Integrals Within Integrals: A Formalization of the Gagliardo-Nirenberg-Sobolev Inequality

Floris van Doorn¹, Heather Macbeth²

¹University of Bonn, ²Fordham University

12 September 2024

Question: How to generalize Tonelli's/Fubini's theorem to finitely many variables?

$$
\int_{X\times Y} f(z) dz = \int_X \int_Y f(x, y) dy dx
$$

Question: How to generalize Tonelli's/Fubini's theorem to finitely many variables?

$$
\int_{X\times Y} f(z) dz = \int_X \int_Y f(x, y) dy dx
$$

Overview:

- **•** Products of measures
- The marginal construction
- The Gagliardo-Nirenberg-Sobolev (GNS) inequality

Background: Measure Theory

Definition

A σ -algebra Σ on X is a collection of subsets of X that contains the empty set and is closed under complements and countable unions.

Definition

If Σ is a σ-algebra on X, then a measure on Σ is a function $\mu : \Sigma \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and μ is countably additive: For pairwise disjoint sets ${A_i}_i$ we have

$$
\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).
$$

Given a measure on X we can define the (lower) Lebesgue integral

$$
\int f d\mu = \int f(x) \mu(dx)
$$

for functions $f: X \to [0, \infty]$.

If μ is a measure on X and ν a measure on Y then we can define the product measure $\mu \times \nu$ on $X \times Y$. It can be defined as

$$
(\mu \times \nu)(C) = \int_X \nu\{y \mid (x, y) \in C\} \mu(dx).
$$

For general measures there are multiple product measures, but if μ and ν are σ-finite, then there is a unique product measure satisfying

$$
(\mu \times \nu)(A \times B) = \mu(A)\nu(B).
$$

Theorem (Tonelli's theorem)

Let $f: X \times Y \to [0, \infty]$ be a measurable function. Then

$$
\int_{X\times Y} f\,d(\mu\times\nu)=\int_X\int_Y f(x,y)\,\nu(dy)\mu(dx)=\int_Y\int_X f(x,y)\,\mu(dx)\nu(dy),
$$

and all the functions in the integrals above are measurable.

Suppose we have finitely many measure spaces $(X_i,\mu_i)_{i\in I}$ and we want to define a measure on $\prod_i X_i.$ We could choose an ordering I = $\{i_1,\ldots,i_n\}$ and define the measure as (roughly) $\mu_{i_1}\!\times\!\cdots\!\times\!\mu_{i_n}$, but that means we have a non-canonical choice in the definition.

Suppose we have finitely many measure spaces $(X_i,\mu_i)_{i\in I}$ and we want to define a measure on $\prod_i X_i.$ We could choose an ordering I = $\{i_1,\ldots,i_n\}$ and define the measure as (roughly) $\mu_{i_1}\!\times\!\cdots\!\times\!\mu_{i_n}$, but that means we have a non-canonical choice in the definition.

We take the maximal measure μ such that for all $A_i \subseteq X_i$ we have

$$
\mu(\Pi_i A_i) \leq \prod_i \mu_i(A_i).
$$

We then show that equality holds by using the above non-canonical measure.

$$
\int_{\mathbb{R}^{n+m}}f(z)\,dz=\int_{\mathbb{R}^n}\int_{\mathbb{R}^m}f(x,y)\,dydx.
$$

$$
\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.
$$

This is not the same as the statement we had for products.

$$
\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.
$$

This is not the same as the statement we had for products.

The equivalence $e: \mathbb{R}^{n+m} \simeq \mathbb{R}^n \times \mathbb{R}^m$ preserves the Lebesgue measure, so

$$
\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n \times \mathbb{R}^m} f(e^{-1}(z)) dz
$$

$$
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.
$$

$$
\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.
$$

This is not the same as the statement we had for products.

The equivalence $e: \mathbb{R}^{n+m} \simeq \mathbb{R}^n \times \mathbb{R}^m$ preserves the Lebesgue measure, so

$$
\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n \times \mathbb{R}^m} f(e^{-1}(z)) dz
$$

$$
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.
$$

Note that there are many equivalences e , which pull out different variables.

We should be able to pull out any k of the components and integrate only over those variables.

