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Overview

In Homotopy Type Theory (HoTT) there are Higher Inductive Types,
generalizing Inductive Types.

Goal: Reduce complicated Higher Inductive Types to simpler ones.

Analogue: In Extensional Type Theory, we can reduce all inductive types
to W-types and Σ-types.
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Homotopy Type Theory

Homotopy Type Theory combines Type Theory with Homotopy Theory.

Type Theory Logic

Homotopy Theory

A Type Formula

Space∗

a : A Term Proof

Point

A + B Sum Type Disjunction

Coproduct of spaces

A→ B Function Type Implication

Mapping space

P : A→ Type Dependent Type Predicate

Fibration

Π(x : A), P(x) Dep. Fn. Type U. Quantifier

Dep. product space

a =A b Identity Equality

Path space
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Types as spaces

A type A can have

...

paths between paths r : p = q
paths

q,

p : a =A b

points a, b : A a

b
p

q

r
r

•

•
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Operations on paths

We can
invert paths (symmetry);
concatenate paths (transitivity);
make identity paths (reflexivity).
(and more)

p p−1

q

p · q

refl

•

•

•
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Truncated Types

Some types have trivial higher structure.

Mere Proposition
...

[at most one path
between paths]
[at most one path
between points]
[at most one point]

Set
...

[at most one path
between paths]
[at most one path
between points]
points a, b : A

Type
...

paths between
paths r , s : p = q
paths
q, p : a =A b
points a, b : A
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Propositional Truncation

Given A, we can form the Propositional truncation ‖A‖.

‖A‖ is the mere proposition specifying whether A is inhabited.

A
...

paths between paths
paths
points

⇒

‖A‖
...

[at most one path between paths]
[at most one path between points]
[at most one point]
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Propositional Truncation (usage)

An element of A + B specifies whether A is inhabited or B is inhabited.

Using the propositional truncation we can define a proof irrelevant
disjunction which does not reveal its witness.

A ∨ B :≡ ‖A + B‖

∃x ,P(x) :≡ ‖Σx , P(x)‖
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Higher Inductive Types

In HoTT we use Higher Inductive Types to construct types with nontrivial
paths.

Example: the circle

HIT S1 :=

base : S1

loop : base = base
•base

loop

In the circle we have loop 6= refl. Hence we have paths

· · · loop−1, refl, loop, loop · loop, loop · loop · loop, · · ·

which are all different.
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Sequential Colimits

Given

A0
f0−→ A1

f1−→ A2
f2−→ A3

f3−→ · · ·
we can define the colimit of this sequence.

• •

•

•

•

•

•

•

•

•

· · ·

· · ·

· · ·

· · ·

. .
.

The colimit of this diagram is N.

This colimit is a HIT:

HIT colimit(A, f ) :=

i : Π(n : N), An →
colimit(A, f )

g : Π(n : N), Π(a : An),
in+1(fn(a)) = in(a)
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Propositional Truncation as HIT

The Propositional Truncation ‖−‖ is also a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive path constructor: the domain of the recursor is the type
‖A‖ being constructed.

A = 2

• •
‖A‖

(partial structure)

• •
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HITs are not well understood

There is no general theory describing which HITs are allowed.

Which restrictions are needed for the constructors?

It will help if we can reduce complicated HITs to basic HITs.

The definition of the propositional truncation is impredicative. Can we
give a predicative construction?

Floris van Doorn (CMU) Constructing Propositional Truncation January 19, 2016 12 / 19



Construction of the Propositional truncation

We will define the Propositional Truncation as a colimit.
At every step we will apply the one-step truncation, which is the following
HIT.

HIT {A} :=

f : A→ {A}
e : Π(x , y : A), f (x) = f (y)

A = 2

• •

{A}

• •
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Construction of the Propositional truncation

A = 2

• •

{A}

• •

{{A}}
(partial structure)

• •

...
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Construction of the Propositional truncation

We obtain the diagram

A f−→ {A} f−→ {{A}} f−→ {{{A}}} f−→ · · · (1)

Theorem
The colimit of diagram (1) is the propositional truncation ‖A‖.

Corollary
A function in ‖A‖ → B is the same as a cocone over (1), for any type B.
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Formalization

This result is formally proven in the proof assistant Lean.

In Lean, the HoTT mode is (mostly) just the standard mode, without Prop.

There is no proof assistant with good support for HITs.

In Lean we added two HITs as a primitive types, and we can define most of
the commonly used HITs in terms of these.
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Formalization

definition trunc.{u} (A : Type.{u}) : Type.{u}
definition tr (A : Type} : A → trunc A
definition is_hprop_trunc (A : Type) : is_hprop (trunc A)
definition trunc.rec {A : Type} {P : trunc A → Type}

[Pt : Π(x : trunc A), is_hprop (P x)]
(H : Π(a : A), P (tr a)) : Π(x : trunc A), P x

definition elim2_equiv (A P : Type) : (trunc A → P) '
Σ(h : Π{n}, n_step_tr A n → P),

Π(n : N) (a : n_step_tr A n),
@h (succ n) (one_step_tr.tr a) = h a
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Conclusions

HITs are generally not very well understood.

We can construct the propositional truncation (a recusive HIT) using
simpler (nonrecursive) HITs.

Conjecture: A large class of HITs can be reduced to a single HIT, the
homotopy coequalizer.
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Thank you
The Lean formalization is available at:

https://github.com/fpvandoorn/leansnippets/blob/master/cpp.hlean
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