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Chapter 1

Analysis in Mathlib



Chapter 2

Plancherel’s Theorem

2.1 Basic Properties of the Fourier Transform

In this section we record, mostly without proofs, basic statements about the Fourier trans-
form on L' functions. Most of these are already formalized in mathlib.

Let (V, ), (W,v) be vector spaces over R with a o-finite measure, E, F' be normed spaces
over Candlet L: V xW = R, M : E x F — C be bilinear maps.

Definition 2.1. Let f € L}(V, E). Its Fourier transform (w.r.t. L) is the function F f =
f: W — E given by

F fw) = fw) = [ et f(o)

14

The inverse Fourier transform (w.r.t. L) is similarly defined as

7 f(w) = flw) = [ @O ) d
v
Lemma 2.2. Let f € L*(V, E). Then its Fourier transform f is well-defined and bounded.
In particular, the Fourier transform defines a map F : LY(V,E) — L>®(V ,E).
Proof. Omitted. O

From now on assume that V and W are equipped with second-countable topologies such
that L is continuous.

Lemma 2.3. Let f € LY(V,E). Then f is continuous.
Proof. Omitted. O

Lemma 2.4 (Multiplication formula). Let f,g € L*(V,E). Then

/ M(f(w), g(w)) dv(w) = / M(f(0), 5(v)) du(v).
w 174

Proof. Omitted. O

Lemma 2.5. Lef f,g € LY(V,E), t € R and a,b € C. The Fourier transform satisfies the
following elementary properties:



(i) F(af +bg) =aF f+bFg (Linearity)

(it) F(f(x —1t)) = e?™WF f(y) (Shifting)
(iii) F(f(tx)) = ﬁ?f(%) (Scaling)
(iv) If E admits a conjugation, then F(f(z)) = F f(—y) (Conjugation)

(v) Define the convolution of f and g w.r.t. a bilinear map M : E X E — F as
(Forr9)(w) = | M), g(w =) du(o).
\%

Then F(f *pr 9) = M(F f,F g) (Convolution)
Proof. Omitted. O

From now on, let V' be a finite-dimensional inner product space. We denote this product
as ordinary multiplication, and the induced norm as |- |.
We now study a family of functions which is useful for later proofs.

Lemma 2.6. Let x € V and § > 0. Define the modulated Gaussian
uwg(y) :V—-C, ym e Omlyl? g2mizy
Its Fourier transform (w.r.t. the inner product) is given by
u,5(2) = o2l 6 = K (1 — 7).

Proof. By choosing an orthonormal basis, wlog we may assume V = R". First note u, 5(z —
T) = g 5(2), s0 it is enough to consider x = 0. Next,

“ n
U/(L\g(z) = / e*ﬂély\2,27riyz dy = H /677T6y12727riyizidyi and K(;(—Z) _ H571/2e*”y?/‘5’
hence we may assume n = 1. The change of variables w = /2y 4 iz /5! /2 esults in
m(z) = /67W6y272ﬂiyz dy = (571/2677""52/5/ 677”02 duw.
; | I

m(w)=z/51/2

Contour integration along the rectangle with vertices (£R,0), (+R,iz/5'/?), together with
the bound

+R+iz/51/?
z z R
/ e ™ duw| < —‘1/‘2 sup le~™*| = —‘1/‘2 emR? %
R 02 elR, Rtiz/51/2) 9
yields
/ e ™ du = /67’””2 dw=1,
Im(w)=—z/51/2 R
finishing the proof. O



Lemma 2.7. Let Kj(v) = 62 ™13 45 in . This is a good kernel, called the
Weierstrass kernel, satisfying

6—0
/K(;(:c)dle and Ks(z)de — 0 for alln > 0.
v

[z|>n

Furthermore, it satisfies the stronger bounds
Ks(z) <62 and Kgs(x) < BSY?|x| 7!
for some constant B independent of 6.

Proof. By choosing an orthonormal basis, wlog we may assume V = R™. Then these are all
straight-forward calculations:

/ e~leP/8 gy = ni2 / P dg = 5712,
Rn Rn

/ §-n/20-mlal?/5 da::/ el 220 ¢
[z|>n |a[>n/81/2

The first upper bound is trivial. For the second one, consider for r, z > 0 the inequality
o0 o0 o0
Mir+1)= / e Yy dy > / e Yy dy > zr/ e Vdy = z"e %,
0 z z
Applied to z = 7|x|?/§ and r = (n + 1)/2, this gives

n+l _ §(n+1 2‘x|n+l F<(n+3>/2) n+1)/2  mz|?/6
||+t = §n+1)/ ST < 2 st/ 2emlzl®/0
[ ——

=B

which is equivalent to the second upper bound of the lemma. O

The following technical theorem is used in the proofs of both the inversion formula and
Plancherel’s theorem.

Theorem 2.8. Let f : V — E be integrable. Let Kz be the Weierstrass kernel from
emma 2., or indeed any family of functions satisfying the conditions of [Lemma 2.7. Then

6—0

(Ky * f)(x) = /V Ky() (@ — ) dp(y) =5 f(a)

in the L'-norm. If f is continuous, the convergence also holds pointwise.
Proof. Again we may assume V = R”. Consider the difference
Bgle) = (g f)la) = f(@) = [ (o =) = F@)Esly) dy.
[R’n.

