ⊆
⋃

f∈F f . Thus

C ⊆ pr1(C) × pr2(C) ⊆
⋃

e∈E

e ×
⋃

f∈F

f =
⋃

e∈E

⋃
f∈F

e × f.

So C is included in a finite union of cells of (X × Y)c. Therefore

A ∩ C = A ∩

 ⋃
e∈E

⋃
f∈F

e × f

 ∩ C =

 ⋃
e∈E

⋃
f∈F

A ∩ (e × f)

 ∩ C

is closed since by assumption A ∩ (e × f) is closed for every e and f and the union is finite.
Thus A ∩ C is in particular closed in C.

Before we can discuss closure finiteness we need to think about what the frontiers of cells
look like in (X × Y)c :

Lemma 1.2.47. Let en
i × fm

j for n, m ∈ N, i ∈ In and j ∈ Jm. The frontier of that cell is
∂en

i × f
m
j ∪ en

i × ∂fm
j . �

Proof. The definition of the frontier gives us:

(Qn
i × P m

j)(∂Dn+m) = (Qn
i × P m

j)(∂Dn × Dm ∪ Dn × ∂Dm)
= (Qn

i × P m
j)(∂Dn × Dm) ∪ (Qn

i × P m
j)(Dn × ∂Dm)

= Qn
i (∂Dn) × P m

j (Dm) ∪ Qn
i (Dn) × P m

j (∂Dm)
= ∂en

i × f
m
j ∪ en

i × ∂fm
j .

The equality ∂Dn+m = ∂Dn × Dm ∪ Dn × ∂Dm is true in any metric space and can be
verified explicitly. �

Using this we get closure finiteness:

Lemma 1.2.48. (X × Y)c has closure finiteness, i.e. each frontier of a cell is contained
in a finite union of closed cells of a lower dimension. �

Proof. By the above lemma we need to verify that for all n, m ∈ N, i ∈ In and j ∈ Jm,
the set ∂en

i × f
m
j ∪ en

i × ∂fm
j is contained in a finite union of closed cells of (X × Y)c of

dimension less than n + m. We can show this separately for ∂en
i × f

m
j and en

i × ∂fm
j . We

will do the proof for the the former as both proofs work in the same way. Since X fulfils
closure finiteness, there is a finite set E of cells of X of dimension less than n such that
∂en

i ⊂
⋃

e∈E e. But that gives us ∂en
i × f

m
j ⊆

⋃
e∈E e × f

m
j , which is a finite union of closed

cells of (X × Y)c of dimension less than n + m.

25

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L322-L367
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L65-L70
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean#L171-L181
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L272-L321

1.2. Constructions

Now we can proof the desired theorem:

Proof of Theorem 1.2.45. It is well known and easy to see explicitly that the product of
two Hausdorff spaces is again Hausdorff. � Now we can go through the five conditions of
Definition 1.1.2.

Property (i) is given by the fact that the product of bijective maps is again a bijection
and continuity in both directions follows from Lemma 1.2.31 and Lemma 1.2.32.

For property (ii) pick any n, m, n′, m′ ∈ N, i ∈ In, j ∈ Jm, i′ ∈ In′ and j′ ∈ Jm′ such that
(n + m, i, j) ̸= (n′ + m′, i′, j′) then either (n, i) ̸= (n′, i′) or (m, j) ̸= (m′, j′). Thus

en
i × f

m
j ∩ en′

i′ × f
m′

j′ =
(
en

i ∩ en′
i′

)
×

(
f

m
j ∩ f

m′

j′

)
= ∅

since X and Y themselves fulfil property (ii).
We already covered property (iii) in Lemma 1.2.48 and property (iv) in Lemma 1.2.46.

Property (v) is immediate.

26

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Separation.lean#L1547-L1548

2 Lean and mathlib
In this chapter we will discuss some general concepts about Lean and its mathematical
library mathlib. We will first explain the logic, i.e. the type theory, that is used in Lean.
While it is helpful to know some theory about it, it is not necessary to understand the
type theory in depth to formalise mathematics in Lean or read and understand the rest of
this thesis. Most important are some constructions, that are explained at the end of the
following section, and how you can use them in practice.

2.1 The type theory of Lean
Type theory was first proposed by Russell in 1908 [Rus08] as a way to axiomatise math-
ematics and resolve the paradoxes (most famously Russell’s paradox) that were discussed
at the time. While type theory has lost its relevance as a foundation of mathematics to set
theory it has since been studied in both mathematics and computer science. It was first
used in formal mathematics in 1967 in the formal language AUTOMATH. More about the
history of type theory can be found in [KLN04]. Discussions of type theory in mathematics
and especially its connections to homotopy theory forming the new area of homotopy type
theory can be found in [Uni13]. We will now focus on the type theory as used in Lean. Its
type theory along with the type theory of other proof assistants such as Coq are based on
constructive type theory developed by Per Martin-Löf which makes use of dependent types
[MS84]. A detailed account of Lean’s type theory can be found in [Car19]. The following
short discussion is based on [Avi+24].

Lean uses what is called a dependent type theory. In type theory every object has a
type. A type can for example be the natural numbers or propositions, which we write in
Lean as Nat or N and Prop respectively. To assert that n is a natural number or that p
is a proposition we write n : N and p : Prop. Proofs of a proposition p also form a type
written as p. If you want to say that hp is a proof of p then you can simply write hp : p.
Something to note about proofs in Lean is that, contrary to other type theories, the type
theory of Lean has proof irrelevance which means that two proofs of a proposition p are by
definition assumed to be the same.

Even types themselves have types. In Lean the type of natural numbers N has the type
Type. The type of propositions Prop is also of type Type. As to not run into a paradox
called Girard’s paradox there is a hierarchy of types [Coq86]. The type of Type is Type 1,
the type of Type 1 is Type 2 and so on. These are called type-universes. The notation
α : Type∗ is a way of stating that α is a type in an arbitrary universe.

There are a few ways to construct new types from existing ones. Some of them are very
similar to constructions on sets such as the cartesian product of types written as α × β or
the type of functions from α to β written as α → β where α and β are types. Elements
of α × β can be written as (a, b) for every a : α and b : β. Elements of α → β can be
written as fun a 7→ s a for some s : α → β. Since these are quite self-explanatory, we

27

2.2. Implicit arguments and typeclass inference

will not go into more detail. We will now mainly discuss constructions that do not fulfil
this criterium. A first example is the sum type of two types α and β written as α ⊕ β

which is the equivalent to a disjoint union of sets. Elements of this type are of the form
Sum.inl a for a : α or Sum.inr b for b : β. When given an x : α ⊕ β we can use the
construction
match x with
| Sum.inl a => · · ·
| Sum.inr b => · · ·

to write two different definitions or proofs depending on whether x originates from an
element of α or β. In this code snippet the names a and b are arbitrary.

