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Overview

Subtitle: In search of Fubini’s theorem for finitary products.

Overview:

Some measure theory preliminaries

Products of measures

The Gagliardo-Nirenberg-Sobolev inequality

The marginal construction
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Background: Measure Theory

Definition

A σ-algebra Σ on X is a collection of subsets of X that contains the
empty set and is closed under complements and countable unions.
In Lean, writing [MeasurableSpace X] equips X with a σ-algebra of
measurable sets.

Definition

If Σ is a σ-algebra on X, then a measure on Σ is a function µ ∶ Σ→ [0,∞]
such that µ(∅) = 0 and µ is countably additive: For pairwise disjoint sets
{Ai}i we have

µ (⋃i∈NAi) = ∑i∈N µ(Ai).
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Lebesque integral

Definition (Lebesque integral)

If g ∶X → [0,∞] is a simple function (a function with finite range whose
level sets are measurable), we can define

∫ g dµ = ∫ g(x)µ(dx) = ∑
y∈g(X)

µ(g−1{y}) ⋅ y ∈ [0,∞].

If f ∶X → [0,∞] is any function, we can define the (lower) Lebesgue
integral of f as the supremum of ∫ g µ(dx) for all simple g ≤ f (pointwise).
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Bochner Integral

Definition (Integrable)

If E is a Banach space then we call a function f ∶X → E µ-integrable if f
is the pointwise limit of simple functions and ∫ ∥f∥dµ < ∞.

Definition (Bochner integral)

For integrable functions we can define the Bochner integral ∫ f dµ ∈ E in
a similar way to the Lebesgue integral.
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Product measures

If µ is a measure on X and ν a measure on Y then we can define the
product measure µ × ν on X × Y . It can be defined as

(µ × ν)(C) = ∫
X
ν{y ∣ (x, y) ∈ C}µ(dx).

For general measures there are multiple product measures, but if µ and ν
are σ-finite, then there is a unique product measure satisfying

(µ × ν)(A ×B) = µ(A)ν(B).
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Tonelli’s theorem

Theorem (Tonelli’s theorem)

Let f ∶X × Y → [0,∞] be a measurable function.
Then

∫
X×Y

f d(µ×ν) = ∫
X
∫
Y
f(x, y)ν(dy)µ(dx) = ∫

Y
∫
X
f(x, y)µ(dx)ν(dy),

and all the functions in the integrals above are measurable.
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Fubini’s theorem

Theorem (Fubini’s theorem)

Let E be a Banach space and f ∶X × Y → E be an integrable function.
Then

∫
X×Y

f d(µ×ν) = ∫
X
∫
Y
f(x, y)ν(dy)µ(dx) = ∫

Y
∫
X
f(x, y)µ(dx)ν(dy),

Moreover, all the functions in the integrals above are measurable.

Remark. f ∶X ×Y → E is integrable iff the following two conditions hold:

for almost all x ∈X the function y ↦ f(x, y) is integrable;
The function x↦ ∫Y ∥f(x, y)∥ν(dy) is integrable.
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Iterated products

Suppose we have finitely many measure spaces (Xi, µi)i∈I and we want to
define a measure on ∏iXi. We could choose an ordering I = {i1, . . . , in}
and define the measure as (roughly) µi1 ×⋯×µin , but that means we have
a non-canonical choice in the definition.

We take the maximal measure µ such that for all Ai ⊆Xi we have

µ(ΠiAi) ≤∏
i

µi(Ai).

We then show that equality holds by using the above non-canonical
measure.
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Iterated products

How would we state Tonelli’s and Fubini’s theorem for iterated products?
We want something like

∫
Rn+m

f(z)dz = ∫
Rn
∫
Rm

f(x, y)dydx.

This is not the same as the statement we had for products.

The canonical equivalence e ∶ Rn+m ≃ Rn ×Rm preserves the Lebesgue
measure, so

∫
Rn+m

f(z)dz = ∫
Rn×Rm

f(e−1(z))dz

= ∫
Rn
∫
Rm

f(x, y)dydx.
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Iterated products

However, we want something more general:

We should be able to pull out any k of the components and integrate
over those variables, and then integrate over everything else. Even
stating that precisely is not easy!

We also want to generalize to finite products of Banach spaces, not
just Rn

It was unclear how to formulate this, so we didn’t have any version of
Fubini’s theorem for iterated products.
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Gagliardo-Nirenberg-Sobolev inequality

The Lp-norm of a function f is

∥f∥Lp ∶= (∫ ∥f∥p)
1
p

∈ [0,∞]

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension n ≥ 2. Let 1 ≤ p < n be a
real number and p∗ = np

n−p its Sobolev conjugate. Then there exists a

nonnegative real number C such that for all compactly supported C1

functions u ∶ E → R, we have

∥u∥Lp∗ ≤ C∥Du∥Lp
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Application: Sobolev spaces

Let u ∶ Ω→ R for some nice open Ω ⊆ Rn.
If u is differentiable with derivative v =Du ∶ Ω→ Rn, then for all
compactly supported smooth functions φ ∶ Ω→ R

∫
Ω
vφ = −∫

Ω
uDφ.

This equation also makes sense if u is not differentiable, and v is a weak
derivative of u if it holds for all such φ. v is also denoted Du.

The Sobolev space H1
0(Ω,R) consists of all functions that have an L2

weak derivative and are a L2 limit of smooth functions with compact
support.
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Application: Sobolev spaces

The Sobolev inequality implies that for u ∈H1
0(Ω)

∥u∥L2 ≤ ∥u∥
L

2n
n−2
≤ C∥Du∥L2 .