We prove L'-convergence first: Take L!'-norms and use Fubini’s theorem to conclude

I35l < [ 15 =) = S Kol dy



For £ > 0 find i > 0 small enough so that || f(z —y) — f(2)||; < &€ when |y|n. Thus

1Al < e+ / 1@ —y) — F@) K dy <+ 20fly [ Ky(w)dy.

ly|>n [yl>n

By one of the properties in , we can choose § small enough so that the second
integral is less than e, which finishes the proof in this case.

Now assume that f is continuous. Let d = §%/? and shorten gs(x,y) = |f(z —y) —
f(@)|Ks(y). Then

As(@)] s/o RCLEDS

/ gs(x,y) dy.
kel Y2kd<|y|<2ktld

To bound these integrals, consider
p(r) = — [f(z—y) — f(x)| dy.

n
" Jyl<r

It is easy to see that ¢ is continuous, bounded, and approaches 0 for » — 0, by continuity
of f. Now

(%)
/ g5(@,y)dy < d @ —y) — f(@)] dy = o(d)
0<|y|<d

0<|y|<d
and

*  Bd

/ 9y = ot | [Flw—y) — f(a)ldy < 2+ Bp(2+ 1)

2kd<|y|<2k+1d ( ) 2k d<|y|<2k+1d
where for the inequalities labeled (x) we used the upper bounds from . Together,
we find

|A5(2)] < p(d) +C Y27 p(21d)
keN
for C' = % Say ¢ is bounded by M € R and let € > 0. Take N large enough such
that Y, 27% < e. Choose § small enough that A(2*d) < e/N for all k < N. Then
|[As(z)| <e/N+ (N —1)Ce/N + CeM < eC(M +1).
O

Remark 2.9. One can drop the continuity assumption and still get pointwise convergence
almost everywhere. The proof stays the same, but one focuses on Lebesque points of f. It
takes slightly more work to arque that @ behaves nicely, but the rest of the proof stays the
same.

Theorem 2.10 (Inversion formula). Let f : V — E be integrable and continuous. Assume
f is integrable as well. Then

FrFf=f.
Prooi. Apply the multiplication formula to u, 5 and f, and conclude with
prem 2.§. O

Remark 2.11. Note that both assumptions are necessary, since I 1F f is continuous, and
only defined if F f is integrable.

Theorem 2.12 (Inversion formula, L'-version). Let f € L*(V,E). If f € L*(V,E), then
FlFf = §.

Proof. Similar to . O



2.2 Plancherel’s Theorem and the Fourier Transform on
L2
Let (V,-) be a finite-dimensional inner product space over R and let (E, (-,-)) be an inner
product space over C.
Theorem 2.13 (Plancherel’s Theorem). Suppose that f : V — E is in LY(V,E)NL*(V,E)
and let f be the Fourier transform of f. Then f,f € L*(V,E) and
£ 2 = 1z = 1f1 22

Suppose that f:V — E is in LY(V,E)NL*(V,E) and let f be the Fourier transform of f.
Then f,f € L*(V,E) and
£ 2 = 122 = 1f] L2

Proof. Let g(z) = f(—=z) and apply the multiplication formula to fxg and g s
[F5o ms@dn = [ (g s-ndr S (7200 = [ () st@) de = 1115
by [Theorem 2.4, On the other hand, by the left hand side simplifies to
[ \@peme as 5 g
14

by dominated convergence. _
Since f(x) = f(—=x), the corresponding statements for f follow immediately from the

ones for f. O
We now want to extend the Fourier transform to L?(V, E). For this, take a sequence of

functions (f,), C L*(V,E) N L*(V, E) such that f, - f. Such sequences exist:

Lemma 2.14. LY(V,E)N L*(V,E) is dense in L*(V,E).

Proof. 1t is well-known that the space of compactly supported continuous functions is dense
in every LP(V, E). Since those are contained in L'(V, E) N L?(V, E), the claim follows. [J

Let f € L?(V, E). Plancherel’s theorem lets us now approximate a potential f :
Lemma 2.15. Let f € L*(V, E) and (f,),, C L*(V,E)NL*(V, E) a sequence with f, Y f.

Then (f,,)
Proof.

., 18 a Cauchy sequence, hence converges in L*(V, E).

n 7 - Plancherel
1o = Fonllz = 1 = Fnlls =" 1 = Finlo

goes to 0 for n,m large, as (f,),, is convergent, hence Cauchy. Since L*(V, E) is complete,
(f,,), converges. O

Definition 2.16. Let f € L?>(V, E) and take a sequence (f,,),, C L*(V,E)N L*(V, E) with

7f::f:: lim E7
n—oo

the limit taken in the L?-sense.



Lemma 2.17. This is well-defined: By , the limit exists. Further it does not
depend on the choice of sequence (f,),. If f € LY(V,E)N L?(V, E), this definition agrees
with the Fourier transform on L*(V,E).