We should be able to pull out any k of the components and integrate only over those variables.

So if $f:\mathbb{R}^n\to[0,\infty]$ we want to be able to write an integral like

$$
\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(\mathbf{x}) dx_{a_1} dx_{a_2} \cdots dx_{a_k}
$$

where $\mathbf{x} = (x_1, \ldots, x_n)$ and $A = \{a_1, \ldots, a_k\}$ is a subset of the variables.

We should be able to pull out any k of the components and integrate only over those variables.

So if $f:\mathbb{R}^n\to[0,\infty]$ we want to be able to write an integral like

$$
\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(\mathbf{x}) dx_{a_1} dx_{a_2} \cdots dx_{a_k}
$$

where $\mathbf{x} = (x_1, \ldots, x_n)$ and $A = \{a_1, \ldots, a_k\}$ is a subset of the variables.

Note that the integral does not depend on the ordering of the $a_i.$ This is a function in the remaining variables.

Marginal construction: Definition

We denote by

$$
\int\!\cdots\!\int_A f
$$

the function $\mathbb{R}^n \to [0, \infty]$

$$
x \mapsto \int_{\mathbb{R}^k} f(\mathbf{x}[y/A]) \, dy.
$$

where the vector $\mathbf{x}[\mathbf{y}/A]$ is defined as

$$
\mathbf{x}[\mathbf{y}/A]_i \coloneqq \begin{cases} y_i & \text{if } i \in A \\ x_i & \text{otherwise.} \end{cases}
$$

• Note that

$$
\int\!\cdots\!\int_A f:\mathbb{R}^k\to\bigl[0,\infty\bigr],
$$

but it only depends on the variables x_i for $i \notin A$.

• Note that

$$
\int\!\cdots\!\int_A f:\mathbb{R}^k\to\bigl[0,\infty\bigr],
$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i\in I}X_i$ and \mathbb{R}^k by $\prod_{i\in A}X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$
\int \cdots \int_{i \in A} f d\mu_i : \left(\prod_{i \in I} X_i \right) \to [0, \infty]
$$

• Note that

$$
\int\!\cdots\!\int_A f:\mathbb{R}^k\to\bigl[0,\infty\bigr],
$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i\in I}X_i$ and \mathbb{R}^k by $\prod_{i\in A}X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$
\int \cdots \int_{i \in A} f d\mu_i : \left(\prod_{i \in I} X_i \right) \to [0, \infty]
$$

We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int\!\!\cdots\!\!\int_{i\in A}f\,d\mu_i$ is the marginal variable on $\prod_{i\in I\smallsetminus A}X_i$.

• Note that

$$
\int\!\cdots\!\int_A f:\mathbb{R}^k\to\bigl[0,\infty\bigr],
$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i\in I}X_i$ and \mathbb{R}^k by $\prod_{i\in A}X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$
\int \cdots \int_{i \in A} f d\mu_i : \left(\prod_{i \in I} X_i \right) \to [0, \infty]
$$

- We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int\!\!\cdots\!\!\int_{i\in A}f\,d\mu_i$ is the marginal variable on $\prod_{i\in I\smallsetminus A}X_i$.
- The definition is ugly.

• Note that

$$
\int\!\cdots\!\int_A f:\mathbb{R}^k\to\bigl[0,\infty\bigr],
$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i\in I}X_i$ and \mathbb{R}^k by $\prod_{i\in A}X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$
\int \cdots \int_{i \in A} f d\mu_i : \left(\prod_{i \in I} X_i \right) \to [0, \infty]
$$

- We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int\!\!\cdots\!\!\int_{i\in A}f\,d\mu_i$ is the marginal variable on $\prod_{i\in I\smallsetminus A}X_i$.
- The definition is ugly.
- It has very nice properties.

- Let $f : \mathbb{R}^n \to [0, \infty]$.
	- \textbf{D} If $\textbf{x},\textbf{y}\in\mathbb{R}^n$ and x_i = y_i for all $i\notin A$ then $\int\!\!\cdots\!\!\int_Af$ will have the same value on x and y.

