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Chapter 1

Analysis in Mathlib
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Chapter 2

Plancherel’s Theorem

2.1 Basic Properties of the Fourier Transform
In this section we record, mostly without proofs, basic statements about the Fourier trans-
form on 𝐿1 functions. Most of these are already formalized in mathlib.

Let (𝑉 , 𝜇), (𝑊, 𝜈) be vector spaces over ℝ with a 𝜎-finite measure, 𝐸, 𝐹 be normed spaces
over ℂ and let 𝐿 ∶ 𝑉 × 𝑊 → ℝ, 𝑀 ∶ 𝐸 × 𝐹 → ℂ be bilinear maps.

Definition 2.1. Let 𝑓 ∈ 𝐿1(𝑉 , 𝐸). Its Fourier transform (w.r.t. 𝐿) is the function ℱ𝑓 =
̂𝑓 ∶ 𝑊 → 𝐸 given by

ℱ𝑓(𝑤) ∶= ̂𝑓(𝑤) ∶= ∫
𝑉

𝑒−2𝜋𝑖𝐿(𝑣,𝑤)𝑓(𝑣) 𝑑𝜇.

The inverse Fourier transform (w.r.t. 𝐿) is similarly defined as

ℱ−1𝑓(𝑤) = ̌𝑓(𝑤) ∶= ∫
𝑉

𝑒2𝜋𝑖𝐿(𝑣,𝑤)𝑓(𝑣) 𝑑𝜇.

Lemma 2.2. Let 𝑓 ∈ 𝐿1(𝑉 , 𝐸). Then its Fourier transform ̂𝑓 is well-defined and bounded.
In particular, the Fourier transform defines a map ℱ ∶ 𝐿1(𝑉 , 𝐸) → 𝐿∞(𝑉 , 𝐸).
Proof. Omitted.

From now on assume that 𝑉 and 𝑊 are equipped with second-countable topologies such
that 𝐿 is continuous.

Lemma 2.3. Let 𝑓 ∈ 𝐿1(𝑉 , 𝐸). Then ̂𝑓 is continuous.

Proof. Omitted.

Lemma 2.4 (Multiplication formula). Let 𝑓, 𝑔 ∈ 𝐿1(𝑉 , 𝐸). Then

∫
𝑊

𝑀( ̂𝑓(𝑤), 𝑔(𝑤)) 𝑑𝜈(𝑤) = ∫
𝑉

𝑀(𝑓(𝑣), ̂𝑔(𝑣)) 𝑑𝜇(𝑣).

Proof. Omitted.

Lemma 2.5. Lef 𝑓, 𝑔 ∈ 𝐿1(𝑉 , 𝐸), 𝑡 ∈ ℝ and 𝑎, 𝑏 ∈ ℂ. The Fourier transform satisfies the
following elementary properties:
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(i) ℱ(𝑎𝑓 + 𝑏𝑔) = 𝑎ℱ𝑓 + 𝑏ℱ𝑔 (Linearity)

(ii) ℱ(𝑓(𝑥 − 𝑡)) = 𝑒−2𝜋𝑖𝑡𝑦ℱ𝑓(𝑦) (Shifting)

(iii) ℱ(𝑓(𝑡𝑥)) = 1
|𝑡| ℱ𝑓( 𝑦

𝑡 ) (Scaling)

(iv) If 𝐸 admits a conjugation, then ℱ(𝑓(𝑥)) = ℱ𝑓(−𝑦) (Conjugation)

(v) Define the convolution of 𝑓 and 𝑔 w.r.t. a bilinear map 𝑀 ∶ 𝐸 × 𝐸 → 𝐹 as

(𝑓 ∗𝑀 𝑔)(𝑤) ∶= ∫
𝑉

𝑀(𝑓(𝑣), 𝑔(𝑤 − 𝑣)) 𝑑𝜇(𝑣).

Then ℱ(𝑓 ∗𝑀 𝑔) = 𝑀(ℱ𝑓, ℱ𝑔) (Convolution)

Proof. Omitted.

From now on, let 𝑉 be a finite-dimensional inner product space. We denote this product
as ordinary multiplication, and the induced norm as | ⋅ |.

We now study a family of functions which is useful for later proofs.

Lemma 2.6. Let 𝑥 ∈ 𝑉 and 𝛿 > 0. Define the modulated Gaussian

𝑢𝑥,𝛿(𝑦) ∶ 𝑉 → ℂ, 𝑦 ↦ 𝑒−𝛿𝜋|𝑦|2𝑒2𝜋𝑖𝑥𝑦.

Its Fourier transform (w.r.t. the inner product) is given by

𝑢𝑥,𝛿(𝑧) = 𝛿−𝑛/2𝑒−𝜋|𝑥−𝑦|2/𝛿 =∶ 𝐾𝛿(𝑥 − 𝑧).