Proof. Let (g,,),, be another sequence approximating f. Then

1Fo = Gallz = Ufn = 9ul < 1 = F1+ g — gl = 0.
If fe LY(V,E)N L*(V,E), we can choose the constant sequence (f,,),, = (f),,- O
Definition 2.18. Define analogously F ' f = f := lim,,_, fn, if £, ? f € L3V, E) with
(f), C LY(V,E)N L*(V,E). By the same arguments as above, this is well-defined.

Corollary 2.19. Plancherel’s Theorem, the inversion formula, and the properties of
hold for the Fourier transform on L*(V,E) as well.

Proof. All of these follow immediately from the definition and the observation, that all
operations (norms, sums, conjugation, ...) are continuous. For example, let f € L?(V, E)
and take an approximating sequence (f,,),, as before. Then

17l =1 Jim Fulla = 1 tim [ fly = T [l = | lim £l = 7],
O

Corollary 2.20. The Fourier transform induces a continuous linear map L*(V,E) —
L2(V,E).

Pmoi. This follows immediately from (Corollary 2.19: Linearity from the L2-version of
Lemma 2.5

, and continuity and well-definedness from the L2?-version of Plancherel’s the-
orem. O



Chapter 3

Interpolation

3.1 Rietz-Thorin’s Interpolation Theorem

Rietz-Thorin’s interpolation theorem is a powerful tool to study boundedness of linear op-
erators between complex LP spaces. Informally, it states that if a linear map T is bounded
as an operator LPo — [9% and as an operator LPt — L% then it must also be a bounded
operator LP — L9 whenever (%, %) is a convex combination of (pi, i) and (i7 i).
o’ do P17 a4

Since simple functions are contained in all the L” spaces, and bounded linear operators are
continuous, an equivalent formulation may be: given a bounded linear operator from simple
functions to functions that are integrable on all sets of finite measure, if we know it can
be extended to bounded linear operators LPo — L% and LP1 — L% then it can also be

extended LP — L? with p and g as above.

Before we start, let us recall the maximum modulus principle from complex analysis. There
are various statements of this in Lean, see the dedicated Mathlib page.

Theorem 3.1. Let U be a connected open set in a complex normed space E. Let f : E — F
be a function that complex differentiable on U and continuous on U. -
If |f(2)] takes its mazimum on a point u € U, then it must be constant on U.

Proof. Already formalized in Mathlib, along with several variants. O

Lemma 3.2. Let S be the strip S :={2€ C | 0<Rez<1}. Let f: S — C be a function
that is holomorphic on S and continuous and bounded on S.
Assume My, M, are positive real numbers such that for all values of y in R, we have

lp(iy)| < M, |p(1 4 dy)| < M,

i.e., the absolute values of the function on the lines {Rez = 0} and {Rez = 1} are bounded
by My and M, respectively.
Then, for all 0 <t <1 and for all real values of y, we have

|6t +iy)| < My~ M

Proof.
If |¢| is constant, everything holds trivially by setting M|, and M; to be the value of |¢| at
a point. Assume |¢| non-constant.


https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/Complex/AbsMax.html

 Case 1: assume M, = M; = 1, and sup,_,_, [¢(z + iy)| — 0 when |y| — oc.

Let M be the supremum of |¢(z)| on S. Since the function is non-constant, we have
M > 0.

Let {z,} be a sequence of points in S such that |¢(z,)| converges to M.

Since we assumed the absolute value of ¢ goes to zero as |y| goes to infinity, all points
where |¢(z)| > M — e must be in some rectangle around zero, i.e. the sequence z,
must be bounded.

Hence, there must be a converging subsequence of z,, to a point z* € S.

By maximum modulus principle, z* must be on the boundary 4.5, so it must have real
part 0 or 1. Hence, by assumption, |¢(z*)| < 1, and by construction |¢(z)| <1 for all
z € S, which is what we wanted to show.

o Case 2: only assume M, = M; = 1.
For € > 0, define

6e(2) = B2)e Y
If the real part of z is 0, then z = 7y and
[6c(2)] = [$(2)e” V] < [p(2)] - 1 < 1
If the real part of z is 1, then z =1+ iy and
|6c(2)] = |B(2)e V2| = |g(2)e V2V = |g(2)e V)| < |p(2)] - 1 < 1
Moreover,
(Olztin)] < 10(erin) e D] = [§(artiy) oo 12| = |p(a-tig) e 1)

Hence, for 0 <z <1 and |y| — oo, we have that both factors go to zero.
Thus ¢, satisfies the hypotheses of case 1, so |¢.| < 1 on the whole strip.
Now, we have pointwise that

lim (=) = lim ¢(2)e* ) = (2)

e—0

Hence, for € — 0, we have |¢.(z)| — |¢(z)|. Thus,
[¢(2)] = lim | (2)] <1
e—0

which is what we wanted to show.