- Let $f : \mathbb{R}^n \to [0, \infty]$.
	- \textbf{D} If $\textbf{x},\textbf{y}\in\mathbb{R}^n$ and x_i = y_i for all $i\notin A$ then $\int\!\!\cdots\!\!\int_Af$ will have the same value on x and y.

$$
\bullet \, f \cdots f_{\varnothing} \, f = f
$$

- Let $f : \mathbb{R}^n \to [0, \infty]$.
	- \textbf{D} If $\textbf{x},\textbf{y}\in\mathbb{R}^n$ and x_i = y_i for all $i\notin A$ then $\int\!\!\cdots\!\!\int_Af$ will have the same value on x and y.
	- $\int \cdots \int_{\varnothing} f = f$
	- \bullet If A contains all variables, then $\int\!\!\cdots\!\!/_A\,f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.

- Let $f : \mathbb{R}^n \to [0, \infty]$.
	- \textbf{D} If $\textbf{x},\textbf{y}\in\mathbb{R}^n$ and x_i = y_i for all $i\notin A$ then $\int\!\!\cdots\!\!\int_Af$ will have the same value on x and y.
	- $\int \cdots \int_{\varnothing} f = f$
	- \bullet If A contains all variables, then $\int\!\!\cdots\!\!/_A\,f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.
	- \bigcirc If $i_0 \in I$ then

$$
\int \cdots \int_{\{i_0\}} f = \int_{\mathbb{R}} f(\mathbf{x}[y/\{i_0\}]) dy
$$

Proposition

- Let $f : \mathbb{R}^n \to [0, \infty]$.
	- \textbf{D} If $\textbf{x},\textbf{y}\in\mathbb{R}^n$ and x_i = y_i for all $i\notin A$ then $\int\!\!\cdots\!\!\int_Af$ will have the same value on x and y.
	- $\int \cdots \int_{\varnothing} f = f$
	- \bullet If A contains all variables, then $\int\!\!\cdots\!\!/_A\,f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.
	- \bigcirc If $i_0 \in I$ then

$$
\int \cdots \int_{\{i_0\}} f = \int_{\mathbb{R}} f(\mathbf{x}[y/\{i_0\}]) dy
$$

 \bullet If f is measurable and A and B are disjoint subsets of variables, then

$$
\int \cdots \int_{A\cup B} f = \int \cdots \int_A \int \cdots \int_B f
$$

• The GNS-inequality

• The GNS-inequality

Compute the volume of the unit ball in \mathbb{R}^n (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.

• The GNS-inequality

- Compute the volume of the unit ball in \mathbb{R}^n (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.
- We can shorten the proof of a lemma in Mathlib that proves that transvections preserve the Lebesgue measure.

• The GNS-inequality

- Compute the volume of the unit ball in \mathbb{R}^n (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.
- We can shorten the proof of a lemma in Mathlib that proves that transvections preserve the Lebesgue measure.
- We translated the lemma from HOL Light to Lean. It states that to compute a $\mu(s)$ for a measurable $s \in \mathbb{R}^{n+1}$ we can take the measure of the set for a fixed *i*-th coordinate x and then integrate over x. This was 35 lines in Lean, 300-600 in HOL Light (the HOL Light version assumes that s is bounded).

The L^p -norm of a function f is

$$
||f||_{L^p} := \left(\int ||f||^p\right)^{\frac{1}{p}} \in [0, \infty].
$$

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $\|f\|_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $\|f\|_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension $n \geq 2$. Let $1 \leq p \leq n$ be a real number and $p^* = \frac{np}{n-p}$ $\frac{np}{n-p}$ its Sobolev conjugate. Then there exists a nonnegative real number C such that for all compactly supported C^1 functions $u: E \to \mathbb{R}$, we have

$$
\|u\|_{L^{p^*}}\leq C\|Du\|_{L^p}
$$

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $\|f\|_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension $n \geq 2$. Let $1 \leq p \leq n$ be a real number and $p^* = \frac{np}{n-p}$ $\frac{np}{n-p}$ its Sobolev conjugate. Then there exists a nonnegative real number C such that for all compactly supported C^1 functions $u: E \to \mathbb{R}$, we have

$$
\|u\|_{L^{p^*}}\leq C\|Du\|_{L^p}
$$

The GNS-inequality has many applications, e.g.

