
Integrals Within Integrals: A Formalization of the
Gagliardo-Nirenberg-Sobolev Inequality

Floris van Doorn1, Heather Macbeth2

1University of Bonn, 2Fordham University

12 September 2024

van Doorn, Macbeth The GNS-inequality 12 September 2024 1 / 19



Overview

Question: How to generalize Tonelli’s/Fubini’s theorem to finitely many
variables?

∫
X×Y

f(z)dz = ∫
X
∫
Y
f(x, y)dy dx

Overview:

Products of measures

The marginal construction

The Gagliardo-Nirenberg-Sobolev (GNS) inequality
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Background: Measure Theory

Definition

A σ-algebra Σ on X is a collection of subsets of X that contains the
empty set and is closed under complements and countable unions.

Definition

If Σ is a σ-algebra on X, then a measure on Σ is a function µ ∶ Σ→ [0,∞]
such that µ(∅) = 0 and µ is countably additive: For pairwise disjoint sets
{Ai}i we have

µ (⋃i∈NAi) = ∑i∈N µ(Ai).

Given a measure on X we can define the (lower) Lebesgue integral

∫ f dµ = ∫ f(x)µ(dx)

for functions f ∶X → [0,∞].
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Product measures

If µ is a measure on X and ν a measure on Y then we can define the
product measure µ × ν on X × Y . It can be defined as

(µ × ν)(C) = ∫
X
ν{y ∣ (x, y) ∈ C}µ(dx).

For general measures there are multiple product measures, but if µ and ν
are σ-finite, then there is a unique product measure satisfying

(µ × ν)(A ×B) = µ(A)ν(B).
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Tonelli’s theorem

Theorem (Tonelli’s theorem)

Let f ∶X × Y → [0,∞] be a measurable function.
Then

∫
X×Y

f d(µ×ν) = ∫
X
∫
Y
f(x, y)ν(dy)µ(dx) = ∫

Y
∫
X
f(x, y)µ(dx)ν(dy),

and all the functions in the integrals above are measurable.
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Iterated products

Suppose we have finitely many measure spaces (Xi, µi)i∈I and we want to
define a measure on ∏iXi. We could choose an ordering I = {i1, . . . , in}
and define the measure as (roughly) µi1 ×⋯×µin , but that means we have
a non-canonical choice in the definition.

We take the maximal measure µ such that for all Ai ⊆Xi we have

µ(ΠiAi) ≤∏
i

µi(Ai).

We then show that equality holds by using the above non-canonical
measure.
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Iterated products

How would we state Tonelli’s theorem for iterated products? We want
something like

∫
Rn+m

f(z)dz = ∫
Rn
∫
Rm

f(x, y)dydx.

This is not the same as the statement we had for products.

The equivalence e ∶ Rn+m ≃ Rn ×Rm preserves the Lebesgue measure, so

∫
Rn+m

f(z)dz = ∫
Rn×Rm

f(e−1(z))dz

= ∫
Rn
∫
Rm

f(x, y)dydx.

Note that there are many equivalences e, which pull out different variables.
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Iterated products

We should be able to pull out any k of the components and integrate only
over those variables.

So if f ∶ Rn → [0,∞] we want to be able to write an integral like

∫
R
⋯∫

R
f(x)dxa1dxa2⋯dxak

where x = (x1, . . . , xn) and A = {a1, . . . , ak} is a subset of the variables.

Note that the integral does not depend on the ordering of the ai.
This is a function in the remaining variables.
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Marginal construction: Definition

We denote by

∫ ⋯∫
A
f

the function Rn → [0,∞]

x↦ ∫
Rk

f(x[y/A])dy.

where the vector x[y/A] is defined as

x[y/A]i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

yi if i ∈ A

xi otherwise.
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Marginal construction: Remarks

Note that

∫ ⋯∫
A
f ∶ Rk

→ [0,∞],

but it only depends on the variables xi for i ∉ A.

This generalizes nicely to any product of measure spaces, by replacing
Rn by ∏i∈I Xi and Rk by ∏i∈AXi and taking the integral w.r.t. a
(finite) product measure (of σ-finite measures).

∫ ⋯∫
i∈A

f dµi ∶ (∏
i∈I

Xi) → [0,∞]

We call this the marginal construction in reference to probability
theory. If all the measures are probability measures and f is a random
variable, then ∫⋯∫i∈A f dµi is the marginal variable on ∏i∈I∖AXi.

The definition is ugly.

It has very nice properties.
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Marginal construction: Properties

Proposition

Let f ∶ Rn → [0,∞].

1 If x,y ∈ Rn and xi = yi for all i ∉ A then ∫⋯∫A f will have the same
value on x and y.

2 ∫⋯∫∅ f = f
3 If A contains all variables, then ∫⋯∫A f is a constant functions with

value ∫ f(x)dx.