Proof. By choosing an orthonormal basis, wlog we may assume 𝑉 = ℝ𝑛. First note 𝑢𝑥,𝛿(𝑧 −
𝑥) = 𝑢0,𝛿(𝑧), so it is enough to consider 𝑥 = 0. Next,

𝑢0,𝛿(𝑧) = ∫
ℝ𝑛

𝑒−𝜋𝛿|𝑦|2−2𝜋𝑖𝑦𝑧 𝑑𝑦 =
𝑛

∏
𝑖=1

∫
ℝ

𝑒−𝜋𝛿𝑦2
𝑖 −2𝜋𝑖𝑦𝑖𝑧𝑖𝑑𝑦𝑖 and 𝐾𝛿(−𝑧) =

𝑛
∏
𝑖=1

𝛿−1/2𝑒−𝜋𝑦2
𝑖 /𝛿,

hence we may assume 𝑛 = 1. The change of variables 𝑤 = 𝛿1/2𝑦 + 𝑖𝑧/𝛿1/2 results in

𝑢0,𝛿(𝑧) = ∫
ℝ

𝑒−𝜋𝛿𝑦2−2𝜋𝑖𝑦𝑧 𝑑𝑦 = 𝛿−1/2𝑒−𝜋𝑧2/𝛿 ∫
𝐼𝑚(𝑤)=𝑧/𝛿1/2

𝑒−𝜋𝑤2 𝑑𝑤.

Contour integration along the rectangle with vertices (±𝑅, 0), (±𝑅, 𝑖𝑧/𝛿1/2), together with
the bound

∣∫
±𝑅+𝑖𝑧/𝛿1/2

±𝑅
𝑒−𝜋𝑤2 𝑑𝑤∣ ≤ |𝑧|

𝛿1/2 sup
𝑤∈[𝑅,𝑅+𝑖𝑧/𝛿1/2]

|𝑒−𝜋𝑤2 | = |𝑧|
𝛿1/2 𝑒−𝜋𝑅2 𝑅→∞−−−→ 0

yields
∫

𝐼𝑚(𝑤)=−𝑧/𝛿1/2
𝑒−𝜋𝑤2 𝑑𝑤 = ∫

ℝ
𝑒−𝜋𝑤2 𝑑𝑤 = 1,

finishing the proof.
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Lemma 2.7. Let 𝐾𝛿(𝑣) = 𝛿−𝑛/2𝑒−𝜋|𝑣|2/𝛿 as in Lemma 2.6. This is a good kernel, called the
Weierstrass kernel, satisfying

∫
𝑉

𝐾𝛿(𝑥) 𝑑𝑥 = 1 and ∫
|𝑥|>𝜂

𝐾𝛿(𝑥) 𝑑𝑥 𝛿→0−−→ 0 for all 𝜂 > 0.

Furthermore, it satisfies the stronger bounds

𝐾𝛿(𝑥) ≤ 𝛿−𝑛/2 and 𝐾𝛿(𝑥) ≤ 𝐵𝛿1/2|𝑥|−𝑛−1

for some constant 𝐵 independent of 𝛿.
Proof. By choosing an orthonormal basis, wlog we may assume 𝑉 = ℝ𝑛. Then these are all
straight-forward calculations:

∫
ℝ𝑛

𝑒−𝜋|𝑥|2/𝛿 𝑑𝑥 = 𝛿𝑛/2 ∫
ℝ𝑛

𝑒−𝜋|𝑥|2 𝑑𝑥 = 𝛿𝑛/2.

∫
|𝑥|>𝜂

𝛿−𝑛/2𝑒−𝜋|𝑥|2/𝛿 𝑑𝑥 = ∫
|𝑥|>𝜂/𝛿1/2

𝑒−𝜋|𝑥|2 𝛿→0−−→ 0.

The first upper bound is trivial. For the second one, consider for 𝑟, 𝑧 ≥ 0 the inequality

Γ(𝑟 + 1) = ∫
∞

0
𝑒−𝑦𝑦𝑟 𝑑𝑦 ≥ ∫

∞

𝑧
𝑒−𝑦𝑦𝑟 𝑑𝑦 ≥ 𝑧𝑟 ∫

∞

𝑧
𝑒−𝑦 𝑑𝑦 = 𝑧𝑟𝑒−𝑧.

Applied to 𝑧 = 𝜋|𝑥|2/𝛿 and 𝑟 = (𝑛 + 1)/2, this gives

|𝑥|𝑛+1 = 𝛿(𝑛+1)/2 |𝑥|𝑛+1

𝛿(𝑛+1)/2 ≤ Γ((𝑛 + 3)/2)
𝜋(𝑛+1)/2⏟⏟⏟⏟⏟

=∶𝐵

𝛿(𝑛+1)/2𝑒𝜋|𝑥|2/𝛿,

which is equivalent to the second upper bound of the lemma.

The following technical theorem is used in the proofs of both the inversion formula and
Plancherel’s theorem.

Theorem 2.8. Let 𝑓 ∶ 𝑉 → 𝐸 be integrable. Let 𝐾𝛿 be the Weierstrass kernel from
Lemma 2.7, or indeed any family of functions satisfying the conditions of Lemma 2.7. Then

(𝐾𝛿 ∗ 𝑓)(𝑥) ∶= ∫
𝑉

𝐾𝛿(𝑦)𝑓(𝑥 − 𝑦) 𝑑𝜇(𝑦) 𝛿→0−−→ 𝑓(𝑥)

in the 𝐿1-norm. If 𝑓 is continuous, the convergence also holds pointwise.