» General case
If M, and M, are any two positive real numbers, define

~

$(z) = MG~ My #6(2)
Recall that, for a € R\ {0}, we have
b+ic| — b‘

la la

Hence, if the real part of z is 0, we have

|6(2)] < IMg"] - M- |6(2)] < . Mo=1
0

10



And if the real part of z is 1, we have

~ 1
B < MY 1M [ ()| < 5 My =1
1

From the previous case, we obtain that for arbitrary z in the strip
|6(z)] <1
Now, write z =t 4 4y and unroll the definition of qg to obtain
MM T (2) < 1

The left-hand side is equal to
MG M ¢(2))|

So we obtain
|p(2)] < My~ M}

which is exactly what we wanted.

O
Lemma 3.3. Let p and q be real conjugate exponents. Let f be measurable. Then
1£lze = sup I£glzs-
lglzp<1, g simple
In particular, if the right hand side formula is finite, f € L.
Proof. That
sup I£gllzy < 1Nz
lglLr<1, g simple
follows from Hélder’s inequality.
The other direction is trivial when ||f]|; = 0. Suppose ||f] . # 0. Set
_ P
= —.
11z
Then |g||;» = 1.
1Al = 1f gl
= sup | fg,|r (1)
neN
< sup If gl s (2)

lglp <1, g simple

In (1) and (2), g,, is a monotone sequence of simple function approximating g from below,
whose existence is basic real analysis. O

Lemma 3.4. Let f be measurable and the measure y be o-finite. Then

[flp= = sup 179l

lgl,1<1, g simple

11



Proof. That

sup Ifglz: < 1f]lze
lgl,1<1, g simple

follows from Hélder’s inequality.

Suppose M = supi,y 1y smpre ol < [Fle. Then {a]|f(z)] > M} has positive
measure. Since p is o-finite, we have a subset B C {z||f(z)] > M} with finite positive
measure by a classical lemma. Now set

h = u(B) ' xp.

Then we have
M= [ u(B) M
B

<émmﬂw
.

But |h| = 1 and h is simple, so | fh|;: < M, contradiction.
O

As a last step towards proving the theorem, let us recall a consequence of Holder’s
inequality, which will only really be substantial in a corner case of our proof.

Lemma 3.5. Let (X, ) be a measure space and 0 < p, < p; < 00, 0 < p < oo0. Assume we

have t > 0 such that
I 1t t

p Po P
Let f: X — C be a measurable function. Then

10z < IAIER 1F 1o
In particular, the f in LPo(X) N LP1(X), then f is in LP(X).

Proof. This is just a version of Hoélder’s inequality, but in order to apply it, we should rule
out some trivial cases.

First note that the assumption guarantees that 0 <p, <p <p; <ooand 0 <t < 1.

When ¢t = 0 or ¢ = 1, the inequality holds trivially. Hence we may assume t # 0 and
t # 1. In this case p < p; < 0.

Now we can rearrange the equality into

1 1
+—=1
Do by
(1—=t)p tp

12


https://leanprover-community.github.io/mathlib4_docs/Mathlib/MeasureTheory/Measure/Typeclasses.html#MeasureTheory.Measure.exists_subset_measure_lt_top

Using Hélder’s inequality, we have

I£er = [ 171
= (f 1A=l
<(([ 17107 5[ 171 e

= ([ 1) 5 ([ 112y
— LI
O

Theorem 3.6. Let (X, pu) and (Y,v) be measure spaces and consider all LP spaces to be

complex valued.
Suppose T is a linear map LPo(X) + LP1(X) — L9%(Y) + L% (Y) that restricts to bounded
operators LPo — L9 and LPr — L91. Let My, M, be the respective bounds, i.e.,

T fllpao < Mol|f]1ro
T fllpar < Myl[fl] e

Then, for any pair (p,q) such that there is a t in [0,1] for which

1 1-—t t 1 1t t
= = +

p Po P1 q dp q1

we have that the operator is bounded LP — L9, and in particular
T fllpe < Mg~ *M{||fll»

Proof. For a valid choice of p, g, note that we both need to show T'f is in L? and a bound
on the LY norm of T'f. Let ¢’ be the conjugate exponent of q. By Lemma 7?7 for Tf, we
need a bound of the form

[ @] < Ml

sup
llgll, o <1, g simple

« Case 1: assume p < oo and ¢ > 1, and let ¢’,¢5,q; be the conjugate exponents of
4, 4o, ¢, respectively.

— Subcase a: assume f = a,Xp, is a simple function (finite sum with E; disjoint
of finite measure).
Let g = Zj bjxr, be a simple function. By writing [ as flle - W and
using linearity of 7" and integrals, it suffices to prove the above inequality when

Al = 1.

We want to apply the three lines lemma to an appropriate function. Define

1—2 =z f
— i — (2) , 4
+(2) p(m-%) fo= 17

13



,(1—=z z o9
6<z>—q( : +,) g = g™ . L

@ q gl

Observe that for ¢ as in the statement of the theorem, we have by definition that

~(t) =1, hence f, = f.
Moreover, if Re(z) = 0, we have that Re(y(z)) = ﬁ, and hence

Wl = ([ 180) ™ = (i)™ = ([1757)7 = i) =15 =1

If Re(z) = 1, we have Re(v(z)) = ;41, and the exact same computation replacing

po with p; now shows that ||f,||»n = 1.
Similarly, one shows that

9=9 gl =1ifRe(z) =0 |lg.[l 4, =1if Re(z) =1

Now, we want to apply the three lines lemma to the function

o) = [(@hs.