The next two examples explain why this type theory is a dependent type theory: If we
have a type α and for every (a : α) a type β a (i.e. β is a function assigning a type
to every a : α) then we can construct the pi type or dependent function type written as
(a : α) → β a or Π (a : α), β a. We can construct an element of this type by writing
fun a 7→ s a for some s : (a : α) → β a. Here is an example: Assume that you want a
function that for every pair in a cartesian product α × α for any type α returns the first
element. Then this would be a function that depends on α and whose type is therefore the
dependent function type (α : Type∗) → α × α → α.

The dependent version of the cartesian product is called a sigma type and can be written
as (a : α) × β a or Σ a : α, β a for α and β the same way as above. An element of the
sigma type can be written as ⟨a, b⟩ for a : α and b : β a. When given an element of the
sigma type x : Σ a : α, β a one can write obtain ⟨a, b⟩ := x to deconstruct x.

2.2 Implicit arguments and typeclass inference
A crucial factor that makes Lean more comfortable to use and makes the formalisation
process feel closer to doing mathematics on paper is its use of implicit arguments and
typeclass inference. We will explain both of these concepts in this section.

First let us discuss implicit arguments based on [Avi+24]. One way that we could define
continuity in Lean is the following1:
structure Continuous′ (X Y : Type∗) (t : TopologicalSpace X)

(s : TopologicalSpace Y) (f : X → Y) : Prop where
isOpen_preimage : ∀ s, IsOpen s → IsOpen (f −1′ s)

Where a structure is a construct that can bundle both data and properties after the key-
word where. This structure has no data and one property which is named isOpen_preimage.
f −1′ s denotes the preimage of s under f. But now if we are given two types X and Y
with topologies s and t respectively and a map f : X → Y, the statement that the map f
is continuous would be expressed in the following way:
example (X Y : Type∗) (t : TopologicalSpace X) (s : TopologicalSpace Y)

(f : X → Y) : Continuous′ X Y t s f := · · ·

where everything before the colon is the context we described above and after the colon
equal you could write a proof.

1The code in this section will run if import Mathlib.Topology.MetricSpace.Basic is written at the
top of the file.

28

2.2. Implicit arguments and typeclass inference

One thing that we can notice is that the types X and Y are contained in the definition of
f which means that Lean should be able to find that information itself. To tell Lean to do
that you can replace the variables by underscores:

example (X Y : Type∗) (t : TopologicalSpace X) (s : TopologicalSpace Y)
(f : X → Y) : Continuous′ _ _ t s f := · · ·

These two arguments are always clear from the context in this way. We therefore want
to specify in the definition that they should not be given explicitly but instead inferred by
the system. We use curly brackets to do this:
structure Continuous′′ {X Y : Type∗} (t : TopologicalSpace X)

(s : TopologicalSpace Y) (f : X → Y) : Prop where
isOpen_preimage : ∀ s, IsOpen s → IsOpen (f −1′ s)

which enables us to write continuity like this:
example (X Y : Type∗) (t : TopologicalSpace X) (s : TopologicalSpace Y)

(f : X → Y) : Continuous′′ t s f := · · ·

This is already a lot shorter than what we had above but there is still room for improve-
ment, as on paper we would probably just write "f is continuous" since in most contexts X
and Y will only have one specified topology each, that can be inferred by the reader. The
same thing is also true in Lean and we can achieve this by typeclass inference. Typeclasses
were first invented by Wadler and Blott in [WB89] to be used in the programming language
Haskell. They are a way to overload operations for various different types. For example,
you might want to write code that works for all types that have a topology. In Lean this is
possible by just stating that your input type X is part of the typeclass TopologicalSpace.
You can specify that something ia a typeclass with the keyword class. The definition of
the typeclass of topological spaces in mathlib looks like this: �

class TopologicalSpace (X : Type∗) where
protected IsOpen : Set X → Prop
protected isOpen_univ : IsOpen univ
protected isOpen_inter : ∀ s t, IsOpen s → IsOpen t → IsOpen (s ∩ t)
protected isOpen_sUnion : ∀ s, (∀ t ∈ s, IsOpen t) → IsOpen (

⋃
0 s)

Let us first explain what this code means: The keyword protected means that these
properties should not be accessed directly because there are lemmas that should be used
instead. Set X is the type that consists of all sets of elements of X. Thus the line protected
IsOpen : Set X → Prop expresses that IsOpen is a property that can be assigned to a set in
X. The rest of the lines discuss the properties of a topology. univ is the set that is composed
of all elements of X and ⋃

0 s is the union over the set s. All of these explanations are not
actually relevant to typeclasses, they are just for our understanding of the above code.

Typeclasses are also expected to be inferred automatically. Local instances of these type-
classes can be written with square brackets, which tells Lean to infer these automatically.

We can now look at the version of continuity that is almost identical to that of mathlib:
�

structure Continuous {X Y : Type∗} [t : TopologicalSpace X]
[s : TopologicalSpace Y] (f : X → Y) : Prop where

isOpen_preimage : ∀ s, IsOpen s → IsOpen (f −1′ s)

which enables us to write that f is continuous in the context explained above as follows:

29

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Basic.lean#L59-L71
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Defs/Basic.lean#L138-L144

2.2. Implicit arguments and typeclass inference

example (X Y : Type∗) (t : TopologicalSpace X) (s : TopologicalSpace Y)
(f : X → Y) : Continuous f := · · ·

When you define a class you can then define instances of that class to be inferred whenever
you talk you talk about a type with that instance. Mathlib defines the discrete topology
on Z as an instance: �

instance : TopologicalSpace Z := ⊥

where ⊥ is the smallest element in the order that can be defined on the topologies of a
space, i.e. the finest topology which is the discrete topology. That makes it so that for any
map f : Z → Z we can just write the following
example (f : Z → Z) : Continuous f := · · ·

and Lean automatically knows which topology we are talking about. We can additionally
say that an instance implies another instance. If you have types X and Y which both have
topologies defined on them this instance in mathlib gives you a topology on the product:
�

instance instTopologicalSpaceProd {X Y : Type∗} [t1 : TopologicalSpace X]
[t2 : TopologicalSpace Y] : TopologicalSpace (X × Y) := · · ·

which enables you to write the following
example {X Y Z : Type∗} [TopologicalSpace X] [TopologicalSpace Y]

[TopologicalSpace Z] (f : X × Y → Z) : Continuous f := · · ·

This also works across different typeclasses. We can write
example {X : Type∗} [MetricSpace X] (f : X → X) : Continuous f := · · ·

which works because Lean knows that a metric space is by definition a pseudometric
space � which is a uniform space � which is by definition a topological space �.

