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Overview

Overview:

Some highlights about Lean;

Carleson’s theorem;

Discussion of the formalization.
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History of Lean 4

2018 Lean 4 development started while
the community was writing
Mathlib in Lean 3.

2021 the first official release of Lean 4.

2022-2023 Porting Mathlib from Lean 3 to Lean 4 (∼8 months, >1
million lines of code).

now New Lean release every month (currently version is Lean
4.12).
Lean 3 is fully deprecated and unused.
There is a lot of activity and Mathlib continues to grow.
(>1.5 million lines of code, ∼20 commits/day)
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Features of Lean 4

Lean 4 is a fully-fledged programming language.

Elaboration, printing and tactics are all implemented in Lean itself.

Mathlib uses a lot of custom tactics, notation, pretty printers and
linters.

Lean 4 is very fast

Features: hygienic macro expansion, high-performance, flexible
language server protocol, widgets, code actions, indexing using
discrimination trees, incremental compilation, efficient code
generator, . . .
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Exciting projects in Lean

∞-Cosmos project (∞-category theory) (led by Emily Riehl)

Groupoid model of HoTT (Hazratpour, Awodey, and others)

Formalization of the polynomial Freiman–Rusza conjecture (led by
Terrence Tao)

Prime Number Theorem+ project (led by Kontorovich and Tao)

Google Deepmind used Lean to perform well at the international
mathematics olympiad.

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)
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Background: Fourier series

Carleson’s theorem is an important theorem in Fourier analysis with a
notoriously difficult proof.

It is a theorem about the Fourier transform or Fourier series.

Definition

Let f ∶ [0,2π]→ C be an integrable function. Then its Fourier coefficients
for n ∈ Z are defined as

f̂n ∶=
1

2π
∫
[0,2π]

f(x)e−inx dx.

Its (partial) Fourier series is

SNf(x) ∶=
N

∑
n=−N

f̂ne
inx.

For nice enough functions lim
N→∞

SNf(x) = f(x) (e.g. when f ∈ C1).
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Fourier series is splitting a vector into components

More abstractly, the Fourier series is the decomposition
of f ∈ L2[0,2π] (square integrable functions on [0,2π])
into components.

The basis functions we use are the functions x↦ einx

which form an orthonormal basis.

These basis functions are also eigenfunctions of the
differentiation operator. In particular we have f̂ ′n = inf̂n.

This means that a differential equation turns into a
polynomial equation in the Fourier coefficients.

v

v1

v2

e1

e2

Floris van Doorn (Bonn) Formalizing Carleson’s theorem 10 Oct 2024 7 / 26



Fourier series is splitting a vector into components

More abstractly, the Fourier series is the decomposition
of f ∈ L2[0,2π] (square integrable functions on [0,2π])
into components.

The basis functions we use are the functions x↦ einx

which form an orthonormal basis.

These basis functions are also eigenfunctions of the
differentiation operator. In particular we have f̂ ′n = inf̂n.

This means that a differential equation turns into a
polynomial equation in the Fourier coefficients.

v

v1

v2

e1

e2

Floris van Doorn (Bonn) Formalizing Carleson’s theorem 10 Oct 2024 7 / 26



Background: Fourier transform

We want to also do this for functions with domain R (i.e. nonperiodic
functions).

In this case the situation is a bit more subtle, since the basis elements
x↦ einx are not square integrable on R.

Definition

Let f ∶ R→ C be an integrable function. Then its Fourier transform
Ff ∶ R→ C is defined as

Ff(ξ) ∶= ∫
R
f(x)e−2πiξx dx.

The inverse Fourier transform F−1 is

F−1g(x) ∶= ∫
R
g(ξ)e2πixξ dξ.
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Properties of the Fourier transform

If f is C1 and both f and f ′ are integrable, then:

F(f ′)(ξ) = 2πiξFf(ξ).

If f is C1 and integrable, then

F−1Ff(x) = f(x).
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Example: Fourier transform of a box

Example: Let f ∶= χ[− 1
2
, 1
2
] be a box function. It has fourier transform

Ff(ξ) = sin(πξ)
πξ

.

Note: Ff is not integrable on R.
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Improper integrals

We can define the (inverse) Fourier transform for a wider class of functions
by defining it as an improper integral:

Ff(ξ) ∶= lim
R→∞

∫
[−R,R]

f(x)e−2πiξx dx.

Important: Whether this limit converges depends on the topology you use
for this limit:

Pointwise convergence

Lp-convergence: ∥f∥pLp ∶= ∫ ∣f(x)∣pdx.
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Fourier inversion with weaker conditions

In what generality does the Fourier inversion theorem hold?