Since f and g are simple and given by the expressions above, we can explicitly
write f, and g, as

a; o b
f.= Z |ai|7(z)mXEi 9. = Z |bj|5< )V)%XFJ.

j il

(here, we use that the E; (respectively F; ) are disjoint, so for every point in the
domain there is at most one of the E, covering it).
So, expanding everything by linearity of 7" and integrals, we obtain

(=2
= Sl e o T

This only depends on z holomorphically in terms of the exponents of the |a,| and
|bj], so it is a holomorphic function on the strip S in the three lines lemma and
it is continuous on S.

It it also bounded on S. In fact, we wrote ¢ as a finite sum, so we only need
to show each summand is bounded. Since the real part of z is between 0 and 1,
the terms |a;|"*) and |bj|‘5(z) have bounded norms. Finally, recall that Holder’s
inequality states that |[fg|l; < |[f][,[lgll, for conjugate exponents p,q. Hence,

: HXFijg < Mop(E;)u(Fy)

| [ 708,05, < 1700l < 1T

which is bounded. Moreover, if Re(z) = 0, since |[f.[|zr0 = [|9./| 4 = 1, we have

6(2)] < /I(sz)gzl ST follpao 1920 Ly < Mo - [19:] oy < Mo

Similarly, if Re(z) = 1, we obtain

A< [T £90.) SUTL o ool < Mgl <,

14



Thus, applying the three lines lemma to ¢(z) yields that
|6t +yi)| < My~* M

In particular, this holds for y = 0, but now

o) = [(@f9 = [(TDg

So we have
| [ | < v
which is exactly what we wanted to show.

— Subcase b: Now, let f be any function in LP. By density of simple functions,
approximate f by a sequence f,, of simple functions with ||f,, — f||;» — 0.
By the previous case, we have ||Tf, ||« < M||f,||»- In particular, the sequence
{T'f,} is Cauchy in L9, since

||Tfm _TanLq = ||T(fm _fn)HLq < M||fm _fn”Lp

and the original sequence is Cauchy. By completeness, the {T'f,} converge in
L1, in particular the L? norm of the limit is the limit of the L9 norms, which is
less than M||f||.». Hence, it suffices to show that the sequence {T'f, } converges
almost everywhere to T'f.

Write f = fU + fL with

P {f(w) @1 {f(m) if | f(x)] < 1

0 otherwise 0 otherwise

and similarly f, = fV + fL.

Modulo reordering them, assume p, < p;, so we have p; < p < p;. Since f € LP,
fY must be in LP» and f* in LP1. Similarly, since f,, — fin LP, we have fU — fY
in LPo and fL — fLin LP1,

By the assumptions of boundedness of L

TV 5 TfU in L%  TfE T in Lo

Modulo extracting subsequences, we can assume that the convergence is almost
everywhere, so that almost everywhere

Tf,(z) =Tf () + Tfy(x) = TfY(x) + Tf(z) = Tf(x)
which is what we wanted to show.

e Case 2: p=occorq=1.
If p = 0o, we must also have p, = p; = oo, thus we have

T fllra0 < Mol[fll= [T fllpa < Myllfllze

Applying Lemma @ with T'f,q, ¢y, ¢;, we obtain

1Tl o < NTANZ T fllLa < Mo~ M| f]] o

15



which is what we wanted.

If p < 0o and g = 1, then (since they must be at least 1 by definition of LP spaces) we
have that g, and ¢; must also both be 1 (for example, since % is a convex combination
of the other two reciprocals, the largest one must be 1, and from that rearranging terms
shows the other one is 1). In this case, take g, = g for all z and repeat the proof above
(note:isn’t this what already happens if we do not consider this case separately?).

O

3.2 Applications of Rietz-Thorin’s Interpolation Theo-
rem

3.2.1 Hausdorff-Young inequalities

Lemma 3.7. Let X = [0,2n] with normalized Lebesgue measure % and let Y = Z with
counting measure.
Consider the operator T : f + {a,, } ez where

1 2w
- 0 7in0d9
s
Forlﬁpﬁ?and%—&—é:l,wehave

WTfllLa < (1A Le

Proof. Observe that we may simply regard T as an operator L!([0,2n]) — L°(Z) since
L2([0,27]) C L*([0,27]) (compact domain, bound with maximum), and L?*(Z) C L>(Z).
Note that the claim corresponds (unless ¢ is infinity) to the inequality

1/q 2
1
(ZII) < <2ﬂ / |f(9>|”d9>

For py = 2 (thus ¢, = 2), this is Parseval’s identity (see tsum_sq fourierCoeff).
For p; =1 (thus ¢; = 00), we can check it directly. Since

1/p

1 2m
- — 6)e=0df
T

we have
1 27 ) 1 27
anl < 5= [ 1f@ a0 < 5o [ 15@))d8 = 17l
T Jo T Jo

So
T flloe = sup|a,| <[]