30

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Order.lean#L481-L481
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/Constructions.lean#L50-L52
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/MetricSpace/Defs.lean#L36-L38
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/MetricSpace/Pseudo/Defs.lean#L100-L119
https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/UniformSpace/Basic.lean#L278-L289

3 Lean formalisation of CW-complexes

In this chapter we will discuss our formalisation of CW-complexes and will particularly
focus on parts that diverge from the pure mathematics of the first chapter.

3.1 Definition and basic properties of a CW-complex

We choose to formalise the historical definition because the modern one would require us
to consider the n-skeletons as topological spaces, which would create a lot of work unifying
them to work well together. The historical definition, however, allows us to work in one
topological space which avoids this issue.

The following is our definition of CW-complexes in Lean: �

class CWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X) where
cell (n : N) : Type u
map (n : N) (i : cell n) : PartialEquiv (Fin n → R) X
source_eq (n : N) (i : cell n) : (map n i).source = ball 0 1
cont (n : N) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
cont_symm (n : N) (i : cell n) : ContinuousOn (map n i).symm (map n i).target
pairwiseDisjoint′ :

(univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni 7→ map ni.1 ni.2 ′′ ball
0 1)

mapsto (n : N) (i : cell n) : ∃ I : Π m, Finset (cell m),
MapsTo (map n i) (sphere 0 1) (

⋃
(m < n) (j ∈ I m), map m j ′′ closedBall 0 1)

closed′ (A : Set X) (asubc : A ⊆ C) : IsClosed A ↔ ∀ n j, IsClosed (A ∩ map n
j ′′ closedBall 0 1)

union′ :
⋃

(n : N) (j : cell n), map n j ′′ closedBall 0 1 = C

The .{u} is a way to fix a universe level so that our definition of a CW-complex does
not depend on a number of different universe levels: The one of X and the one of cell n
for every n ∈ N. cell (n : N) represents the indexing set that we called In in Definition
1.1.2. map (n : N) (i : cell n) represent what we called Qn

i in that definition.
Fin n � is the set containing n natural numbers starting at 0. Fin n → R is one way

to express Rn in Lean. PartialEquiv is a structure defined in mathlib as follows: �

structure PartialEquiv (α : Type∗) (β : Type∗) where
toFun : α → β
invFun : β → α
source : Set α
target : Set β
map_source′ : ∀ {|x|}, x ∈ source → toFun x ∈ target
map_target′ : ∀ {|x|}, x ∈ target → invFun x ∈ source
left_inv′ : ∀ {|x|}, x ∈ source → invFun (toFun x) = x
right_inv′ : ∀ {|x|}, x ∈ target → toFun (invFun x) = x

31

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L47-L76
https://github.com/leanprover/lean4/blob/0edf1bac392f7e2fe0266b28b51c498306363a84/src/Init/Prelude.lean#L1826-L1838
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Logic/Equiv/PartialEquiv.lean#L113-L134

3.1. Definition and basic properties of a CW-complex

It bundles two maps and two sets that get mapped to each other by the respective maps.
Restricting the maps to these sets yields two maps that are the inverse of each other. We
use this instead of a similar construction called Equiv � for bijections to avoid explicitly
having to deal with restrictions. The brackets {||} are similar to the curly brackets and are
used here since x can be inferred from the left sides of the implications.

The property source_eq specifies the source of the PartialEquiv. cont and cont_symm
make the bijection into a homeomorphism giving us property (i) of Definition 1.1.2. The
property pairwiseDisjoint′ corresponds to property (ii) of Definition 1.1.2. We are adding
the prime to its name because we will later see a lemma called pairwiseDisjoint that we
prefer to use. fun a : α 7→ f a for f : α → β is a way to construct a map.

mapsto is the equivalent of property (iii) of the definition of a CW-complex. The Π defines
a dependent function type which we discussed in Section 2.1. Finset α � is the type of
all finite sets in a type α. It can be imagined as a set bundled with the information that
it is finite (but note that the actual definitions of Finset α and Set α are quite different).
MapsTo is defined in mathlib as �

def MapsTo (f : α → β) (s : Set α) (t : Set β) : Prop :=
∀ {|x|}, x ∈ s → f x ∈ t

and is relatively self-explanatory.
closed′ represents property (iv) of Definition 1.1.2 and union′ represents property (v).

We have chosen this to be a class so that we can make use of typeclass inference which
we explained in Section 2.2.

There are a few things to note about this formalisation of the definition. First of all
it does not require X to be a Hausdorff space. This is done so that when you define a
CW-complex, you can choose to first define the structure in this way and later show that
it is a Hausdorff space to apply lemmas about CW-complexes, of which most will require
that X is Hausdorff. Additionally we introduce a relative component: Instead of defining
what it means for a space to be a CW-complex, we define what it means for a subspace
C of X to be a CW-complex in X. This is useful, firstly, to be able to work with a nicer
topology: If you consider S1 as a CW-complex and a subspace of R you might find it easier
to work with the topology on R instead of the subspace topology. Secondly, constructions
such as attaching cells or taking disjoint unions of CW-complexes might be easier to work
with, if you are already working in the same overarching type. This approach is inspired
by [Gon+13], where the authors notice that it is helpful to consider subsets of an ambient
group to avoid having to work with different group operations and similar issues.

One question that naturally arises is whether these changes to the definition preserve
the notion of a CW-complex. Firstly note that if we choose X and C to be the same we
recover Definition 1.1.2 exactly. Now let us think about what happens if we choose X and
C to be different. Firstly this allows us to conclude that C is closed:

Lemma 3.1.1. Let X be a Hausdorff space and and C a CW-complex in X as in the
formalised definition. Then C is closed. �

Proof. Since C ⊆ C, it is enough to show that C ∩ en
i is closed for every n ∈ N and i ∈ In.

But by the property union′ we know that C ∩en
i = en

i which is closed by the same argument
as in the proof of Lemma 1.1.6.

32

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Logic/Equiv/Defs.lean#L60-L65
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Data/Finset/Basic.lean#L133-L139
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Data/Set/Operations.lean#L231-L232
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L234-L238

3.1. Definition and basic properties of a CW-complex

This indeed excludes some CW-complexes:

Example 3.1.2. Let I ⊆ R be an open interval. Then I is a CW-complex in the sense of
Definition 1.1.2.

