Automating Concept Equivalence in
Dependent Type Theory

Floris van Doorn, Michael R. Douglas and David McAllester
AITP 2021

September 7, 2021

Concept Equivalence

The term “cryptomorphism” was introduced by Garrett Birkoff
before 1967 to refer to equivalence of concepts.

Birkoff did not give the term a formal definition.

As an example a group can be defined to consist of a set, the group
operation, an identity element and an inverse operation. Or it can
be defined to consist of just the set and group operation with
axioms stating the existence of the identity and inverse elements.

Concept equivalence is fundamental
» to avoid redundancy in mathematical libraries;
> for semantic concept retrieval;

» for automated concept discovery.

Cryptomorphism in Type Theory

To make the discussion concrete we can model “concepts” as
types of dependent type theory.

A natural definition of cryptomorphism within type theory is that
two concepts (types) are cryptomorphic if there exists a pair of
lambda expressions defining a mapping and its two-sided inverse
between the objects of the two classes.

In the groupoid model of type theory each type (concept) is
associated with a groupoid given by the objects of the type and
the isomorphisms between them.

A cryptomorphism gives an isomorphism between the associated
groupoids.

Signature-axiom class (SAC)

In Bourbaki, mathematical structures are expressed by SAC's,
which consist of one or more carrier set(s), data (e.g. functions,
relations, collections of subsets), and axioms.

In the proof assistant Lean we use type classes to define SAC's.

class Mul (G : Type u) := (mul : G - G — G)
class One (G : Type w) (one : G)
class Inv (G : Type u) (inv : G — @)
class Semigroup (G : Type u) extends Mul G :=
(mul_assoc : Vabc: G, a*xbx*xc=a=x* (bx*xc))
class Monoid (G : Type u) extends

Semigroup G, One G :=
(left_mul_id : V (a : G), 1 *x a = a)
(right_mul_id : V (a : G), a *x 1 = a)
class Group (G : Type u) extends Monoid G, Inv G :=
(mul_left_inv : V (a : G), a1 *x a = 1)

Previous Work: Theories and Views

The notion of signature-axiom class corresponds to the notion of
“theory” in earlier systems such as IMPS (Farmer, Guttman and
Thayer, 1993).

IMPS supports theory interpretations or “views", as a way of
defining a mapping from the models of one theory to the models of
another.

Miiller, Kohlhase and Rabe (2018) define a similar notion of view
but parameterized over the choice of meta-theory allowing
mappings between theories defined in different formal systems.

Functors

A functor is a function from instances of SAC C to instances of
SAC D given by an explicit lambda expression. Denote a functor F
as C = D.

This lambda expression cannot use indefinite description (a.k.a.
classical choice), but can use definite description (a.k.a. unique
choice)

axiom classicalChoice : Nonempty o — «
axiom uniqueChoice : Nonempty « — Subsingleton o — «

Functors

A functor is a function from instances of SAC C to instances of
SAC D given by an explicit lambda expression. Denote a functor F
as C = D.

This lambda expression cannot use indefinite description (a.k.a.
classical choice), but can use definite description (a.k.a. unique
choice)

axiom classicalChoice : Nonempty o — «
axiom uniqueChoice : Nonempty « — Subsingleton o — «

A simple example is cardinality, from sets to cardinal numbers.
Another important example is the “forgetful” functor which takes
an instance of an SAC to its carrier set. By composing with this,
the cardinality functor can be applied to general SAC's.

Cryptomorphism

A cryptomorphism between C and D is a pair of functors which
compose both ways to the identity. One needs to say whether this
is provable equality, isomorphism or something else. We use
provable equality, as in the original spirit of the definition.

We denote cryptomorphism as C =, D.

Cryptomorphism

A cryptomorphism between C and D is a pair of functors which
compose both ways to the identity. One needs to say whether this
is provable equality, isomorphism or something else. We use
provable equality, as in the original spirit of the definition.

We denote cryptomorphism as C =, D.

Elementary examples of cryptomorphism:
> Reordering arguments; other syntactic rewrites.
» Adding/removing redundant axioms.
» Adding/removing definable data.
class Group (G : Type u) extends [...], Div G :=

div_eq_mul_inv : Vxy : G, x /y=x %y !

[...]

Example: Groups and inverses

A less elementary cryptomorphism can be obtained by leaving out
data fields that are uniquely specified. For example, the definition
we gave earlier of “group” specified the map from an element to
its inverse. However one can prove that inverses are unique, so this
map can be derived from the multiplication law.

class Group’ (G : Type u) extends Monoid G :=
(exists_left_inv : V (a : G), 3 (b : G), b *x a =1)

The same statement can be made about the identity element. So
there are several cryptomorphic SAC's which define the same
concept of group.

Auxiliary structures

More generally, every mathematical concept allows defining many

auxiliary structures. For example given a vector space V/, we can

define a basis. The senses in which the basis is “auxiliary” are that
» The basis is not canonically associated to V/, and

» The axioms which a basis must satisfy in order to describe a
vector space are more complicated than the original axioms.