Applying Rietz-Thorin’s theorem, we obtain that the claim holds whenever we can find a

t € [0,1] such that
e L S e

p Po P q 4o 91
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Substituting p, =2, p; =1, ¢y = 2, ¢; = 00,

L1t 1 1t

p 2 q 2
Now

1 1+t 2

p 2 p_1—|—t

which for ¢ € [0,1] ranges from 1 to 2.
Moreover, we have

P q 2 2

i.e., p and g are conjugate exponents.
This completes the proof. O

1 1 1+t 1-—t
::44447+-4447 =

Now, we want to obtain a “dual” inequality to the previous one. For this, we consider an
operator T” : L*(Z) — L?([0,27]) in the opposite direction compared to the previous lemma

T/({an}nel) = Z aneina

n=—oo

The operator is defined on any LP(Z) for p < 2, since LP(Z) C L*(Z). Note that the target
expression is indeed in L?([0, 27]) again.

Lemma 3.8. For 1 <p <2 and q conjugate exponent to p, we have

1T {an e < [H{an} s

Proof. This is similar to the previous corollary. Parseval’s identity gives the case p, = g, = 2.
For the case p; = 1, ¢; = 00, again

S e < 3 Ja,e™) = 3 Ja | = l{a, )l

nez nez nez
ie.
1T {a, o = sup > a,e™| < |{a,}p
0€(0,27] ez
As before, applying Rietz-Thorin’s interpolation theorem concludes the proof. O

As a remark, if f = T"{a,}, then the {a,} are the Fourier coefficients of f, yielding
(when p # 1) the inequality

1 g 1/q 1/p
(27T / |f(9>|qd9> g(2|>
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3.2.2 Extending the Fourier transform

The Rietz-Thorin interpolation theorem also allows us to extend the Fourier transform
defined in the previous chapter to a bigger domain.

Let V be a finite dimensional real inner product space and E be a normed complex space.
As in Definition @ define the Fourier transform on simple functions f via the expression

F(f)(w) = / ¢ 2milow) f ()

We have shown F extends to a bounded linear operator L' — L, and to a bounded linear
operator L? — L? (see Theorem )

By Rietz-Thorin interpolation theorem, it can be uniquely extended to bounded linear op-
erators LP — L7 whenever 1 < p < 2 and ¢ is conjugate to p.

18



Chapter 4

Distributions

Laurent Schwartz introduced the notion of distributions two talk about generalized solutions
to differential equations. For his work he got the fields medal.

4.1 Space of Distributions

Definition 4.1. D(2) = C°(Q) is the set of test functions together with a topology deter-
mined by its converging sequences : ¢, — ¢ in D(Q) if

o there exists a compact subset K C  such that Supp(¢,,) C K.
o For all multiindices o we have 0,¢, — 0,,¢ in uniformly.

Convention: if v € R4\ Q, then ¢(z) := 0.
D’(2) is the topological dual space, i.e. the space of continuous linear functionals D(2) — C
with the weak-*-convergence, i.e. pointwise convergence.

Remark 4.2. A notion of converging sequence on a set X is
e The constant function on x converges to x
o A sequence converges to x iff any subsequence has a subsequence converging to x.

Note, that any subsequence of a converging sequence converges to the same limit. It induces
a closure operator on X (for AU B C AU B you use, that if a sequence in AU B converges
to x, then it has a subsequence (converging to x) lying in A or in B).

Example 4.3. Every locally integrable function f € L}, .(Q) gives us a distribution Af €
D’ () defined by

Af(9) = [ f@ola) da
Q
which is well-defined because ¢ has compact support.

Example 4.4. Let pu be a Radon measure on 2 (or more generally a signed Borel measure
which is finite on compact subsets of Q). Then it defines a distribution:

T, (p) = /Q b du
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Proof. As Borel sets are py-measurable, every continuous function is p-measurable. Let
K := Supp ¢ C Q. Because u(K) < oo and max ¢(K) < oo it follows that ¢ is p-integrable.
Linearity follows from linearity of the integral. If ¢, — ¢, unifomrly, then Supp ¢, C K for
all j and T,,¢6; — A, ¢, O

We have the following important special case:

Example 4.5 (Dirac-d). We have § € D'(Q) given by
5(¢) == ¢(0)

4.1.1 Convolution

Notation 1. For ¢ € D define ¢ € D as ¢ () = ¢(—x) and for x € R we have the shift
7.(¢) € D given by 7,(9)(y) = oy —x) .

