Integrals Within Integrals: A Formalization of the Gagliardo-Nirenberg-Sobolev Inequality

Floris van Doorn¹, Heather Macbeth²

¹University of Bonn, ²Fordham University

12 September 2024

Question: How to generalize Tonelli's/Fubini's theorem to finitely many variables?

$$\int_{X \times Y} f(z) \, dz = \int_X \int_Y f(x, y) \, dy \, dx$$

Question: How to generalize Tonelli's/Fubini's theorem to finitely many variables?

$$\int_{X \times Y} f(z) \, dz = \int_X \int_Y f(x, y) \, dy \, dx$$

Overview:

- Products of measures
- The marginal construction
- The Gagliardo-Nirenberg-Sobolev (GNS) inequality

Background: Measure Theory

Definition

A σ -algebra Σ on X is a collection of subsets of X that contains the empty set and is closed under complements and countable unions.

Definition

If Σ is a σ -algebra on X, then a measure on Σ is a function $\mu : \Sigma \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and μ is *countably additive*: For pairwise disjoint sets $\{A_i\}_i$ we have

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Given a measure on X we can define the (lower) Lebesgue integral

$$\int f\,d\mu = \int f(x)\,\mu(dx)$$

for functions $f: X \to [0, \infty]$.

If μ is a measure on X and ν a measure on Y then we can define the product measure $\mu \times \nu$ on $X \times Y$. It can be defined as

$$(\mu \times \nu)(C) = \int_X \nu\{y \mid (x,y) \in C\} \, \mu(dx).$$

For general measures there are multiple product measures, but if μ and ν are $\sigma\text{-finite},$ then there is a unique product measure satisfying

$$(\mu \times \nu)(A \times B) = \mu(A)\nu(B).$$

Theorem (Tonelli's theorem)

Let $f:X\times Y\to [0,\infty]$ be a measurable function. Then

$$\int_{X \times Y} f d(\mu \times \nu) = \int_X \int_Y f(x, y) \nu(dy) \mu(dx) = \int_Y \int_X f(x, y) \mu(dx) \nu(dy),$$

and all the functions in the integrals above are measurable.

Suppose we have finitely many measure spaces $(X_i, \mu_i)_{i \in I}$ and we want to define a measure on $\prod_i X_i$. We could choose an ordering $I = \{i_1, \ldots, i_n\}$ and define the measure as (roughly) $\mu_{i_1} \times \cdots \times \mu_{i_n}$, but that means we have a non-canonical choice in the definition.

Suppose we have finitely many measure spaces $(X_i, \mu_i)_{i \in I}$ and we want to define a measure on $\prod_i X_i$. We could choose an ordering $I = \{i_1, \ldots, i_n\}$ and define the measure as (roughly) $\mu_{i_1} \times \cdots \times \mu_{i_n}$, but that means we have a non-canonical choice in the definition.

We take the maximal measure μ such that for all $A_i \subseteq X_i$ we have

$$\mu(\Pi_i A_i) \le \prod_i \mu_i(A_i).$$

We then show that equality holds by using the above non-canonical measure.

Iterated products

How would we state Tonelli's theorem for iterated products? We want something like

$$\int_{\mathbb{R}^{n+m}} f(z) \, dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) \, dy \, dx.$$

How would we state Tonelli's theorem for iterated products? We want something like

$$\int_{\mathbb{R}^{n+m}} f(z) \, dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) \, dy dx.$$

This is not the same as the statement we had for products.

How would we state Tonelli's theorem for iterated products? We want something like

$$\int_{\mathbb{R}^{n+m}} f(z) \, dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) \, dy dx.$$

This is not the same as the statement we had for products.

The equivalence $e: \mathbb{R}^{n+m} \simeq \mathbb{R}^n \times \mathbb{R}^m$ preserves the Lebesgue measure, so

$$\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n \times \mathbb{R}^m} f(e^{-1}(z)) dz$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.$$

How would we state Tonelli's theorem for iterated products? We want something like

$$\int_{\mathbb{R}^{n+m}} f(z) \, dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) \, dy dx.$$

This is not the same as the statement we had for products.