Proof. Again we may assume 𝑉 = ℝ𝑛. Consider the difference

Δ𝛿(𝑥) ∶= (𝐾𝛿 ∗ 𝑓)(𝑥) − 𝑓(𝑥) = ∫
ℝ𝑛

(𝑓(𝑥 − 𝑦) − 𝑓(𝑥))𝐾𝛿(𝑦) 𝑑𝑦.

We prove 𝐿1-convergence first: Take 𝐿1-norms and use Fubini’s theorem to conclude

‖Δ𝛿‖1 ≤ ∫
ℝ𝑛

‖𝑓(𝑥 − 𝑦) − 𝑓(𝑥)‖1𝐾𝛿(𝑦) 𝑑𝑦.
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For 𝜀 > 0 find 𝜂 > 0 small enough so that ‖𝑓(𝑥 − 𝑦) − 𝑓(𝑥)‖1 < 𝜀 when |𝑦|𝜂. Thus

‖Δ𝛿‖1 ≤ 𝜀 + ∫
|𝑦|>𝜂

‖𝑓(𝑥 − 𝑦) − 𝑓(𝑥)‖𝐾𝛿(𝑦) 𝑑𝑦 ≤ 𝜀 + 2‖𝑓‖1 ∫
‖𝑦‖>𝜂

𝐾𝛿(𝑦) 𝑑𝑦.

By one of the properties in Lemma 2.7, we can choose 𝛿 small enough so that the second
integral is less than 𝜀, which finishes the proof in this case.

Now assume that 𝑓 is continuous. Let 𝑑 = 𝛿1/2 and shorten 𝑔𝛿(𝑥, 𝑦) = |𝑓(𝑥 − 𝑦) −
𝑓(𝑥)|𝐾𝛿(𝑦).Then

|Δ𝛿(𝑥)| ≤ ∫
0<|𝑦|<𝑑

𝑔𝛿(𝑥, 𝑦) 𝑑𝑦 + ∑
𝑘∈ℕ

∫
2𝑘𝑑<|𝑦|<2𝑘+1𝑑

𝑔𝛿(𝑥, 𝑦) 𝑑𝑦.

To bound these integrals, consider

𝜑(𝑟) = 1
𝑟𝑛 ∫

|𝑦|<𝑟
|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| 𝑑𝑦.

It is easy to see that 𝜑 is continuous, bounded, and approaches 0 for 𝑟 → 0, by continuity
of 𝑓 . Now

∫
0<|𝑦|<𝑑

𝑔𝛿(𝑥, 𝑦) 𝑑𝑦
(∗)
≤ 𝑑−𝑛 ∫

0<|𝑦|<𝑑
|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| 𝑑𝑦 = 𝜑(𝑑)

and

∫
2𝑘𝑑<|𝑦|<2𝑘+1𝑑

𝑔 𝑑𝑦
(∗)
≤ 𝐵𝑑

(2𝑘𝑑)𝑛+1 ∫
2𝑘𝑑<|𝑦|<2𝑘+1𝑑

|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| 𝑑𝑦 ≤ 2𝑛−𝑘𝐵𝜑(2𝑘+1𝑑),

where for the inequalities labeled (∗) we used the upper bounds from Lemma 2.7. Together,
we find

|Δ𝛿(𝑥)| ≤ 𝜑(𝑑) + 𝐶 ∑
𝑘∈ℕ

2−𝑘𝜑(2𝑘+1𝑑)

for 𝐶 = 2𝑛Γ((𝑛+3)/2)
𝜋(𝑛+1)/2 . Say 𝜑 is bounded by 𝑀 ∈ ℝ and let 𝜀 > 0. Take 𝑁 large enough such

that ∑𝑘≥𝑁 2−𝑘 < 𝜀. Choose 𝛿 small enough that 𝐴(2𝑘𝑑) < 𝜀/𝑁 for all 𝑘 < 𝑁 . Then

|Δ𝛿(𝑥)| ≤ 𝜀/𝑁 + (𝑁 − 1)𝐶𝜀/𝑁 + 𝐶𝜀𝑀 ≤ 𝜀𝐶(𝑀 + 1).

Remark 2.9. One can drop the continuity assumption and still get pointwise convergence
almost everywhere. The proof stays the same, but one focuses on Lebesgue points of 𝑓. It
takes slightly more work to argue that 𝜑 behaves nicely, but the rest of the proof stays the
same.
Theorem 2.10 (Inversion formula). Let 𝑓 ∶ 𝑉 → 𝐸 be integrable and continuous. Assume

̂𝑓 is integrable as well. Then
ℱ−1ℱ𝑓 = 𝑓.

Proof. Apply the multiplication formula Lemma 2.4 to 𝑢𝑥,𝛿 and 𝑓 , and conclude with The-
orem 2.8.