4 If i0 ∈ I then

∫ ⋯∫{i0}
f = ∫

R
f(x[y/{i0}])dy

5 If f is measurable and A and B are disjoint subsets of variables, then

∫ ⋯∫
A∪B

f = ∫ ⋯∫
A
∫ ⋯∫

B
f
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Marginal Construction: applications

The GNS-inequality

Compute the volume of the unit ball in Rn (this was also done
independently in Lean by Xavier Roblot), and is also proven in HOL
Light and Isabelle/HOL.

We can shorten the proof of a lemma in Mathlib that proves that
transvections preserve the Lebesgue measure.

We translated the lemma from HOL Light to Lean. It states that to
compute a µ(s) for a measurable s ⊆ Rn+1 we can take the measure
of the set for a fixed i-th coordinate x and then integrate over x.
This was 35 lines in Lean, 300-600 in HOL Light (the HOL Light
version assumes that s is bounded).
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Lp-norm

The Lp-norm of a function f is

∥f∥Lp ∶= (∫ ∥f∥
p
)

1
p

∈ [0,∞].
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Gagliardo-Nirenberg-Sobolev inequality

The Gagliardo-Nirenberg-Sobolev inequality shows that for sufficiently nice
functions f the norm ∥f∥Lp is bounded by the Lq-norm of the derivative
∥Du∥Lq .

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let E be a real normed space of finite dimension n ≥ 2. Let 1 ≤ p < n be a
real number and p∗ = np

n−p its Sobolev conjugate. Then there exists a

nonnegative real number C such that for all compactly supported C1

functions u ∶ E → R, we have

∥u∥Lp∗ ≤ C∥Du∥Lp

The GNS-inequality has many applications, e.g.

define Sobolev spaces
find (weak) solutions to elliptic second-order linear partial differential
equations

▸ e.g. the Poisson equation ∆u = f.
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Proof of the GNS-inequality

We prove the GNS-inequality first for p = 1 and then use that in the
general case.

For p = 1 one estimates

∣u(x)∣ = ∣∫
xi

−∞
∂u

∂xi
(x)dxi∣ ≤ ∫

R
∣Du(x)∣dxi.

Then one inductively integrates over the variables x1, x2, x3, . . . and
applies Hölder’s inequality multiple times.

The induction hypothesis involves expressions like

∫
R
⋯∫

R
∣Du(x)∣dxidx1dx2⋯dxk
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Proof of the GNS-inequality

Nirenberg, 1959: “We shall prove (2.4)’ here for n = 3 . . . . For
general n the inequality is proved in the same way.”

Gilbarg-Trudinger, 1977: “The inequality (7.27) is now integrated
successively over each variable xi, i = 1, . . . , n, the generalized Hölder
inequality (7.11) for m = p1 = ⋯ = pm = n − 1 then being applied after
each integration. Accordingly we obtain . . . ”

Evans, 1998: “We continue by integrating with respect to x3, . . . xn,
eventually to find . . . ”

Tsui, 2008: “To illustrate the main ideas, we discuss the case when
n = 3 . . . . For the general case, we start with . . . . Repeating this
process, we get . . .”

Liu, 2023: “[T]he inequality (1) for p = 1 is proved by integrating
. . . with respect to x1 and applying the extended Hölder inequality,
then repeating this procedure with respect to x2, x3, . . . xn
successively . . . . This tedious procedure is not very transparent, and
is not easy to follow.”
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Calculational proofs are nice
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Side conditions are painful
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Final thoughts

The marginal construction is a very convenient tool to deal with
iterated integrals.

It allows one to conveniently apply Tonelli’s theorem

We have formalized this in Lean, and this work is now part of
Mathlib

As future work, we want to properly formalize Sobolev spaces and
their applications to PDEs.

Thank You
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Application: Sobolev spaces

Let u ∶ Ω→ R for some nice open Ω ⊆ Rn.
If u is differentiable with derivative v =Du ∶ Ω→ Rn, then for all
compactly supported smooth functions φ ∶ Ω→ R

∫
Ω
vφ = −∫

Ω
uDφ.

This equation also makes sense if u is not differentiable, and v is a weak
derivative of u if it holds for all such φ. v is also denoted Du.

The Sobolev space H1
0(Ω,R) consists of all functions that have an L2

weak derivative and are a L2 limit of smooth functions with compact
support.
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Application: Sobolev spaces

The Sobolev inequality implies that for u ∈H1
0(Ω)

∥u∥L2 ≤ ∥u∥
L

2n
n−2
≤ C∥Du∥L2 .

The Sobolev space is a Hilbert space with

∥u∥H1
0
∶=

√

∥u∥2
L2 + ∥Du∥2

L2 ≤ C
′
∥Du∥L2 .

This means that (u, v) ↦ ⟨Du,Dv⟩L2 forms an inner product on H1
0 that

gives the same topology.

For f ∈ L2(Ω) we have that the operator v ↦ ⟨f, v⟩L2 ∶H1
0(Ω) → R is a

bounded linear functional on H1
0(Ω). By the Riesz representation theorem

there is a unique element u ∈H1
0(Ω) such that for all v ∈H1

0(Ω) we have

⟨Du,Dv⟩L2 = ⟨f, v⟩L2 .

van Doorn, Macbeth The GNS-inequality 12 September 2024 19 / 19