The equivalence $e: \mathbb{R}^{n+m} \simeq \mathbb{R}^n \times \mathbb{R}^m$ preserves the Lebesgue measure, so

$$\int_{\mathbb{R}^{n+m}} f(z) dz = \int_{\mathbb{R}^n \times \mathbb{R}^m} f(e^{-1}(z)) dz$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x, y) dy dx.$$

Note that there are many equivalences e, which pull out different variables.

We should be able to pull out any \boldsymbol{k} of the components and integrate only over those variables.

We should be able to pull out any k of the components and integrate only over those variables.

So if $f:\mathbb{R}^n \to [0,\infty]$ we want to be able to write an integral like

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(\mathbf{x}) \, dx_{a_1} dx_{a_2} \cdots dx_{a_k}$$

where $\mathbf{x} = (x_1, \dots, x_n)$ and $A = \{a_1, \dots, a_k\}$ is a subset of the variables.

We should be able to pull out any k of the components and integrate only over those variables.

So if $f:\mathbb{R}^n \to [0,\infty]$ we want to be able to write an integral like

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(\mathbf{x}) \, dx_{a_1} dx_{a_2} \cdots dx_{a_k}$$

where $\mathbf{x} = (x_1, \dots, x_n)$ and $A = \{a_1, \dots, a_k\}$ is a subset of the variables.

Note that the integral does not depend on the ordering of the a_i . This is a function in the remaining variables.

Marginal construction: Definition

We denote by

$$\int \cdots \int_A f$$

the function $\mathbb{R}^n \to [0,\infty]$

$$x \mapsto \int_{\mathbb{R}^k} f(\mathbf{x}[\mathbf{y}/A]) \, d\mathbf{y}.$$

where the vector $\mathbf{x}[\mathbf{y}/A]$ is defined as

$$\mathbf{x}[\mathbf{y}/A]_i \coloneqq \begin{cases} y_i & \text{if } i \in A \\ x_i & \text{otherwise.} \end{cases}$$

Note that

$$\int \cdots \int_A f : \mathbb{R}^k \to [0, \infty],$$

but it only depends on the variables x_i for $i \notin A$.

Note that

$$\int \cdots \int_{A} f : \mathbb{R}^{k} \to [0, \infty],$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i \in I} X_i$ and \mathbb{R}^k by $\prod_{i \in A} X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$\int \cdots \int_{i \in A} f \, d\mu_i : \left(\prod_{i \in I} X_i\right) \to [0, \infty]$$

Note that

$$\int \cdots \int_{A} f : \mathbb{R}^{k} \to [0, \infty],$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i \in I} X_i$ and \mathbb{R}^k by $\prod_{i \in A} X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$\int \cdots \int_{i \in A} f \, d\mu_i : \left(\prod_{i \in I} X_i\right) \to [0, \infty]$$

• We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int \cdots \int_{i \in A} f \, d\mu_i$ is the marginal variable on $\prod_{i \in I \smallsetminus A} X_i$.

Note that

$$\int \cdots \int_{A} f : \mathbb{R}^{k} \to [0, \infty],$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i \in I} X_i$ and \mathbb{R}^k by $\prod_{i \in A} X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$\int \cdots \int_{i \in A} f \, d\mu_i : \left(\prod_{i \in I} X_i\right) \to [0, \infty]$$

- We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int \cdots \int_{i \in A} f \, d\mu_i$ is the marginal variable on $\prod_{i \in I \smallsetminus A} X_i$.
- The definition is ugly.

Note that

$$\int \cdots \int_{A} f : \mathbb{R}^{k} \to [0, \infty],$$

but it only depends on the variables x_i for $i \notin A$.

• This generalizes nicely to any product of measure spaces, by replacing \mathbb{R}^n by $\prod_{i \in I} X_i$ and \mathbb{R}^k by $\prod_{i \in A} X_i$ and taking the integral w.r.t. a (finite) product measure (of σ -finite measures).

$$\int \cdots \int_{i \in A} f \, d\mu_i : \left(\prod_{i \in I} X_i\right) \to [0, \infty]$$

- We call this the marginal construction in reference to probability theory. If all the measures are probability measures and f is a random variable, then $\int \cdots \int_{i \in A} f \, d\mu_i$ is the marginal variable on $\prod_{i \in I \smallsetminus A} X_i$.
- The definition is ugly.
- It has very nice properties.