Example 4.6. For f € L} (Q),g9 € D(Q) we have
(f * g)(x) = Af(r, (1))
Proposition 4.7. Let F € D’'(Q),1 € D. The following two distributions coincide:
1. The distribution determined by the smooth function x +— F(7,(1%)).
2. The distribution ¢ s F () x ¢).
We write this distribution as F * 1.
Proof. ¢ := ¥ The function x + F(7,(¥)) is smooth :

e It is continuous: If z, — =, then 7,(¢) — 7,

(¢) — 0 uniformly and the same holds

for partial derivatives. Now F is continuous hence F(7,(f?)) is continuous and F
preserves the difference quotients, hence it will be also smooth.

e The two distributions coincide:
P x0) = F ( [ (T @)ta) do))
L [Pt do

/FmpR

(r¥™))(¢)

Where we are allowed to pull out the integral by @

Lemma 4.8. Let ¢ € C°(Q x Q). Then for any F € D'(2) we have

F (/Q oz, ) d:c) = /QF(qb(x,)) dz
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Proof. Consider S, € D defined by

¢ y) = j{: ¢(n€,y)

neze

which is a finite sum as ¢ has compact support. Then for all ¢ € C2°(Q2 x Q) one has a limit
in D
/ oz, ) de = hm 52

Hence by continuity of F'

F(/ ¢(x, ) dz) = F(lim S2)
Q e—0
= lim F(S?)
e—0
— i d
~lmet 2 F
neza

= lim SF°¢
e—0

=4me»w

Using the first definition we learn the following two things
Example 4.9. From the description @ Writing Af * g is unambiguous.
Example 4.10. We have 6y * f = Af for all f € D.
Lemma 4.11. Convolution F x 1) is continuous in both variables.

Proof. Continuity in the distribution variable is clear by pointwise convergence.
For the continuity in the test function variable one uses that convolution with a fixed test
function is a continuous function 2 — 2D and distributions are continuous. O

Proposition 4.12. There exists a sequence 1, € C(2) such that Ay, — §, in D' (Q).

Proof. Fix some ¢ € D with [(z) dz = 1. Define ¢, (z) := n%)(nz). Then

(MMWMWZ/WMMW ) de — ¢ /w o)) — $(0)) dz — 0

where we used that ¢(z/n) — ¢(0) — 0 uniformly.

The following is how we view L, .(Q) C D'().

Corollary 4.13. Let f,g € L}, () such that Ay =A,. Then f =g almost everywhere.

Proof. We have 0 = A(f — g)(ra¢yf) = ¥, = (f —g) = 6o * (f —g) = f — g in Lj,,, hence
f = g almost everywhere. O

Example 4.14. 6§ is not a function! Le. its not of the form Af for some f € L}

loc
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Proof. We have Alq 1oy = AO so if it would be a function, then it would be zero almost
everywhere, hence 0. But this is a contradiction. O

Corollary 4.15. Then C*(R?) is dense in D’'(RY).

Proof. We know by that there exists Ay, — &, in D’. Let F be a distribution on R%.
Now setting F,, := F x ¢Z | yields pointwise
F(¢) = F(, *¢) = F(0y* ¢) = F(9)

by hence F,, — F in D’.

4.1.2 Derivatives

For ¢,v € D we have

/aww de = (—1)‘&‘/@9% dx
Q

Q

This motivates the definition

Definition 4.16. For a multiindex o and a distribution F define the distribution
O*F(¢) = (—1)*(Fo*¢)

Remark 4.17. let f € L} (Q). If there exists some f' € L} (), such that Af’ = 0°Af

loc loc
as distributions, then we call f’ the weak derivative of f with respect to «.

Proposition 4.18. For F € D',¢ € D , We have
O*(F*¢)=(0“F)xp=F*9d%

Proof. First note, that holds in the case where F' is a test function, so that we have ordinary
convolution. Then check pointwise. After erasing the sign (—1)"“‘

F(¢ x 0%Y) = F(9%(¢™ x 1)) = F((0%¢) * 1))

4.1.3 Support

The Support of a distribution F' is the complement of the largest open subset U, such that
F(¢) = 0V¢ € D,Supp(¢) C U. This definition is unambiguous: If F' vanishes on each U,
for some index set I and ¢ € D such that the compact set Supp¢ C U = |JU;, we may
assume that I is finite and choose a partition of unity Suppn, C U, and > n, = 1. Then

F(9) = Y. F(én,) = 0.

4.1.4 Tempered Distributions

We no enlarge our test space to the schwartz space § = §(R?) consisting of smooth functions
that are rapidly decreasing at co with all derivatives.

22



Definition 4.19. Consider the increasing sequence of norms on C* () defined by

|6 = sup{|2? (8 ¢(x))| | = € RY, |al, 8] < N}
§={¢p€ CR’) | ]y < cVN}
with the obvious notion of convergence.

Lemma 4.20. We have a continuous inclusions D C 8, hence 8’ C D’ (R?).
Moreover, this inclusion is dense. Hence being tempered is a property of distributions.

Lemma 4.21. Let f € L} _(RY) such that there exists N > 0 with

loc
[ 1@ = 0r), as R o0
lz|<R

The distribution Ay is tempered.
Example 4.22. This condition holds for functions in LP(R?) for p € [1, 0]

Lemma 4.23. If F € D’ has compact support then it is tempered: Choose n € D such
that |y = 1 on some neighborhood U D Supp(F). Then F(n¢) = F(¢) for all ¢ € D and
¢ = F(ng) defines a continuous functional on 8. It does not depend on the choice of 7,
because given another such n’ and any ¢ € § we have Supp((n —n’) - ¢) N Supp(F) = 2.