Unless you are very careful, SACs in terms of auxiliary structure
will not be cryptomorphic to the original, since it contains “more
structure.”

Example: Matroids

But there are concepts for which there is more than one reasonable
choice for the auxiliary structures and axioms. The prototypical
example (which inspired Birkhoff to propose the idea of
cryptomorphism) is the concept of a matroid (Whitney 1935).

A matroid generalizes the notion of linear independence in vector
spaces. We postulate as carrier set a finite set £, which can be
thought of as elements in a vector space. We then postulate an
additional structure on £ which carries information about linear
dependence:

» The independent sets Z C P(€&).
» The bases B C P(E).

Each satisfying axioms we will discuss.
There are several other additional structures we could choose.

Axioms for matroids

The independent sets & # Z C P(E) must satisfy
A 'C AeZ — A €7 and the “independent set exchange
property,”

ABETIN|A>|Bl—3xeA\Bst BU{x}eT.
The bases @ # B C P(€) must satisfy the “basis exchange
property”

ABeBAacA\B—3beB\Ast {b}UA\{a}€B.

Axioms for matroids

The independent sets & # Z C P(E) must satisfy
A 'C AeZ — A €7 and the “independent set exchange
property,”

ABETIN|A>|Bl—3xeA\Bst BU{x}eT.
The bases @ # B C P(€) must satisfy the “basis exchange
property”

ABeBAacA\B—3beB\Ast {b}UA\{a}€B.

The relation between Z and B is
SeB+SeINVxeE,SU{x}¢T.

So each structure can be derived from the other, both sets of
axioms are of comparable length, and it is not obvious that one is
more fundamental than the other. In a real sense the matroid
concept has multiple foundational definitions.

Automated discovery of cryptomorphisms

We want an algorithm that automatically detects cryptomorphism.

Intended usage: Write a new structure and ask whether a
cryptomorphic structure already exists in the library.

We currently have a prototype in Lean 4 to automatically derive
basic cryptomorphisms between two structures.

https://github.com/fpvandoorn/cryptomorphism

https://github.com/fpvandoorn/cryptomorphism

Example 1
It supports reordering and renaming fields.

class CommMonoid (M : Type u) extends
Mul M, One M :=
(mul_assoc : Vxyz : M, (x*xy)*z=x=x (y*2z))
(mul_comm : Vxy : M, x ¥y =y % x)
(mul_one : Vx : M, x * 1 = x)

class AddCommMonoid (M : Type u) extends
Add M, Zero M :=
(add_zero : V x : M, x + 0 = x)
(add_comm : V xy : M, x +y =y + x)
(add_assoc : Vxyz : M (x+y) +z=x+(y+ 2))

#eval cryptomorphic CommMonoid AddCommMonoid
-- CommMonoid and AddCommMonoid are cryptomorphic

Example 2
It supports packing and unpacking data fields and axioms.

class CommMonoid (M : Type u) extends
Mul M, One M :=

(mul_assoc : Vxyz : M, (xxy)*z

(mul_comm : Vxy : M, x ¥y =1y % x)

(mul_one : V x : M, x * 1 = x)

x * (y * 2))

class BundledCommMonoid (M : Type u)
(data : (M - M = M) x M)
(mul_axioms : (V x y, data.1 x y = data.1 y x) A
(V x y z, data.1 (data.1l x y) z =
data.l x (data.l y 2z)))
(mul_one : V x : M, data.l x data.2 = x)

#eval cryptomorphic CommMonoid BundledCommMonoid
-- CommMonotd and BundledCommMonoid are cryptomorphic

Example 3

It supports axioms that can be (easily) derived from each other.

class CommMonoid (M : Type u) extends
Mul M, One M :=
(mul_assoc : Vxyz : M, (x*xy)*z=x=x (y*2z))
(mul_comm : Vxy : M, x ¥y =y % x)
(mul_one : Vx : M, x * 1 = x)

class CommMonoid’ (M : Type u) extends
Mul M, One M :=

(mul_assoc : Vxyz : M, (x*xy)*z

(mul_comm : Vxy : M, Xx ¥y =y % x)

(one_mul : Vx : M, 1 * x =x)

x *x (y * 2))

#eval cryptomorphic CommMonoid CommMonoid’
—— CommMonoid and CommMonoid are cryptomorphic

Algorithm

(1) Split data fields into components;
(2) Pair up data fields that have matching type;
> In case of ambiguity: choose fields with the same name;
(3) Try to prove each axiom of one structure from the axioms of
the other structure

Future Work

Increase the number of cryptomorphisms we recognize.
» Recognize definable data fields

» Recognize implicitly specified data fields (e.g. postulating the
existence of inverses).

We want to efficiently find a structure in a large database that is
cryptomorphic to a given structure.
For this it is helpful to partially “normalize” structures.

Thank you!