Remark 2.11. Note that both assumptions are necessary, since ℱ−1ℱ𝑓 is continuous, and
only defined if ℱ𝑓 is integrable.
Theorem 2.12 (Inversion formula, 𝐿1-version). Let 𝑓 ∈ 𝐿1(𝑉 , 𝐸). If ̂𝑓 ∈ 𝐿1(𝑉 , 𝐸), then
ℱ−1ℱ𝑓 = 𝑓.
Proof. Similar to Theorem 2.10.
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2.2 Plancherel’s Theorem and the Fourier Transform on
𝐿2

Let (𝑉 , ⋅) be a finite-dimensional inner product space over ℝ and let (𝐸, ⟨⋅, ⋅⟩) be an inner
product space over ℂ.

Theorem 2.13 (Plancherel’s Theorem). Suppose that 𝑓 ∶ 𝑉 → 𝐸 is in 𝐿1(𝑉 , 𝐸)∩𝐿2(𝑉 , 𝐸)
and let ̂𝑓 be the Fourier transform of 𝑓. Then ̂𝑓 , ̌𝑓 ∈ 𝐿2(𝑉 , 𝐸) and

‖ ̂𝑓‖𝐿2 = ‖𝑓‖𝐿2 = ‖ ̌𝑓‖𝐿2 .

Suppose that 𝑓 ∶ 𝑉 → 𝐸 is in 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸) and let ̂𝑓 be the Fourier transform of 𝑓.
Then ̂𝑓 , ̌𝑓 ∈ 𝐿2(𝑉 , 𝐸) and

‖ ̂𝑓‖𝐿2 = ‖𝑓‖𝐿2 = ‖ ̌𝑓‖𝐿2 .
Proof. Let 𝑔(𝑥) = 𝑓(−𝑥) and apply the multiplication formula Lemma 2.4 to 𝑓 ∗ 𝑔 and 𝑢0,𝛿:

∫
𝑉

𝑓 ∗ 𝑔 ⋅ 𝑢0,𝛿(𝑥) 𝑑𝑥 = ∫
𝑉

(𝑓 ∗ 𝑔)(𝑥)𝐾𝛿(−𝑥) 𝑑𝑥 𝛿→0→ (𝑓 ∗ 𝑔)(0) = ∫
𝑉

⟨𝑓(𝑥), 𝑓(𝑥)⟩ 𝑑𝑥 = ‖𝑓‖2
2

by Theorem 2.8. On the other hand, by Lemma 2.5 the left hand side simplifies to

∫
𝑉

| ̂𝑓(𝑥)|2𝑒−𝛿𝜋|𝑥|2 𝑑𝑥 𝛿→0−−→ ‖ ̂𝑓‖2
2

by dominated convergence.
Since ̌𝑓(𝑥) = ̂𝑓(−𝑥), the corresponding statements for ̌𝑓 follow immediately from the

ones for ̂𝑓 .

We now want to extend the Fourier transform to 𝐿2(𝑉 , 𝐸). For this, take a sequence of
functions (𝑓𝑛)𝑛 ⊂ 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸) such that 𝑓𝑛 −→

𝐿2
𝑓 . Such sequences exist:

Lemma 2.14. 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸) is dense in 𝐿2(𝑉 , 𝐸).
Proof. It is well-known that the space of compactly supported continuous functions is dense
in every 𝐿𝑝(𝑉 , 𝐸). Since those are contained in 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸), the claim follows.

Let 𝑓 ∈ 𝐿2(𝑉 , 𝐸). Plancherel’s theorem lets us now approximate a potential ̂𝑓 :

Lemma 2.15. Let 𝑓 ∈ 𝐿2(𝑉 , 𝐸) and (𝑓𝑛)𝑛 ⊂ 𝐿1(𝑉 , 𝐸)∩𝐿2(𝑉 , 𝐸) a sequence with 𝑓𝑛 −→
𝐿2

𝑓.
Then ( ̂𝑓𝑛)𝑛 is a Cauchy sequence, hence converges in 𝐿2(𝑉 , 𝐸).
Proof.

‖ ̂𝑓𝑛 − ̂𝑓𝑚‖2 = ‖ ̂𝑓𝑛 − 𝑓𝑚‖2
Plancherel= ‖𝑓𝑛 − 𝑓𝑚‖2

goes to 0 for 𝑛, 𝑚 large, as (𝑓𝑛)𝑛 is convergent, hence Cauchy. Since 𝐿2(𝑉 , 𝐸) is complete,
( ̂𝑓𝑛)𝑛 converges.

Definition 2.16. Let 𝑓 ∈ 𝐿2(𝑉 , 𝐸) and take a sequence (𝑓𝑛)𝑛 ⊂ 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸) with
𝑓𝑛 −→

𝐿2
𝑓. Set

ℱ𝑓 ∶= ̂𝑓 ∶= lim
𝑛→∞

𝑓𝑛,

the limit taken in the 𝐿2-sense.
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Lemma 2.17. This is well-defined: By Lemma 2.15, the limit exists. Further it does not
depend on the choice of sequence (𝑓𝑛)𝑛. If 𝑓 ∈ 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸), this definition agrees
with the Fourier transform on 𝐿1(𝑉 , 𝐸).
Proof. Let (𝑔𝑛)𝑛 be another sequence approximating 𝑓 . Then

‖ ̂𝑓𝑛 − ̂𝑔𝑛‖2 = ‖𝑓𝑛 − 𝑔𝑛‖ ≤ ‖𝑓𝑛 − 𝑓‖ + ‖𝑔𝑛 − 𝑔‖ → 0.