Let F denote a tempered distribution.
Lemma 4.24. o All O“F are tempered.
o Let v € C* be slowly increasing, i.e. for each « exists N, such that 0Sv¥(x) =
O(|z|Ne). Then ¢F, defined by (VF)(¢)(F(v¢) is tempered.

Example 4.25. If ¢ € 8, then F(r,(¢%)) is slowly increasing. The other formulation is
still valid because S is stable under *.

What is the point of the Schwartz space?
Definition 4.26. The fourier transformation is a continuous bijection
S—=8
o b= [ s dn)
Rd

Lemma 4.27. We have

25(0) = [ d@ote) do= [ v@)dta) do =4y
Rd R
So its easy to define a compatible generalization to the tempered distributions:
Definition 4.28. Define - -
F(¢) = F(¢)
and similarly for the inverse transform f f .

We automatically have the inversion theorem for distributions, because it holds for test
functions.

Example 4.29. If1 € S denotes the constant function at 1, then
5=A,

because



4.2 Fundamental solutions
In this chapter we may omit the A. Fix a partial differential operator L

L= Z a,0% on R?

| <m
with a, € C.
Definition 4.30. A fundamental solution of L is a distribution F such that L(F) =46
The reason why this is interesting:

Lemma 4.31. The operator
[ T(f)=Fxf

defines an inverse to L

Proof. because

OUF =+ f) = (0°F) x f = F % (0°f)

Summing over « gives
LFxf)=0xf=FxLf

Now recall § = f = f. O

Definition 4.32. The characteristic polynomial of L is

P& =Y a,(2mi§)~

la|<m

It is defined it such a way, that [//? =P f So our hope is

P 1) = [ et ae

The problem is, that the zeros of P result in difficulties to define F, even as a distribution.

4.2.1 Laplacian

for d > 3. To calculate

HL=A=Y" 2 Sol/P(¢) =1/(—4n*|¢[?) which lies in L}

=1 9%z, loc
our distribution the following is helpful

Theorem 4.33. For A\ > —d, Let H, be the tempered distribution associated to |z|* € L}, ..
If —d < A < 0 then _
Hy =c\H 4

with
o = I((d+ /\)/2)77711/27)\
I'(A/2)
Set A := —d 4+ 2. Hence we can find an appropriate constant C,; such that F(z) =

C,lz|~*2 is a fundamental solution, because F/(€) = 1/(—4n2|¢|?). So writing out AF = 1.
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Proposition 4.34. If d = 2, the function F := 1/(2r)log|z| € L},. is a fundamental
solution of A
Proof. Sketch. One can actually compute F' = —1/(47?) [#] — ¢’¢ for some constant ¢’,

where [ﬁ] is a distribution, that replaces the (non locally integrable) function 1/|x|? in an

appropriate way:
[ 1 }_ o(z) — $(0)
|z|<1

(z)
— d
|2 |z[?

d TN/
) P

|z|>1
Notice, that on the complement of zero, this distribution coincides with 1/|x|2.

Notation 2. If ¢ € C*°(Q) slowly increasing (i.e. all derivatives are bounded by polynomi-
als), define oF € 8" as ¢F (v) = F(¢v).

AF = —Ar2?|z|2F

1
t =0
=1

4.2.2 Heat operator

L =4 —A, taken over (z,t) € R¥*! = R? x R i.e. we want to solve the homogeneous initial
value problem

L(u) =0 >0
u(z,0) = f(z) ,t=0

for some initial value f € &.
We have

9 » é’\ \ 1 21 ¢12 47
(aﬂt)@) = &j{t(f) = A, T,(§) = —Am? €[ F,(€)

and this is obviously solved by H, = e 4™t We may call this the heat kernel

I, (§) = edmlElt

Note that for ¢ = 0, we have H, = 1, hence H, = 6, so u(z,t) = (H = f)(x) solves the
equation L(u) =0 and u(z,t) — f(x) in 8 as t — 0.

Remark 4.35. 7, —» ¢ in 8" ast — 0 and [, Hy(z) dz =1 for all t

Now define
F(x,t) := Hy(@) , if t>0,
0 <0

F is locally integrable on R4*! and it actually holds

/ /F(x,t)dxdth
lt|<R JRd
so F' defines a tempered distribution by .
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Theorem 4.36. F is a fundamental solution of L = % —A

Proof. Denote L' =

LF(¢) = = hm/ / (z,t)(
e=0 t>e JR

Integration by parts

Lg /Rd F(”’t)(_g —A,)¢(x,t) dz dt
Xw </ %tat +(A,H,)¢ dt) do

a
/) ( t8t H,)b dt) dz

= .7‘[5(.1‘ ) | |(b(.%‘,€) - ¢(x’0)| S O(E)
/[Rd}[ (@)(6(,0) + O(e)) dz 37
s 6(0,0)

where in the last line we let ¢ — 0
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f% — A, then we have to see the last equation

— A)¢(x,t) dz dt = 5(¢)

uniformly in x
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