The Sobolev space is a Hilbert space with

∥u∥H1
0
∶=
√
∥u∥2

L2 + ∥Du∥2
L2 ≤ C ′∥Du∥L2 .

This means that (u, v) ↦ ⟨Du,Dv⟩L2 forms an inner product on H1
0 that

gives the same topology.

For f ∈ L2(Ω) we have that the operator v ↦ ⟨f, v⟩L2 ∶H1
0(Ω) → R is a

bounded linear functional on H1
0(Ω). By the Riesz representation theorem

there is a unique element u ∈H1
0(Ω) such that for all v ∈H1

0(Ω) we have

⟨Du,Dv⟩L2 = ⟨f, v⟩L2 .
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Partial Differential Equations

A fundamental elliptic PDE is the Poisson equation:

−∆u = f

where f ∶ Ω→ R and ∆u = ∑i
∂2u
∂x2

i
.

If u is a solution, let φ ∶ Ω→ R be a compactly supported smooth
function. Then

∫
Ω
⟨Du,Dφ⟩ =

∫
Ω
(−∆u)φ = ∫

Ω
fφ.

We say that u ∈H1
0(Ω) is a weak solution to the PDE if for all such

v ∈H1
0(Ω)

∫
Ω
⟨Du,Dv⟩ = ∫

Ω
fv.
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Proof of the inequality

We prove the Gagliardo-Nirenberg-Sobolev inequality first for p = 1 and
then use that in the general case.

For p = 1 one estimates

∣u(x)∣ = ∣∫
xi

−∞

∂u

∂xi
(x)dxi∣ ≤ ∫

R
∣Du(x)∣dxi.

Then one inductively integrates over the variables x1, x2, x3, . . . and
applies Hölder’s inequality multiple times.

The induction hypothesis involves expressions like

∫
R
⋯∫

R
∣Du(x)∣dx1dx2⋯dxkdxi

(This was not stated in either of the two sources I found for this proof.)

If f ∶ Rn → R we want to integrate it over some subset of the variables of
{x1, . . . , xn}.
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Marginal construction: Definition

Let I be a indexing set, A ⊆ I a finite subset and E be a Banach space.
For i ∈ I suppose we are given a measure space (Xi, µi). If x ∈ ∏i∈I Xi

and y ∈ ∏i∈AXi we write x[y/A] for the vector

x[y/A]i ∶=
⎧⎪⎪⎨⎪⎪⎩

yi if i ∈ A
xi otherwise.

Let f ∶ (∏i∈I Xi) → [0,∞] be a function. Then the marginal of f w.r.t. A

∫ ⋯∫
i∈A

f dµi

is by definition another function (∏i∈I Xi) → [0,∞] that is defined as

x↦ ∫
∏i∈A Xi

f(x[y/A])dΠi∈Aµi(y).
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Marginal construction: Remarks

We call this the marginal construction in reference to probability
theory. If all the µi are probability measures and f is a random
variable, then ∫⋯∫i∈A f dµi is the marginal variable on ∏i∈I∖AXi.

Note that

∫ ⋯∫
i∈A

f dµi ∶ (∏
i∈I

Xi) → [0,∞],

but it only depends on the arguments in Xi for i ∉ A.

The definition is ugly.

It has very nice properties.
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Marginal construction: Properties

Proposition

Let f ∶ (∏i∈I Xi) → [0,∞].
1 If x,x′ ∈ ∏i∈I Xi and xi = x′i for all i ∈ I ∖A then ∫⋯∫i∈A f dµi will

have the same value on x and x′.

2 ∫⋯∫i∈∅ f dµi = f
3 If I is finite then ∫⋯∫i∈I f dµi is constant with value ∫ f dΠiµi.

4 If i0 ∈ I then

∫ ⋯∫
i∈{i0}

f dµi = ∫
Xi0

f(x[y/i0])dµi0(y)

5 If f is measurable and A and B are disjoint finite subsets of I, then

∫ ⋯∫
i∈A∪B

f dµi = ∫ ⋯∫
i∈A∫ ⋯∫j∈B f dµj dµi
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Marginal Construction: applications

The Gagliardo-Nirenberg-Sobolev inequality

Compute the volume of the unit ball in Rn (this was also done
independently by Xavier Roblot).

We can shorten the proof of a lemma in the proof of the change of
variables theorem that used Fubini manually in Rn.

We found a lemma tagged “Fubini’s theorem” in HOL Light. It states
that to compute a µ(s) for s ⊆ Rn+1 we can take the measure of the
set for a fixed i-th coordinate x and then integrate over x. In Lean:

theorem lintegral_measure_insertNth
{s ∶ Set (∀ i ∶ Fin (n+1), α i)}
(hs ∶ MeasurableSet s) (i ∶ Fin (n+1)) ∶
∫ − x, Measure.pi (µ ○′ i.succAbove)
(insertNth i x −1′ s) ∂µ i = Measure.pi µ s

(35 lines in Lean, 300-600 in HOL Light, the HOL Light version
assumes that s is bounded).
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Sample proof
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Side conditions
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Final thoughts

The marginal construction is a very convenient tool to deal with
iterated integrals.

It allows one to conveniently apply Fubini’s theorem

We want to properly formalize Sobolev spaces and their applications
to PDEs.
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Thank You
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