Proof. Since I is homeomorphic to R, it is by Lemma 1.2.3 enough to show that R admits
the structure of a CW-complex. As 0-cells we choose every z ∈ Z ⊆ R. As 1-cells we choose
the intervals (z, z + 1) for every z ∈ Z ⊆ R. Properties (i), (ii), (iii), and (v) of Definition
1.1.2 are easy to verify. We will therefore focus on property (iv), i.e. the weak topology.
The forward implication follows in the same manner as in a lot of other proofs. Let us thus
move on to the backwards direction. Take A ⊆ R and assume that A∩ [z, z +1] is closed for
all z ∈ Z. We now need to show that A is closed. It is well-known that R is a metric space
� and by Lemma 1.2.40 it is in particular a sequential space. It is therefore enough to
show that for every convergent sequence (an)n∈N ⊆ A the limit point is also in A. Take an
arbitrary convergent (an)n∈N ⊆ A. We call the limit point a. Then there exists a z ∈ Z such
that a ∈ (z, z + 2). Thus there is a subsequence (a′

n)n∈N ⊆ A ∩ [z, z + 2], which obviously
also converges to a. But, by assumption, A∩ [z, z +2] = (A∩ [z, z +1]) = (A∩ [z +1, z +2])
is closed and therefore sequentially closed, which gives us that a ∈ A ∩ [z, z + 2] ⊆ A.

But remember that our definition in Lean still allows us to view an open interval as a
CW-complex in itself.

And every space that fulfils the formalised definition also fulfils Definition 1.1.2:

Lemma 3.1.3. Let C be a CW-complex in a Hausdorff space X as in the definition in the
formalisation. Then C is a CW-complex as in Definition 1.1.2.

Proof. Properties (i), (ii), (iii) and (v) of Definition 1.1.2 are immediate. Thus let us look
at property (iv). We assume that

A ⊆ C is closed in X ⇐⇒ en
i ∩ A is closed in X for all n ∈ N and i ∈ In

and need to show that

A ⊆ C is closed in C ⇐⇒ en
i ∩ A is closed in C for all n ∈ N and i ∈ In.

It is easy to see that the forward direction is true. For the backwards direction take A ⊆ C
such that A ∩ en

i is closed in C for all n ∈ N and i ∈ In. That means that for every n ∈ N
and i ∈ In there is a closed set Bn

i ⊆ X such that Bn
i ∩ C = A ∩ en

i . But since C is closed
by Lemma 3.1.1 that means that A ∩ en

i was already closed for every n ∈ N and i ∈ In.
Thus we are done by assumption.

With that we can move onto the last important difference that our new definition has.
While Fin n → R is a way to represent Rn in Lean it does not actually carry the euclidean
metric but the maximum metric. So instead of considering closed balls we are looking at
cubes which does not change our definition since the two are homeomorphic. We could
use the euclidean metric on Rn which would be written as EuclideanSpace R (Fin n) but
since we are mostly arguing abstractly about CW-complexes this is unnecessary and takes
up more space.

33

https://github.com/leanprover-community/mathlib4/blob/93828f4cd10fb8cab31700b110fd2751d36bf1b8/Mathlib/Topology/MetricSpace/Basic.lean#L117-L118

3.1. Definition and basic properties of a CW-complex

When proving that something is a CW-complex in Lean, it can often be surprising how
much longer and more technical the formalised proofs of closure finiteness, i.e. the property
mapsto, can be. One reason for this is that our proofs in the first chapter heavily rely on our
intuition about finiteness while Lean obligates us to show finiteness of the union explicitly
and in detail.

The code in the rest of the section will always have the following assumptions:
variable {X : Type∗} [t : TopologicalSpace X] [T2Space X] {C : Set X}

[CWComplex C]

where T2Space X � expresses that X is a Hausdorff space.
We also want to define some notation in Lean. Just as we defined en

i to represent Qn
i (Dn

i)
and similar notations in Definition 1.1.2 we can do the same in the formalisation: �

def openCell (n : N) (i : cell C n) : Set X := map n i ′′ ball 0 1

def closedCell (n : N) (i : cell C n) : Set X := map n i ′′ closedBall 0 1

def cellFrontier (n : N) (i : cell C n) : Set X := map n i ′′ sphere 0 1

We can now state some of the properties of our definition with this new notation. We
restate pairwiseDisjoint′ in two ways: �

lemma pairwiseDisjoint :
(univ : Set (Σ n, cell C n)).PairwiseDisjoint (fun ni 7→ openCell ni.1 ni.2)
:= · · ·

lemma disjoint_openCell_of_ne {n m : N} {i : cell C n} {j : cell C m}
(ne : (⟨n, i⟩ : Σ n, cell C n) ̸= ⟨m, j⟩) :
openCell n i ∩ openCell m j = ∅ := · · ·

The second one is especially convenient to use as the hypothesis ne can often be auto-
matically verified by a tactic called aesop. Information on aesop can be found in [LF23].

The properties closed′ and union′ can be rewritten with the new notation as follows: �

lemma closed (A : Set X) (asubc : A ⊆ C) :
IsClosed A ↔ ∀ n (j : cell C n), IsClosed (A ∩ closedCell n j) := · · ·

lemma union :
⋃

(n : N) (j : cell C n), closedCell n j = C := · · ·

As in Definition 1.1.2, we also want to define notation for the n-skeletons. In the first
chapter we often chose to start inductions at −1 to make the base case trivial. When
formalising we want to be able to use the already defined induction principles, that naturally
start at 0. For that purpose we use an auxiliary definition called levelaux that is shifted
by 1 in comparison to the usual notion of the n-skeleton, which we call level: �

def levelaux (C : Set X) [CWComplex C] (n : N∞) : Set X :=⋃
(m : N) (_ : m < n) (j : cell C m), closedCell m j

def level (C : Set X) [CWComplex C] (n : N∞) : Set X :=
levelaux C (n + 1)

Note that we are choosing n in N∞ � which is the type of natural numbers extended by
infinity which can be written as ⊤. Since level is defined in terms of levelaux it is often
trivial to derive a lemma about level from the corresponding lemma about levelaux.