If 𝑓 ∈ 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸), we can choose the constant sequence (𝑓𝑛)𝑛 = (𝑓)𝑛.

Definition 2.18. Define analogously ℱ−1𝑓 ∶= ̌𝑓 ∶= lim𝑛→∞ ̌𝑓𝑛, if 𝑓𝑛 −→
𝐿2

𝑓 ∈ 𝐿2(𝑉 , 𝐸) with
(𝑓𝑛)𝑛 ⊂ 𝐿1(𝑉 , 𝐸) ∩ 𝐿2(𝑉 , 𝐸). By the same arguments as above, this is well-defined.

Corollary 2.19. Plancherel’s Theorem, the inversion formula, and the properties of Lemma 2.5
hold for the Fourier transform on 𝐿2(𝑉 , 𝐸) as well.

Proof. All of these follow immediately from the definition and the observation, that all
operations (norms, sums, conjugation, …) are continuous. For example, let 𝑓 ∈ 𝐿2(𝑉 , 𝐸)
and take an approximating sequence (𝑓𝑛)𝑛 as before. Then

‖ ̂𝑓‖2 = ‖ lim
𝑛→∞

̂𝑓𝑛‖2 = ‖ lim
𝑛→∞

‖ ̂𝑓𝑛‖2 = lim
𝑛→∞

‖𝑓𝑛‖2 = ‖ lim
𝑛→∞

𝑓𝑛‖2 = ‖𝑓‖2.

Corollary 2.20. The Fourier transform induces a continuous linear map 𝐿2(𝑉 , 𝐸) →
𝐿2(𝑉 , 𝐸).
Proof. This follows immediately from Corollary 2.19: Linearity from the 𝐿2-version of
Lemma 2.5, and continuity and well-definedness from the 𝐿2-version of Plancherel’s the-
orem.
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Chapter 3

Interpolation

3.1 Rietz-Thorin’s Interpolation Theorem
Rietz-Thorin’s interpolation theorem is a powerful tool to study boundedness of linear op-
erators between complex 𝐿𝑝 spaces. Informally, it states that if a linear map 𝑇 is bounded
as an operator 𝐿𝑝0 → 𝐿𝑞0 and as an operator 𝐿𝑝1 → 𝐿𝑞1 , then it must also be a bounded
operator 𝐿𝑝 → 𝐿𝑞 whenever ( 1

𝑝 , 1
𝑞 ) is a convex combination of ( 1

𝑝0
, 1

𝑞0
) and ( 1

𝑝1
, 1

𝑞1
).

Since simple functions are contained in all the 𝐿𝑝 spaces, and bounded linear operators are
continuous, an equivalent formulation may be: given a bounded linear operator from simple
functions to functions that are integrable on all sets of finite measure, if we know it can
be extended to bounded linear operators 𝐿𝑝0 → 𝐿𝑞0 and 𝐿𝑝1 → 𝐿𝑞1 , then it can also be
extended 𝐿𝑝 → 𝐿𝑞 with 𝑝 and 𝑞 as above.

Before we start, let us recall the maximum modulus principle from complex analysis. There
are various statements of this in Lean, see the dedicated Mathlib page.

Theorem 3.1. Let 𝑈 be a connected open set in a complex normed space 𝐸. Let 𝑓 ∶ 𝐸 → 𝐹
be a function that complex differentiable on 𝑈 and continuous on ̄𝑈 .
If |𝑓(𝑧)| takes its maximum on a point 𝑢 ∈ 𝑈 , then it must be constant on ̄𝑈 .

Proof. Already formalized in Mathlib, along with several variants.

Lemma 3.2. Let 𝑆 be the strip 𝑆 ∶= {𝑧 ∈ ℂ | 0 < Re 𝑧 < 1}. Let 𝑓 ∶ 𝑆 → ℂ be a function
that is holomorphic on 𝑆 and continuous and bounded on 𝑆.
Assume 𝑀0, 𝑀1 are positive real numbers such that for all values of 𝑦 in ℝ, we have

|𝜙(𝑖𝑦)| ≤ 𝑀0 |𝜙(1 + 𝑖𝑦)| ≤ 𝑀1

i.e., the absolute values of the function on the lines {Re 𝑧 = 0} and {Re 𝑧 = 1} are bounded
by 𝑀0 and 𝑀1 respectively.
Then, for all 0 ≤ 𝑡 ≤ 1 and for all real values of 𝑦, we have