- o define Sobolev spaces
- **•** find (weak) solutions to elliptic second-order linear partial differential equations
	- \cdot e.g. the Poisson equation $\Delta u = f$.

We prove the GNS-inequality first for $p = 1$ and then use that in the general case.

For $p = 1$ one estimates

$$
|u(x)| = \left| \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x) dx_i \right| \leq \int_{\mathbb{R}} |Du(x)| dx_i.
$$

Then one inductively integrates over the variables x_1, x_2, x_3, \ldots and applies Hölder's inequality multiple times.

We prove the GNS-inequality first for $p = 1$ and then use that in the general case.

For $p = 1$ one estimates

$$
|u(x)|^{\frac{n}{n-1}}=\bigg|\int_{-\infty}^{x_i}\frac{\partial u}{\partial x_i}(x)dx_i\bigg|^{\frac{n}{n-1}}\leq \bigg(\int_{\mathbb{R}}|Du(x)|dx_i\bigg)^{\frac{n}{n-1}}.
$$

Then one inductively integrates over the variables x_1, x_2, x_3, \ldots and applies Hölder's inequality multiple times.

We prove the GNS-inequality first for $p = 1$ and then use that in the general case.

For $p = 1$ one estimates

$$
|u(x)|^{\frac{n}{n-1}}=\bigg|\int_{-\infty}^{x_i}\frac{\partial u}{\partial x_i}(x)dx_i\bigg|^{\frac{n}{n-1}}\leq \bigg(\int_{\mathbb{R}}|Du(x)|dx_i\bigg)^{\frac{n}{n-1}}.
$$

Then one inductively integrates over the variables x_1, x_2, x_3, \ldots and applies Hölder's inequality multiple times.

The induction hypothesis involves expressions like

$$
\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} |Du(x)| dx_1 dx_1 dx_2 \cdots dx_k
$$

- Nirenberg, 1959: "We shall prove (2.4) " here for $n = 3 \ldots$. For general n the inequality is proved in the same way."
- Gilbarg-Trudinger, 1977: "The inequality (7.27) is now integrated successively over each variable $x_i, \, i$ = $1, \ldots, n,$ the generalized Hölder inequality (7.11) for $m = p_1 = \cdots = p_m = n - 1$ then being applied after each integration. Accordingly we obtain . . . "
- Evans, 1998: "We continue by integrating with respect to $x_3, \ldots x_n$, eventually to find . . . "
- **Tsui, 2008**: "To illustrate the main ideas, we discuss the case when $n = 3 \ldots$. For the general case, we start with \ldots . Repeating this process, we get . . . "
- Liu, 2023: "[T]he inequality (1) for $p = 1$ is proved by integrating ... with respect to x_1 and applying the extended Hölder inequality, then repeating this procedure with respect to $x_2, x_3, \ldots x_n$ successively This tedious procedure is not very transparent, and is not easy to follow."

Calculational proofs are nice

calc $\int -x : \alpha i$, Measure.pi ($\mu \circ'$ succAbove i) (insertNth i x - $=$ $\lceil x : \alpha i, (\lceil \cdots \lceil \cdot \text{.univ}, \text{indicator (insertNth i x^{-1} s)} \rceil$ simp rw $\left[\leftarrow$ lintegral indicator one (measurable insertNth lintegral eq lmarginal univ y $(z \circ i.succAbove)$ du i := by \vert rw \vert + insertNth dcomp succAbove i x y] $= \int -x : \alpha i$, $(\int \cdots \int -\{i\}^c)$ indicator (insertNth i x $^{-1}$ ' s) 1 \circ (\cdot \circ ' succAbove i) simp rw $\lceil \leftarrow \lambda \times \mapsto$ lmarginal image succAbove right injecti (f := indicator (insertNth i x $^{-1}$ ' s) (1 : ((j : Fin n) (measurable one.indicator (measurable insertNth hs)) = $[-x : \alpha i, ([-1 - \{i\}^c,$ indicator (insertNth i x \circ (\cdot \circ ' succAbove i) $^{-1}$ ' s) 1 $rf1$ $=$ $\lceil x : \alpha i, (\lceil \cdots \lceil - \{i\}^c,$ indicator ((Function.update \cdot i x) $^{-1}$ s) 1 $\partial \mu$) z $\partial \mu$ i van Doorn, Macbeth [The GNS-inequality](#page-0-0) 12 September 2024 17/19