34

https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Topology/Separation.lean#L1291-L1297
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L84-L94
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L96-L103
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L112-L116
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L137-L146
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Data/ENat/Basic.lean#L27-L35

3.2. Constructions

We can also define what it means for a CW-complex to be finite dimensional, of finite
type, or finite: �

class FiniteDimensional.{u} {X : Type u} [TopologicalSpace X] (C : Set X)
[CWComplex C] : Prop where

eventually_isEmpty_cell : ∀f n in Filter.atTop, IsEmpty (cell C n)

class FiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) [CWComplex C] :
Prop where

finite_cell (n : N) : Finite (cell C n)

class Finite.{u} {X : Type u} [TopologicalSpace X] (C : Set X) [CWComplex C] :
Prop where

eventually_isEmpty_cell : ∀f n in Filter.atTop, IsEmpty (cell C n)
finite_cell (n : N) : Finite (cell C n)

Property eventually_isEmpty_cell is stated in terms of a filter � which is a concept that
appears frequently in mathlib. They are often used to describe convergence in a topological
way. As they will not be important to this thesis, we will not go into detail but information
on filters can be found in [Bou66]. The property eventually_isEmpty_cell is equivalent to
∃ a, ∀ (b : N), a ≤ b → IsEmpty (cell C b).

Interestingly, our approach to the formalised definition provides us with a different way
to prove Lemma 1.1.14, i.e. the fact that the n-skeletons are closed: The n-skeletons are
CW-complexes by Lemma 1.2.1, which we will prove in Lean in the next section, and
therefore closed by Lemma 3.1.1.

To finish of this section here are the statements of some of the main results of Section
1.1. They correspond to the results 1.1.10 �, 1.1.15 �, 1.1.19 �, 1.1.20 � and 1.1.21 �.

lemma iUnion_openCell_eq_level (n : N∞) :⋃
(m : N) (_ : m < n + 1) (j : cell C m), openCell m j = level C n := · · ·

lemma cellFrontier_subset_finite_openCell (n : N) (i : cell C n) :
∃ I : Π m, Finset (cell C m), cellFrontier n i ⊆
(
⋃

(m < n) (j ∈ I m), openCell m j) := · · ·

lemma isDiscrete_level_zero {A : Set X} : IsClosed (A ∩ level C 0) := · · ·

lemma compact_inter_finite (A : Set X) (compact : IsCompact A) :
root.Finite
(Σ (m : N), {j : cell C m // ¬ Disjoint A (openCell m j)}) := · · ·

lemma compact_iff_finite : IsCompact C ↔ Finite C := · · ·

Where {a : α // P a} is the subtype � of α of all a : α such that P a for P : α →
Prop.

3.2 Constructions

We can now look at the formalisation of the constructions that we covered in Section 1.2.

35

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Finite.lean#L28-L43
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Order/Filter/Basic.lean#L85-L96
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L320-L322
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Definition.lean#L420-L452
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L108-L109
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L111-L214
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Lemmas.lean#L298-L299
https://github.com/leanprover/lean4/blob/0edf1bac392f7e2fe0266b28b51c498306363a84/src/Init/Prelude.lean#L575-L590

3.2. Constructions

3.2.1 Miscellaneous constructions
Formalising the CW-complex structure on the n-skeleton, the disjoint union and the image
of CW-complex under a homeomorphism is relatively straightforward. For the first two we
take advantage of the relative approach of looking at subspaces as CW-complexes, as this
helps us avoid having to deal with the subspace and disjoint topology.

The following code snippet includes the statements and assumptions:
def CWComplex_of_Homeomorph.{u} {X Y : Type u} [TopologicalSpace X]

[TopologicalSpace Y] (C : Set X) (D : Set Y) [CWComplex C]
(f : X ≃t Y) (imf : f ′′ C = D) : CWComplex D := · · ·

�

variable {X : Type∗} [t : TopologicalSpace X] [T2Space X] (C : Set X) [CWComplex
C]

instance CWComplex_level (n : N∞) : CWComplex (level C n) := · · ·

�

variable {D : Set X} [CWComplex D]

def CWComplex_disjointUnion (disjoint : Disjoint C D) :
CWComplex (C ∪ D) := · · ·

�
Where f : X ≃t Y is the statement that f is a homeomorphism �. Note that the first

and last constructions are not instances. This is because the typeclass inference has no
way to know that it should look for the hypotheses (f : X ≃t Y) (imf : f ′′ C = D) and
(disjoint : Disjoint C D), as this information is not contained in the statement. So
labeling these as instances would not be helpful. But in CWComplex_level all the necessary
information is contained in the statement CWComplex (level C n), which means that this
will work as an instance.

3.2.2 Subcomplexes
With the assumptions for the rest of the section
variable {X : Type∗} [t : TopologicalSpace X] [T2Space X] {C : Set X}

[CWComplex C]

this is our definition of a subcomplex: �

class Subcomplex (C : Set X) [CWComplex C] (E : Set X) where
I : Π n, Set (cell C n)
closed : IsClosed E
union :

⋃
(n : N) (j : I n), openCell (C := C) n j = E

The (C := C) is used to specify which CW-complex we are talking about. We need to
use this notation because we made C and implicit argument in the definition of openCell.

We chose this to be a class again so that when you want to talk about the CW-structure
of a subcomplex you don’t need to explicitly mention the subcomplex structure and that
every subcomplex is a CW-complex.

But we still have one issue: We would like to have the instance

36

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L140-L182
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L66-L67
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Constructions.lean#L71-L136
https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Topology/Homeomorph.lean#L37-L43
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L44-L52

3.2. Constructions

instance doesnotcompile (E : Set X) [subcomplex : Subcomplex C E] :
CWComplex E := · · ·

which unfortunately does not work, as Lean has no way to infer C from CWComplex E
and therefore does not know that it should be looking for the instance [subcomplex :
Subcomplex C E].

To remedy this we can define some notation that includes the variable C: �

def Sub (E : Set X) (C : Set X) [CWComplex C] [Subcomplex C E] : Set X := E

scoped infixr:35 " ⇂ " => Sub

The first line defines a synonym for E that in its context includes that E is a subcomplex
of the CW-complex C. The second line then defines the actual notation.

We can now use this to make the instance from above work: �

instance CWComplex_subcomplex (E : Set X) [subcomplex : Subcomplex C E] :
CWComplex (E ⇂ C) := · · ·

When formalising the two alternative definitions of a subcomplex that we talked about
in Section 1.2.4, we can relax the conditions of Lemma 1.2.8 because, by Lemma 3.1.1,
every CW-complex is closed. This is our version of Lemma 1.2.8 in the formalisation: �

def Subcomplex′′ (C : Set X) [CWComplex C] (E : Set X) (I : Π n, Set (cell C n))
(cw : CWComplex E)
(union :

⋃
(n : N) (j : I n), openCell (C := C) n j = E) : Subcomplex C E

where
I := I
closed := cw.isClosed
union := union

Note that this version does not require E to be a CW-complex with respect to cells
determined by C.