Proposition

- Let $f : \mathbb{R}^n \to [0, \infty]$.
 - If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $x_i = y_i$ for all $i \notin A$ then $\int \cdots \int_A f$ will have the same value on \mathbf{x} and \mathbf{y} .

Proposition

Let $f : \mathbb{R}^n \to [0, \infty]$.

• If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $x_i = y_i$ for all $i \notin A$ then $\int \cdots \int_A f$ will have the same value on \mathbf{x} and \mathbf{y} .

11/19

Proposition

Let $f : \mathbb{R}^n \to [0, \infty]$.

- If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $x_i = y_i$ for all $i \notin A$ then $\int \cdots \int_A f$ will have the same value on \mathbf{x} and \mathbf{y} .
- If A contains all variables, then $\int \cdots \int_A f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.

11/19

Proposition

- Let $f : \mathbb{R}^n \to [0, \infty]$.
 - If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $x_i = y_i$ for all $i \notin A$ then $\int \cdots \int_A f$ will have the same value on \mathbf{x} and \mathbf{y} .
 - $\ \, \textcircled{\ } \int \cdots \int_{\varnothing} f = f$
 - If A contains all variables, then $\int \cdots \int_A f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.
 - If $i_0 \in I$ then

$$\int \cdots \int_{\{i_0\}} f = \int_{\mathbb{R}} f(\mathbf{x}[y/\{i_0\}]) dy$$

Proposition

- Let $f : \mathbb{R}^n \to [0, \infty]$.
 - If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $x_i = y_i$ for all $i \notin A$ then $\int \cdots \int_A f$ will have the same value on \mathbf{x} and \mathbf{y} .
 - $\ \, \textcircled{\ } \int \cdots \int_{\varnothing} f = f$
 - If A contains all variables, then $\int \cdots \int_A f$ is a constant functions with value $\int f(\mathbf{x}) d\mathbf{x}$.
 - If $i_0 \in I$ then

$$\int \cdots \int_{\{i_0\}} f = \int_{\mathbb{R}} f(\mathbf{x}[y/\{i_0\}]) dy$$

 \bullet If f is measurable and A and B are disjoint subsets of variables, then

$$\int \cdots \int_{A \cup B} f = \int \cdots \int_{A} \int \cdots \int_{B} f$$

• The GNS-inequality

• The GNS-inequality

 Compute the volume of the unit ball in ℝⁿ (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.

• The GNS-inequality

- Compute the volume of the unit ball in ℝⁿ (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.
- We can shorten the proof of a lemma in Mathlib that proves that transvections preserve the Lebesgue measure.

• The GNS-inequality

- Compute the volume of the unit ball in ℝⁿ (this was also done independently in Lean by Xavier Roblot), and is also proven in HOL Light and Isabelle/HOL.
- We can shorten the proof of a lemma in Mathlib that proves that transvections preserve the Lebesgue measure.
- We translated the lemma from HOL Light to Lean. It states that to compute a μ(s) for a measurable s ⊆ ℝⁿ⁺¹ we can take the measure of the set for a fixed *i*-th coordinate x and then integrate over x. This was 35 lines in Lean, 300-600 in HOL Light (the HOL Light version assumes that s is bounded).

The L^p -norm of a function f is

$$||f||_{L^p} \coloneqq \left(\int ||f||^p\right)^{\frac{1}{p}} \in [0,\infty].$$

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $||f||_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $||f||_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension $n \ge 2$. Let $1 \le p < n$ be a real number and $p^* = \frac{np}{n-p}$ its Sobolev conjugate. Then there exists a nonnegative real number C such that for all compactly supported C^1 functions $u: E \to \mathbb{R}$, we have

 $\|u\|_{L^{p^*}} \le C \|Du\|_{L^p}$

Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice functions f the norm $||f||_{L^p}$ is bounded by the L^q -norm of the derivative $||Du||_{L^q}$.