|𝜙(𝑡 + 𝑖𝑦)| ≤ 𝑀1−𝑡
0 𝑀 𝑡

1

Proof.
If |𝜙| is constant, everything holds trivially by setting 𝑀0 and 𝑀1 to be the value of |𝜙| at
a point. Assume |𝜙| non-constant.
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• Case 1: assume 𝑀0 = 𝑀1 = 1, and sup0≤𝑥≤1 |𝜙(𝑥 + 𝑖𝑦)| → 0 when |𝑦| → ∞.
Let 𝑀 be the supremum of |𝜙(𝑧)| on ̄𝑆. Since the function is non-constant, we have
𝑀 > 0.
Let {𝑧𝑛} be a sequence of points in 𝑆 such that |𝜙(𝑧𝑛)| converges to 𝑀 .
Since we assumed the absolute value of 𝜙 goes to zero as |𝑦| goes to infinity, all points
where |𝜙(𝑧)| > 𝑀 − 𝜖 must be in some rectangle around zero, i.e. the sequence 𝑧𝑛
must be bounded.
Hence, there must be a converging subsequence of 𝑧𝑛 to a point 𝑧∗ ∈ ̄𝑆.
By maximum modulus principle, 𝑧∗ must be on the boundary 𝛿𝑆, so it must have real
part 0 or 1. Hence, by assumption, |𝜙(𝑧∗)| ≤ 1, and by construction |𝜙(𝑧)| ≤ 1 for all
𝑧 ∈ ̄𝑆, which is what we wanted to show.

• Case 2: only assume 𝑀0 = 𝑀1 = 1.
For 𝜖 > 0, define

𝜙𝜖(𝑧) = 𝜙(𝑧)𝑒𝜖(𝑧2−1)

If the real part of 𝑧 is 0, then 𝑧 = 𝑖𝑦 and

|𝜙𝜖(𝑧)| = |𝜙(𝑧)𝑒𝜖(−𝑦2−1)| ≤ |𝜙(𝑧)| ⋅ 1 ≤ 1

If the real part of 𝑧 is 1, then 𝑧 = 1 + 𝑖𝑦 and

|𝜙𝜖(𝑧)| = |𝜙(𝑧)𝑒𝜖(1−𝑦2+2𝑖𝑦−1)| = |𝜙(𝑧)𝑒𝜖(−𝑦2+2𝑖𝑦)| = |𝜙(𝑧)𝑒𝜖(−𝑦2)| ≤ |𝜙(𝑧)| ⋅ 1 ≤ 1

Moreover,

|𝜙𝜖(𝑥+𝑖𝑦)| ≤ |𝜙(𝑥+𝑖𝑦)|⋅|𝑒𝜖(𝑧2−1)| = |𝜙(𝑥+𝑖𝑦)|⋅|𝑒𝜖(𝑥2−1−𝑦2+2𝑖𝑥𝑦)| = |𝜙(𝑥+𝑖𝑦)|⋅|𝑒𝜖(𝑥2−1−𝑦2)|

Hence, for 0 ≤ 𝑥 ≤ 1 and |𝑦| → ∞, we have that both factors go to zero.
Thus 𝜙𝜖 satisfies the hypotheses of case 1, so |𝜙𝜖| ≤ 1 on the whole strip.
Now, we have pointwise that

lim
𝜖→0

𝜙𝜖(𝑧) = lim
𝜖→0

𝜙(𝑧)𝑒𝜖(𝑧2−1) = 𝜙(𝑧)

Hence, for 𝜖 → 0, we have |𝜙𝜖(𝑧)| → |𝜙(𝑧)|. Thus,

|𝜙(𝑧)| = lim
𝜖→0

|𝜙𝜖(𝑧)| ≤ 1

which is what we wanted to show.

• General case
If 𝑀0 and 𝑀1 are any two positive real numbers, define

̃𝜙(𝑧) = 𝑀𝑧−1
0 𝑀−𝑧

1 𝜙(𝑧)

Recall that, for 𝑎 ∈ ℝ ∖ {0}, we have

|𝑎𝑏+𝑖𝑐| = |𝑎𝑏|

Hence, if the real part of 𝑧 is 0, we have

| ̃𝜙(𝑧)| ≤ |𝑀−1
0 | ⋅ |𝑀0

1 | ⋅ |𝜙(𝑧)| ≤ 1
𝑀0

⋅ 𝑀0 = 1
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And if the real part of 𝑧 is 1, we have

| ̃𝜙(𝑧)| ≤ |𝑀0
0 | ⋅ |𝑀−1

1 | ⋅ |𝜙(𝑧)| ≤ 1
𝑀1

⋅ 𝑀1 = 1

From the previous case, we obtain that for arbitrary 𝑧 in the strip

| ̃𝜙(𝑧)| ≤ 1

Now, write 𝑧 = 𝑡 + 𝑖𝑦 and unroll the definition of ̃𝜙 to obtain

|𝑀 𝑡−1+𝑦
0 𝑀−𝑡−𝑖𝑦

1 𝜙(𝑧)| ≤ 1

The left-hand side is equal to
𝑀 𝑡−1

0 𝑀−𝑡
1 |𝜙(𝑧)|

So we obtain
|𝜙(𝑧)| ≤ 𝑀1−𝑡

0 𝑀 𝑡
1

which is exactly what we wanted.