If f ∈ L2 then Ff is well-defined using the L2-norm, and Ff ∈ L2. In
this case, we have F−1Ff = f w.r.t. to the L2-norm.
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Carleson’s theorem

Theorem (Lennart Carleson, 1966)

If f ∈ L2. Then for almost every x we have F−1Ff(x) = f(x).

We also have the following generalization:

Theorem (Richard Hunt, 1968)

If f ∈ Lp for some 1 < p ≤ 2. Then for almost every x we have
F−1Ff(x) = f(x).

These theorems have very hard proofs.
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Counterexamples and remarks

We cannot remove the “almost every” from the statement: even for
continuous L2 functions the limit might diverge for some x.

There are L1 functions where the limit defining F−1Ff(x) diverges
for all points x.

There is a direct analogue of the Carleson–Hunt theorem to Fourier
series of periodic functions. For L1-periodic functions it also fails.

If f is a function in multiple variables, versions of Carleson’s theorem
also hold. One has to be very careful about the shape of the
integration domain that tends to infinity. If the shape is spherical,
then this is still an open problem.
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Carleson’s operator

The Carleson operator is a sublinear operator that is roughly defined as

Tf(x) ∶= sup
n∈Z
∣∫

R
f(y) 1

x − y
einydy∣

for f ∶ R→ C.

This operator is bounded from L2 to itself, i.e. ∥Tf∥L2 ≤ C∥f∥L2 for some
constant C.

From this, we can show that Carleson’s theorem holds.
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Generalizing Carleson’s operator

For f ∶ R→ C

Tf(x) ∶= sup
n∈Z
∣∫

R
f(y) 1

x − y
einydy∣ (roughly).

X is a doubling metric measure space: a metric space with a Borel
measure µ satisfying for some a ≥ 1

µ(B(x,2r)) ≤ 2aµ(B(x, r)) .

In this generality, the generalized Carleson operator is not guaranteed to
be bounded, it depends on the boundedness of another simpler operator.
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Formalization

I started the project to formalize this result last year with the
harmonic analysis group in Bonn.

There was a paper proof of the result, but with the usual omitted
steps that are obvious for experts in the field, but that are hard to
reproduce for non-experts.

The harmonic analysis group then wrote a blueprint for the
formalization with a detailed proof.

This allows non-experts to take a single lemma and formalize it.

The formalization started in June, and we’re half done.

Website: https://florisvandoorn.com/carleson/
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Blueprint

The original proof was about 30 pages, but that became 120 pages when
writing the proofs out in detail, plus 30 pages to prove classical Carleson’s
theorem as a corollary.

It has 11 chapters:

Section 1: statement of the generalized metric Carleson’s theorem;

Section 2: statement of 6 propositions used in the proof;

Section 3: proof of metric Carleson from the propositions;

Sections 4-9: each section proves one of the 6 propositions;

Sections 10-11: proof of the classical Carleson theorem.
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Carleson’s theorem in Lean
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Carleson’s theorem in Lean
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Collaboration with Lean

In June I posted this project in Lean’s chat, asking volunteers to help.

A large number of volunteers helped, none of whom has a background in
Fourier analysis.

Special thanks to Maŕıa Inés de Frutos Fernández, Leo Diedering, Pietro
Monticone, Jim Portegies, Michael Rothgang, James Sundstrom and
especially Jeremy Tan.

Typically I stated the lemmas in Lean, and then contributors formalized
the proof, following the blueprint.
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Collaboration with Lean
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Questions

The work is separated by Harmonic analysists and Lean formalizers.
Will this cause friction?

▸ So far this is going really well
▸ Sometimes it is tricky to formalize a result verbatim.
▸ When reformulating results, it can be tricky as a non-expert to know if
the result still holds.

Can we ensure that this material is incorporated into Mathlib?
▸ Some proofs are only done for a special case
▸ For various preliminary results, we intentionally did them more
generally than needed for this proof.

How do we ensure that contributors get academic credit?
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Why formalization?

Verify correctness: not just of the final result, but the proof of each
individual lemma.

Easier peer-reviews

Enable large-scale collaborations

Lean makes it easy to refactor proofs.
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In conclusion

Lean is a language with a lot of exciting developments.

Large formalization projects can be efficiently divided into small parts,
with the help of a detailed blueprint.

It is feasible to formalize hard theorems in harmonic analysis.
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Thank you for listening

http://florisvandoorn.com/carleson/
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