With that we can prove the lemmas from Section 1.2.4. Here are two examples. They
correspond to statements 1.2.13 � and 1.2.15 �.
lemma cell_mem_finite_subcomplex (n : N) (i : cell C n) :

∃ (E : Set X) (subE : Subcomplex C E), Finite (E ⇂ C) ∧ i ∈ subE.I n := · · ·

lemma compact_subset_finite_subcomplex {B : Set X} (compact : IsCompact B) :
∃ (E : Set X) (sub : Subcomplex C E), CWComplex.Finite (E ⇂ C) ∧ B ∩ C ⊆ E :=

· · ·

3.2.3 Product of CW-complexes
Let us lastly take a look at the product.

We define k-spaces as follows: �

class KSpace (X : Type∗) [TopologicalSpace X] where
isOpen_iff A : IsOpen A ↔
∀ (B : Set X), IsCompact B → ∃ (C : Set X), IsOpen C ∧ A ∩ B = C ∩ B

When defining the k-ification, we need to be a little careful. We want it to be an instance
derived from another instance defined on the same type. To tell the system what instance
we are referring to, we define a type synonym and then the k-ification: �

37

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L110-L115
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L117-L174
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L82-L89
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L336-L364
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/subcomplex.lean#L386-L397
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L33-L39
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L119-L146

3.2. Constructions

def kification (X : Type∗) := X

instance instkification {X : Type∗} [t : TopologicalSpace X] : TopologicalSpace
(kification X) := · · ·

Sometimes it is convenient to use maps that go to or from the k-ification, we define them
as bijections: �

def tokification (X : Type∗) : X ≃ kification X :=
⟨fun x 7→ x, fun x 7→ x, fun _ 7→ rfl, fun _ 7→ rfl⟩

def fromkification (X : Type∗) : kification X ≃ X :=
⟨fun x 7→ x, fun x 7→ x, fun _ 7→ rfl, fun _ 7→ rfl⟩

Here are the statements of some of the lemmas in Section 1.2.5. They correspond to the
statements 1.2.36 �, 1.2.39 �, 1.2.27 �, 1.2.28 � and 1.2.33 �.
instance kspace_of_WeaklyLocallyCompactSpace {X : Type∗}[TopologicalSpace X]

[WeaklyLocallyCompactSpace X] :
KSpace X := · · ·

instance kspace_of_SequentialSpace {X : Type∗} [TopologicalSpace X]
[SequentialSpace X]: KSpace X := · · ·

lemma isCompact_iff_isCompact_tokification_image {X : Type∗} [TopologicalSpace X]
(C : Set X) :

IsCompact C ↔ IsCompact (tokification X ′′ C) := · · ·

instance kspace_kification {X : Type∗} [TopologicalSpace X] :
KSpace (kification X) := · · ·

lemma continuous_kification_of_continuousOn_compact {X Y : Type∗}
[tX : TopologicalSpace X] [tY : TopologicalSpace Y] (f : X → Y)
(conton : ∀ (C : Set X), IsCompact C → ContinuousOn f C) :

Continuous (X := kification X) (Y := kification Y) f := · · ·

When proving statements about different topologies on the same space, formalising in
Lean can be very helpful to keep track of what topology needs to be considered when.

With that we can move on to the product. The assumptions for the rest of the section
are:
variable {X : Type∗} {Y : Type∗} [t1 : TopologicalSpace X]

[t2 : TopologicalSpace Y] [T2Space X] [T2Space Y] {C : Set X} {D : Set Y}
[CWComplex C] [CWComplex D]

Since the proof of Theorem 1.2.45 is both long and technical it is useful to separate out
some definitions and lemmas.

We first define the indexing sets in the product: �

def prodcell (C : Set X) (D : Set Y) [CWComplex C] [CWComplex D] (n : N) :=
(Σ′ (m : N) (l : N) (hml : m + l = n), cell C m × cell D l)

where the Σ′ is a sigma type that allows us to add properties, in this case hml.
When discussing the product in Section 1.2.5, we always identified Rm+n and Rm × Rn.

When formalising we need to make that identification explicit: �

38

https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L164-L170
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L69-L86
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L88-L114
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L196-L236
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L245-L258
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/KSpace.lean#L303-L316
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L29-L31
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L33-L36

3.2. Constructions

def prodisometryequiv {n m l : N} (hmln : m + l = n) (j : cell C m) (k : cell D
l) : (Fin n → R) ≃i (Fin m → R) × (Fin l → R) := · · ·

where ≃i is a symbol used to denote a bijective isometry �. Using this map, we can
define the characteristic maps of the product: �

def prodmap {n m l : N} (hmln : m + l = n) (j : cell C m) (k : cell D l) :
PartialEquiv (Fin n → R) (X × Y) := · · ·

After some lemmas about these maps such as for example �

lemma prodmap_image_sphere {n m l : N} {hmln : m + l = n} {j : cell C m} {k :
cell D l} :
prodmap hmln j k ′′ sphere 0 1 = (cellFrontier m j) ×s (closedCell l k) ∪
(closedCell m j) ×s (cellFrontier l k) := · · ·

we can move on to defining the product: �

instance CWComplex_product_kification : CWComplex (X := kification (X × Y))
(C ×s D) := · · ·

where ×s is the product of sets. Finally we define a version of this instance for when the
product is already a k-space as to not unnecessarily apply the k-ification: �

instance CWComplex_product [KSpace (X × Y)] : CWComplex (C ×s D) := · · ·

39

https://github.com/leanprover-community/mathlib4/blob/ed125a4216d18273cb1b96d4c846d32b85d74faf/Mathlib/Topology/MetricSpace/Isometry.lean#L242-L246
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L38-L41
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L65-L70
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L226-L377
https://github.com/scholzhannah/CWComplexes/blob/7be4872a05b534011cc969eb5b80a4b7f0bf57e2/CWcomplexes/Product.lean#L81-L224

Conclusion
The aim of this thesis was to formalise the basic properties and some constructions of
CW-complexes, a concept that is not yet in Lean’s the mathematical library mathlib.