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension $n \ge 2$. Let $1 \le p < n$ be a real number and $p^* = \frac{np}{n-p}$ its Sobolev conjugate. Then there exists a nonnegative real number C such that for all compactly supported C^1 functions $u: E \to \mathbb{R}$, we have

$$\|u\|_{L^{p^*}} \le C \|Du\|_{L^p}$$

The GNS-inequality has many applications, e.g.

- define Sobolev spaces
- find (weak) solutions to elliptic second-order linear partial differential equations
 - e.g. the Poisson equation $\Delta u = f$.

We prove the GNS-inequality first for p = 1 and then use that in the general case.

For p = 1 one estimates

$$|u(x)| = \left| \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x) dx_i \right| \le \int_{\mathbb{R}} |Du(x)| dx_i.$$

Then one inductively integrates over the variables x_1 , x_2 , x_3 , ... and applies Hölder's inequality multiple times.

We prove the GNS-inequality first for p = 1 and then use that in the general case.

For p = 1 one estimates

$$|u(x)|^{\frac{n}{n-1}} = \left| \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x) dx_i \right|^{\frac{n}{n-1}} \le \left(\int_{\mathbb{R}} |Du(x)| dx_i \right)^{\frac{n}{n-1}}$$

Then one inductively integrates over the variables x_1 , x_2 , x_3 , ... and applies Hölder's inequality multiple times.

We prove the GNS-inequality first for p = 1 and then use that in the general case.

For p = 1 one estimates

$$|u(x)|^{\frac{n}{n-1}} = \left| \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x) dx_i \right|^{\frac{n}{n-1}} \le \left(\int_{\mathbb{R}} |Du(x)| dx_i \right)^{\frac{n}{n-1}}$$

Then one inductively integrates over the variables x_1 , x_2 , x_3 , ... and applies Hölder's inequality multiple times.

The induction hypothesis involves expressions like

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} |Du(x)| dx_i dx_1 dx_2 \cdots dx_k$$

- Nirenberg, 1959: "We shall prove (2.4)' here for $n = 3 \dots$ For general n the inequality is proved in the same way."
- Gilbarg-Trudinger, 1977: "The inequality (7.27) is now integrated successively over each variable x_i, i = 1,..., n, the generalized Hölder inequality (7.11) for m = p₁ = ... = p_m = n 1 then being applied after each integration. Accordingly we obtain ..."
- Evans, 1998: "We continue by integrating with respect to $x_3, \ldots x_n$, eventually to find \ldots "
- **Tsui, 2008**: "To illustrate the main ideas, we discuss the case when $n = 3 \dots$ For the general case, we start with \dots Repeating this process, we get \dots "
- Liu, 2023: "[T]he inequality (1) for p = 1 is proved by integrating ... with respect to x_1 and applying the extended Hölder inequality, then repeating this procedure with respect to $x_2, x_3, \ldots x_n$ successively This tedious procedure is not very transparent, and is not easy to follow."

van Doorn, Macbeth

Calculational proofs are nice

calc
$$\int x : \alpha$$
 i, Measure.pi ($\mu \circ'$ succAbove i) (insertNth i x $^{-1'}$ s)
= $\int x : \alpha$ i, ($\int \cdots \int x - univ$, indicator (insertNth i x $^{-1'}$ s)
simp_rw [\leftarrow lintegral_indicator_one (measurable_insertNth
lintegral_eq_lmarginal_univ y]
= $\int x : \alpha$ i, ($\int \cdots \int x - univ$, indicator (insertNth i x $^{-1'}$ s)
(z \circ' i.succAbove) $\partial \mu$ i := by
rw [\leftarrow insertNth_dcomp_succAbove i x y]
= $\int x : \alpha$ i, ($\int \cdots \int x - (i)^{c}$,
indicator (insertNth i x $^{-1'}$ s) 1 \circ ($\cdot \circ'$ succAbove i) α
simp_rw [$\leftarrow \lambda x \mapsto$ lmarginal_image succAbove_right_injective
(f := indicator (insertNth i x $^{-1'}$ s) (1 : ((j : Fin n))
(measurable_one.indicator (measurable_insertNth _ hs))
= $\int x : \alpha$ i, ($\int \cdots \int x - (i)^{c}$,
indicator (insertNth i x $\circ (\cdot \circ'$ succAbove i) $^{-1'}$ s) 1 $\partial \mu$) z $\partial \mu$ i
rfl
= $\int x : \alpha$ i, ($\int \cdots \int x - (i)^{c}$,
indicator ((Function.update \cdot i x) $^{-1'}$ s) 1 $\partial \mu$) z $\partial \mu$ i
van Doorn, Macheth The GNS-inequality 12 September 2024 17/19