Lemma 3.3. Let 𝑝 and 𝑞 be real conjugate exponents. Let 𝑓 be measurable. Then

‖𝑓‖𝐿𝑞 = sup
‖𝑔‖𝐿𝑝 ≤1, 𝑔 simple

‖𝑓𝑔‖𝐿1 .

In particular, if the right hand side formula is finite, 𝑓 ∈ 𝐿𝑞.

Proof. That
sup

‖𝑔‖𝐿𝑝 ≤1, 𝑔 simple
‖𝑓𝑔‖𝐿1 ≤ ‖𝑓‖𝐿𝑞

follows from Hölder’s inequality.
The other direction is trivial when ‖𝑓‖𝐿𝑞 = 0. Suppose ‖𝑓‖𝐿𝑞 ≠ 0. Set

𝑔 = |𝑓|𝑝−1

‖𝑓‖𝑝−1
𝐿𝑝

.

Then ‖𝑔‖𝐿𝑝 = 1.

‖𝑓‖𝐿𝑞 = ‖𝑓𝑔‖𝐿1

= sup
𝑛∈ℕ

‖𝑓𝑔𝑛‖𝐿1 (1)

≤ sup
‖𝑔‖𝐿𝑝 ≤1, 𝑔 simple

‖𝑓𝑔‖𝐿1 (2)

In (1) and (2), 𝑔𝑛 is a monotone sequence of simple function approximating 𝑔 from below,
whose existence is basic real analysis.

Lemma 3.4. Let 𝑓 be measurable and the measure 𝜇 be 𝜎-finite. Then

‖𝑓‖𝐿∞ = sup
‖𝑔‖𝐿1 ≤1, 𝑔 simple

‖𝑓𝑔‖𝐿1 .
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Proof. That
sup

‖𝑔‖𝐿1 ≤1, 𝑔 simple
‖𝑓𝑔‖𝐿1 ≤ ‖𝑓‖𝐿∞

follows from Hölder’s inequality.
Suppose 𝑀 ∶= sup‖𝑔‖𝐿1 ≤1, 𝑔 simple ‖𝑓𝑔‖𝐿1 < ‖𝑓‖𝐿∞ . Then {𝑥||𝑓(𝑥)| ≥ 𝑀} has positive

measure. Since 𝜇 is 𝜎-finite, we have a subset 𝐵 ⊂ {𝑥||𝑓(𝑥)| ≥ 𝑀} with finite positive
measure by a classical lemma. Now set

ℎ ∶= 𝜇(𝐵)−1𝜒𝐵.

Then we have

𝑀 = ∫
𝐵

𝜇(𝐵)−1𝑀𝑑𝜇

< ∫
𝐵

𝜇(𝐵)|𝑓|𝑑𝜇

= ‖𝑓ℎ‖𝐿1 .

But ‖ℎ‖ = 1 and ℎ is simple, so ‖𝑓ℎ‖𝐿1 ≤ 𝑀 , contradiction.

As a last step towards proving the theorem, let us recall a consequence of Hölder’s
inequality, which will only really be substantial in a corner case of our proof.

Lemma 3.5. Let (𝑋, 𝜇) be a measure space and 0 < 𝑝0 < 𝑝1 ≤ ∞, 0 ≤ 𝑝 ≤ ∞. Assume we
have 𝑡 ≥ 0 such that

1
𝑝 = 1 − 𝑡

𝑝0
+ 𝑡

𝑝1

Let 𝑓 ∶ 𝑋 → ℂ be a measurable function. Then

‖𝑓‖𝐿𝑝 ≤ ‖𝑓‖1−𝑡
𝐿𝑝0 ‖𝑓‖𝑡

𝐿𝑝1

In particular, the 𝑓 in 𝐿𝑝0(𝑋) ∩ 𝐿𝑝1(𝑋), then 𝑓 is in 𝐿𝑝(𝑋).
Proof. This is just a version of Hölder’s inequality, but in order to apply it, we should rule
out some trivial cases.

First note that the assumption guarantees that 0 < 𝑝0 ≤ 𝑝 ≤ 𝑝1 ≤ ∞ and 0 ≤ 𝑡 ≤ 1.
When 𝑡 = 0 or 𝑡 = 1, the inequality holds trivially. Hence we may assume 𝑡 ≠ 0 and

𝑡 ≠ 1. In this case 𝑝 < 𝑝1 ≤ ∞.
Now we can rearrange the equality into

1
𝑝0

(1 − 𝑡)𝑝

+ 1
𝑝1
𝑡𝑝

= 1.
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Using Hölder’s inequality, we have

‖𝑓‖𝐿𝑝 = (∫ |𝑓|𝑝𝑑𝜇)1/𝑝

= (∫ |𝑓|(1−𝑡)𝑝|𝑓|𝑡𝑝𝑑𝜇)1/𝑝

≤ ((∫ |𝑓|(1−𝑡)𝑝 𝑝0
(1−𝑡)𝑝 𝑑𝜇)