We chose the historical definition to formalise the concept of CW-complexes in Lean:
class CWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X) where

cell (n : N) : Type u
map (n : N) (i : cell n) : PartialEquiv (Fin n → R) X
source_eq (n : N) (i : cell n) : (map n i).source = ball 0 1
cont (n : N) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
cont_symm (n : N) (i : cell n) : ContinuousOn (map n i).symm (map n i).target
pairwiseDisjoint′ :
(univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni 7→ map ni.1 ni.2 ′′ ball 0

1)
mapsto (n : N) (i : cell n) : ∃ I : Π m, Finset (cell m),

MapsTo (map n i) (sphere 0 1) (
⋃

(m < n) (j ∈ I m), map m j ′′ closedBall 0 1)
closed′ (A : Set X) (asubc : A ⊆ C) : IsClosed A ↔ ∀ n j, IsClosed (A ∩ map n

j ′′ closedBall 0 1)
union′ :

⋃
(n : N) (j : cell n), map n j ′′ closedBall 0 1 = C

One of the important properties that we were able to formalise is the relationship between
compact sets and finite CW-complexes:
lemma compact_iff_finite : IsCompact C ↔ Finite C := · · ·

lemma compact_subset_finite_subcomplex {B : Set X} (compact : IsCompact B) :
∃ (E : Set X) (sub : Subcomplex C E), CWComplex.Finite (E ⇂ C) ∧ B ∩ C ⊆ E :=

· · ·

Additionally we formalised the CW-complex structure on the k-ification of the product
of two CW-complexes of which the more readable mathematical statement is the following:

Theorem. Let X, Y be CW-complexes with families of characteristic maps (Qn
i : Dn

i →
X)n∈N,i∈In and (P m

j : Dm
j → Y)m∈N,j∈Jn. Let en

i be the cells of X and fm
j be the cells of Y .

Then there is a CW-structure on (X ×Y)c with characteristic maps (Qn
i ×P m

j : Dn
i ×Dm

j →
(X × Y)c)n,m∈N,i∈In,j∈Jm. The indexing sets (Kl)l∈N are given by Kl =

⋃
n+m=l In × Jm

for every l ∈ N and the cells are therefore of the form en
i × fm

j for n, m ∈ N, i ∈ In and
j ∈ Jm.

Ultimately the goal is to add this work into mathlib, so that others can build upon
it. I have already started to contribute some of the auxiliary lemmas unrelated to CW-
complexes that were needed along the way. There is still much that can be done: First of
all the definition could be generalized to relative CW-complexes and one could implement
the modern definition as well. There are still some constructions that could be useful such
as the quotient of a CW-complex by a subcomplex. More high-level goals could be the
Whitehead Theorem or cellular homology and cohomology.

41

German summary

Diese Arbeit befasst sich mit der Formalisierung von CW-Komplexen im Beweisassisten-
ten Lean. Beweisassistenten können dazu genutzt werden, formal die Richtigkeit von Be-
weisen in einem logischen digitalen System zu überprüfen. Lean ist unter anderem wegen
seiner umfangreichen mathematischen Bibliothek mathlib ein sehr beliebter Beweisassis-
tent. Ein Konzept, das in dieser Bibliothek jedoch noch fehlt, sind die CW-Komplexe. In
der Topologie sind sie häufig hilfreich, um Berechnungen, zum Beispiel von Homologie und
Kohomologie, zu vereinfachen.

Im ersten Kapitel beschäftigen wir uns mit der mathematischen Theorie hinter den CW-
Komplexen. Wir konzentrieren uns hierbei auf die historische und nicht die moderne Def-
inition, da uns diese die Formalisierung erleichtert. Wir beweisen einige grundlegende
Eigenschaften von CW-Komplexen und beschäftigen uns dann im Detail mit verschiedenen
Konstruktionen. Besonders dem Produkt zweier CW-Komplexes widmen wir sehr viel Zeit:
Wir zeigen an einem Gegenbeispiel, dass das Produkt nicht notwendigerweise wieder ein
CW-Komplex sein muss, führen dann k-Räume ein und beweisen, dass die k-ifizierung eines
Produktes von zwei CW-Komplexen immer ein CW-Komplex ist.

Im zweiten Kapitel behandeln wir kurz drei technische Details von Lean: Die Typenthe-
orie, d.h. die zugrundeliegende Logik, von Lean, implizite Argumente und Typklassenin-
ferenz. Diese Inhalte sind interessante Zusatzinformation, aber nicht unbedingt notwendig
für das Verständnis der Arbeit.

Im dritten Kapitel beschäftigen wir uns dann mit der Formalisierung von CW-Komplexen
in Lean. Wir besprechen, welche Designentscheidungen getroffen wurden und warum, und
machen auf Unterschiede in der Formalisierung aufmerksam. Dabei zeigen und erklären
wir Ausschnitte des Codes. Wir haben einen Großteil des Inhalts des ersten Kapitels in
Lean formalisiert, unter anderem den Zusammenhang zwischen endlichen Unterkomplexen
und kompakten Mengen und die CW-Komplex-Struktur auf der k-ifizierung des Produk-
tes von CW-Komplexen. Den kompletten Code findet man unter https://github.com/
scholzhannah/CWComplexes.

43

https://github.com/scholzhannah/CWComplexes
https://github.com/scholzhannah/CWComplexes

Symbol Index

Dn The closed unit disk in Rn, i.e. Dn := {x ∈ Rn | ∥x∥ ≤ 1}.

Sn The boundary of the unit disk in Rn, i.e. Sn := {x ∈ Rn | ∥x∥ = 1}.

∂en The frontier of an n-cell, i.e. ∂en := Qn(∂Dn). See Definition 1.1.2.

en A closed n-cell, i.e. en := Qn(Dn). See Definition 1.1.2.

en An (open) n-cell, i.e. en := Qn(int(Dn)). See Definition 1.1.2.

45

Bibliography

[Avi+24] Jeremy Avigad et al. Theorem Proving in Lean 4. Accessed: 23.07.2024. https:
//leanprover.github.io/theorem_proving_in_lean4/, 2024.

[Bec+24] Lars Becker et al. Carleson Operators on Doubling Metric Measure Spaces. 2024.
arXiv: 2405.06423 [math.CA]. url: https://arxiv.org/abs/2405.06423.

[Bou66] Nicolas Bourbaki. General topology 1. Paris: Hermann [u.a.], 1966.
[Buz24] Kevin Buzzard. The Fermat’s Last Theorem Project. Lean community blog.

Accessed: 12.08.2024. 2024. url: https://leanprover-community.github.
io/blog/posts/FLT-announcement/.

[Car19] Mario Carneiro. “The Type Theory of Lean”. MA thesis. Carnegie Mellon Uni-
versity, 2019.