Side conditions are painful

 $let n' := NNReal.configxponent n$ have h0n : $2 \le n$:= Nat.succ_le_of_lt < Nat.one_lt_cast.mp < have hn : NNReal.IsConjExponent n n' := .conjExponent (by norm have h1n : $1 \leq (n : \mathbb{R} \ge 0)$:= hn.one le have h2n : $(0 : \mathbb{R})$ < n - 1 := by simp_rw [sub_pos]; exact hn.d have hnp : $(0 : \mathbb{R})$ < n - p := by simp rw [sub pos]; exact h2p rcases hp.eq_or_lt with rfl|hp $let q := Real.config$ have $hq : Real.IsConjExponent p q := .conjExponent hp$ have h0p : $p \neq 0$:= zero lt one.trans hp |>.ne' have h1p : $(p : \mathbb{R}) \neq 1$:= hq.one lt.ne' have h3p : $(p : \mathbb{R}) - 1 \neq \emptyset$:= sub ne zero of ne h1p have h $\theta p'$: $p' \neq \theta$:= by suffices $0 \leftarrow (p' : \mathbb{R})$ from (show $0 \leftarrow p'$ from this) $| \cdot \cdot \cdot |$.ne' rw $\left[\leftarrow \text{inv} \text{pos}, \text{hp}', \text{sub} \text{pos}\right]$ exact inv lt inv of lt hq.pos h2p have h2q : $1 / n' - 1 / q = 1 / p' := by$ van Doorn, Macbeth [The GNS-inequality](#page-0-0) 12 September 2024 18/19

Final thoughts

- The marginal construction is a very convenient tool to deal with iterated integrals.
- It allows one to conveniently apply Tonelli's theorem
- We have formalized this in Lean, and this work is now part of Mathlib
- As future work, we want to properly formalize Sobolev spaces and their applications to PDEs.

Final thoughts

- The marginal construction is a very convenient tool to deal with iterated integrals.
- It allows one to conveniently apply Tonelli's theorem
- We have formalized this in Lean, and this work is now part of Mathlib
- As future work, we want to properly formalize Sobolev spaces and their applications to PDEs.

Thank You

Let $u : \Omega \to \mathbb{R}$ for some nice open $\Omega \subseteq \mathbb{R}^n$. If u is differentiable with derivative $v = Du : \Omega \to \mathbb{R}^n$, then for all compactly supported smooth functions $\varphi : \Omega \to \mathbb{R}$

$$
\int_{\Omega}v\varphi=-\int_{\Omega}uD\varphi.
$$

This equation also makes sense if u is not differentiable, and v is a weak derivative of u if it holds for all such φ . v is also denoted Du .

The Sobolev space $H_0^1(\Omega,\mathbb{R})$ consists of all functions that have an L^2 weak derivative and are a L^2 limit of smooth functions with compact support.

Application: Sobolev spaces

The Sobolev inequality implies that for $u\in H^1_0(\Omega)$

$$
\|u\|_{L^2}\leq \|u\|_{L^{\frac{2n}{n-2}}}\leq C\|Du\|_{L^2}.
$$

The Sobolev space is a Hilbert space with

$$
||u||_{H_0^1} \coloneqq \sqrt{||u||_{L^2}^2 + ||Du||_{L^2}^2} \leq C'||Du||_{L^2}.
$$

This means that $(u,v) \mapsto \langle Du, Dv \rangle_{L^2}$ forms an inner product on H^1_0 that gives the same topology.

For $f \in L^2(\Omega)$ we have that the operator $v \mapsto \langle f, v \rangle_{L^2} : H^1_0(\Omega) \to \mathbb{R}$ is a bounded linear functional on $H^1_0(\Omega).$ By the Riesz representation theorem there is a unique element $u\in H^1_0(\Omega)$ such that for all $v\in H^1_0(\Omega)$ we have

$$
\langle Du, Dv \rangle_{L^2} = \langle f, v \rangle_{L^2}.
$$