Side conditions are painful

let n' := NNReal.conjExponent n have h0n : 2 ≤ n := Nat.succ le of lt <| Nat.one lt cast.mp <| have hn : NNReal.IsConjExponent n n' := .conjExponent (by norm have h1n : $1 \leq (n : \mathbb{R} \geq 0)$:= hn.one le have h2n : $(0 : \mathbb{R}) < n - 1 := by simp_rw [sub_pos]; exact hn.c$ have hnp : $(0 : \mathbb{R}) < n - p := by simp_rw [sub_pos]; exact h2p$ rcases hp.eq_or_lt with rfl|hp let q := Real.conjExponent p have hq : Real.IsConjExponent p q := .conjExponent hp have h0p : $p \neq 0$:= zero lt one.trans hp |>.ne' have h1p : (p : \mathbb{R}) \neq 1 := hq.one lt.ne' have h3p : $(p : \mathbb{R}) - 1 \neq 0$:= sub_ne_zero_of_ne_h1p have $h0p' : p' \neq 0 := by$ suffices $0 < (p' : \mathbb{R})$ from (show 0 < p' from this) |>.ne' rw [← inv_pos, hp', sub_pos] exact inv lt inv of lt hq.pos h2p have h2q : 1 / n' - 1 / q = 1 / p' := by

Final thoughts

- The marginal construction is a very convenient tool to deal with iterated integrals.
- It allows one to conveniently apply Tonelli's theorem
- We have formalized this in Lean, and this work is now part of Mathlib
- As future work, we want to properly formalize Sobolev spaces and their applications to PDEs.

Final thoughts

- The marginal construction is a very convenient tool to deal with iterated integrals.
- It allows one to conveniently apply Tonelli's theorem
- We have formalized this in Lean, and this work is now part of Mathlib
- As future work, we want to properly formalize Sobolev spaces and their applications to PDEs.

Thank You

Let $u: \Omega \to \mathbb{R}$ for some nice open $\Omega \subseteq \mathbb{R}^n$. If u is differentiable with derivative $v = Du: \Omega \to \mathbb{R}^n$, then for all compactly supported smooth functions $\varphi: \Omega \to \mathbb{R}$

$$\int_{\Omega} v\varphi = -\int_{\Omega} uD\varphi.$$

This equation also makes sense if u is not differentiable, and v is a weak derivative of u if it holds for all such φ . v is also denoted Du.

The Sobolev space $H_0^1(\Omega, \mathbb{R})$ consists of all functions that have an L^2 weak derivative and are a L^2 limit of smooth functions with compact support.

Application: Sobolev spaces

The Sobolev inequality implies that for $u \in H_0^1(\Omega)$

$$\|u\|_{L^2} \le \|u\|_{L^{\frac{2n}{n-2}}} \le C \|Du\|_{L^2}.$$

The Sobolev space is a Hilbert space with

$$\|u\|_{H^1_0} \coloneqq \sqrt{\|u\|_{L^2}^2 + \|Du\|_{L^2}^2} \le C' \|Du\|_{L^2}.$$

This means that $(u, v) \mapsto \langle Du, Dv \rangle_{L^2}$ forms an inner product on H_0^1 that gives the same topology.

For $f \in L^2(\Omega)$ we have that the operator $v \mapsto \langle f, v \rangle_{L^2} : H_0^1(\Omega) \to \mathbb{R}$ is a bounded linear functional on $H_0^1(\Omega)$. By the Riesz representation theorem there is a unique element $u \in H_0^1(\Omega)$ such that for all $v \in H_0^1(\Omega)$ we have

$$\langle Du, Dv \rangle_{L^2} = \langle f, v \rangle_{L^2}.$$