[Com22] Johan Commelin. “Liquid Tensor Experiment”. ger. In: Mitteilungen der Deutschen
Mathematiker-Vereinigung 30.3 (2022), pp. 166–170. doi: doi:10.1515/dmvm-
2022-0058. url: https://doi.org/10.1515/dmvm-2022-0058.

[Coq86] Thierry Coquand. “An analysis of Girard’s paradox”. PhD thesis. INRIA, 1986.
[DMN23] Floris van Doorn, Patrick Massot, and Oliver Nash. “Formalising the h-Principle

and Sphere Eversion”. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs. CPP 2023. Boston, MA, USA:
Association for Computing Machinery, 2023, pp. 121–134. isbn: 9798400700262.
doi: 10.1145/3573105.3575688. url: https://doi.org/10.1145/3573105.
3575688.

[Dow52] C. H. Dowker. “Topology of Metric Complexes”. In: American journal of math-
ematics 74.3 (1952), pp. 555–577. issn: 0002-9327.

[FRO24] Lean FRO. Lean Focused Research Organization website. https://lean-fro.
org/. Accessed: 12.08.2024. 2024.

[Gon+13] Georges Gonthier et al. “A Machine-Checked Proof of the Odd Order The-
orem”. In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 163–179. isbn: 978-3-642-39634-2.

[Hat01] Allen Hatcher. Algebraic topology. 16. printing 2016. Cambridge: Cambridge
Univ. Press, 2001. isbn: 9780521795401.

[Jän01] Klaus Jänich. Topologie. ger. Siebente Auflage. Springer-Lehrbuch. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001. isbn: 9783540412847.

[KLN04] Fairouz Dib Kamareddine, Twan Laan, and Rob P. Nederpelt. A modern per-
spective on type theory from its origins until today. Applied logic series 29.
Dordrecht u.a: Kluwer Acad. Publ., 2004. isbn: 1402023340.

47

https://leanprover.github.io/theorem_proving_in_lean4/
https://leanprover.github.io/theorem_proving_in_lean4/
https://arxiv.org/abs/2405.06423
https://arxiv.org/abs/2405.06423
https://leanprover-community.github.io/blog/posts/FLT-announcement/
https://leanprover-community.github.io/blog/posts/FLT-announcement/
https://doi.org/doi:10.1515/dmvm-2022-0058
https://doi.org/doi:10.1515/dmvm-2022-0058
https://doi.org/10.1515/dmvm-2022-0058
https://doi.org/10.1145/3573105.3575688
https://doi.org/10.1145/3573105.3575688
https://doi.org/10.1145/3573105.3575688
https://lean-fro.org/
https://lean-fro.org/

Bibliography

[LF23] Jannis Limperg and Asta Halkjær From. “Aesop: White-Box Best-First Proof
Search for Lean”. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs. CPP 2023. Boston, MA, USA:
Association for Computing Machinery, 2023, pp. 253–266. isbn: 9798400700262.
doi: 10.1145/3573105.3575671. url: https://doi.org/10.1145/3573105.
3575671.

[Lüc05] Wolfgang Lück. Algebraische Topologie Homologie und Mannigfaltigkeiten. ger.
1. Aufl. Vieweg Studium : Aufbaukurs Mathematik. Wiesbaden: Vieweg, 2005.
isbn: 3528032189.

[LW69] Albert T. Lundell and Stephen Weingram. The topology of CW complexes.
«The» university series in higher mathematics. New York u.a: van Nostrand
Reinhold, 1969.

[MS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Vol. 9. Bib-
liopolis Naples, 1984.

[MU21] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and
Programming Language”. In: Automated Deduction – CADE 28. Ed. by André
Platzer and Geoff Sutcliffe. Cham: Springer International Publishing, 2021,
pp. 625–635. isbn: 978-3-030-79876-5.

[Mun14] James Raymond Munkres. Topology. 2. ed., Pearson new internat. ed. Harlow:
Pearson, 2014. isbn: 9781292023625.

[PiB24] The pi-Base Community. Search for ‘ Generated by compact subspaces‘. π-base.
Accessed: 25.07.2024. 2024. url: https://topology.pi-base.org/spaces?
q=%7EGenerated+by+compact+subspaces.

[Rus08] Bertrand Russell. “Mathematical Logic as Based on the Theory of Types”. In:
American journal of mathematics 30.3 (1908), pp. 222–262. issn: 0002-9327.

[Sco16] Brian M. Scott (https://math.stackexchange.com/users/12042/brian-m-scott).
A first countable Hausdorff space is compactly generated. Mathematics Stack
Exchange. Version: 24.11.2016. 2016. url: https://math.stackexchange.
com/q/2026250.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Institute for Advanced Study: https://homotopytyp
etheory.org/book, 2013.

[WB89] P. Wadler and S. Blott. “How to make ad-hoc polymorphism less ad hoc”. In:
Annual Symposium on Principles of Programming Languages: Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages; 11-13 Jan. 1989. New York, NY, USA: ACM, 1989, pp. 60–76. isbn:
0897912942.

[Whi18] J. H. C. Whitehead. “Combinatorial homotopy. I”. In: Bulletin (new series) of
the American Mathematical Society 55.3 (2018), pp. 213–245. issn: 0273-0979.

[Wik24] Wikipedia contributors. Compactly generated space. Wikipedia, The Free En-
cyclopedia. Accessed: 23.07.2024. 2024. url: https://en.wikipedia.org/w/
index.php?title=Compactly_generated_space&oldid=1233649259.

48

https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://topology.pi-base.org/spaces?q=%7EGenerated+by+compact+subspaces
https://topology.pi-base.org/spaces?q=%7EGenerated+by+compact+subspaces
https://math.stackexchange.com/q/2026250
https://math.stackexchange.com/q/2026250
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://en.wikipedia.org/w/index.php?title=Compactly_generated_space&oldid=1233649259
https://en.wikipedia.org/w/index.php?title=Compactly_generated_space&oldid=1233649259

	Introduction
	The mathematics of CW-complexes
	Definition and basic properties of a CW-complex
	Constructions
	Skeletons as CW-complexes
	Disjoint union of CW-complexes
	Image of a homeomorphism
	Subcomplexes
	Product of CW-complexes

	Lean and mathlib
	The type theory of Lean
	Implicit arguments and typeclass inference

	Lean formalisation of CW-complexes
	Definition and basic properties of a CW-complex
	Constructions
	Miscellaneous constructions
	Subcomplexes
	Product of CW-complexes

	Conclusion
	German summary
	Symbol Index
	Bibliography