(1−𝑡)𝑝
𝑝0 (∫ |𝑓|𝑡𝑝 𝑝1

𝑡𝑝 𝑑𝜇)
𝑡𝑝
𝑝1 )1/𝑝

= (∫ |𝑓|𝑝0𝑑𝜇)
(1−𝑡)

𝑝0 (∫ |𝑓|𝑝1𝑑𝜇)
𝑡𝑝
𝑝1

= ‖𝑓‖1−𝑡
𝐿𝑝0 ‖𝑓‖𝑡

𝐿𝑝1

Theorem 3.6. Let (𝑋, 𝜇) and (𝑌 , 𝜈) be measure spaces and consider all 𝐿𝑝 spaces to be
complex valued.
Suppose 𝑇 is a linear map 𝐿𝑝0(𝑋) + 𝐿𝑝1(𝑋) → 𝐿𝑞0(𝑌 ) + 𝐿𝑞1(𝑌 ) that restricts to bounded
operators 𝐿𝑝0 → 𝐿𝑞0 and 𝐿𝑝1 → 𝐿𝑞1 . Let 𝑀0, 𝑀1 be the respective bounds, i.e.,

{||𝑇 𝑓||𝐿𝑞0 ≤ 𝑀0||𝑓||𝐿𝑝0

||𝑇 𝑓||𝐿𝑞1 ≤ 𝑀1||𝑓||𝐿𝑝1

Then, for any pair (𝑝, 𝑞) such that there is a 𝑡 in [0, 1] for which

1
𝑝 = 1 − 𝑡

𝑝0
+ 𝑡

𝑝1

1
𝑞 = 1 − 𝑡

𝑞0
+ 𝑡

𝑞1

we have that the operator is bounded 𝐿𝑝 → 𝐿𝑞, and in particular

||𝑇 𝑓||𝐿𝑞 ≤ 𝑀1−𝑡
0 𝑀 𝑡

1||𝑓||𝐿𝑝

Proof. For a valid choice of 𝑝, 𝑞, note that we both need to show 𝑇 𝑓 is in 𝐿𝑞 and a bound
on the 𝐿𝑞 norm of 𝑇 𝑓 . Let 𝑞′ be the conjugate exponent of 𝑞. By Lemma ?? for 𝑇 𝑓 , we
need a bound of the form

sup
||𝑔||𝐿𝑞′ ≤1, 𝑔 simple

∣∫ 𝑇 (𝑓)𝑔∣ ≤ 𝑀||𝑓||𝐿𝑝

• Case 1: assume 𝑝 < ∞ and 𝑞 > 1, and let 𝑞′, 𝑞1
0 , 𝑞′

1 be the conjugate exponents of
𝑞, 𝑞0, 𝑞1 respectively.

– Subcase a: assume 𝑓 = ∑𝑖 𝑎𝑖𝜒𝐸𝑖
is a simple function (finite sum with 𝐸𝑖 disjoint

of finite measure).
Let 𝑔 = ∑𝑗 𝑏𝑗𝜒𝐹𝑗

be a simple function. By writing 𝑓 as ||𝑓||𝐿𝑝 ⋅ 𝑓
||𝑓||𝐿𝑝 and

using linearity of 𝑇 and integrals, it suffices to prove the above inequality when
||𝑓||𝐿𝑝 = 1.
We want to apply the three lines lemma to an appropriate function. Define

𝛾(𝑧) = 𝑝 (1 − 𝑧
𝑝0

+ 𝑧
𝑝1

) 𝑓𝑧 = |𝑓|𝛾(𝑧) ⋅ 𝑓
|𝑓|
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𝛿(𝑧) = 𝑞′ (1 − 𝑧
𝑞′

0
+ 𝑧

𝑞′
1

) 𝑔𝑧 = |𝑔|𝛿(𝑧) ⋅ 𝑔
|𝑔|

Observe that for 𝑡 as in the statement of the theorem, we have by definition that
𝛾(𝑡) = 1, hence 𝑓𝑡 = 𝑓 .
Moreover, if Re(𝑧) = 0, we have that Re(𝛾(𝑧)) = 𝑝

𝑝0
, and hence

||𝑓𝑧||𝐿𝑝0 = (∫ |𝑓𝑧|𝑝0)
1

𝑝0 = (∫ ||𝑓|𝛾(𝑧)|𝑝0)
1

𝑝0 = (∫ |𝑓|
𝑝

𝑝0 ⋅𝑝0)
1

𝑝0 = (||𝑓||𝑝𝐿𝑝)
1

𝑝0 = 1 1
𝑝0 = 1

If Re(𝑧) = 1, we have Re(𝛾(𝑧)) = 𝑝
𝑝1

, and the exact same computation replacing
𝑝0 with 𝑝1 now shows that ||𝑓𝑧||𝐿𝑝1 = 1.
Similarly, one shows that

𝑔𝑡 = 𝑔 ||𝑔𝑧||𝐿𝑞′
0 = 1 if Re(𝑧) = 0 ||𝑔𝑧||𝐿𝑞′

1 = 1 if Re(𝑧) = 1

Now, we want to apply the three lines lemma to the function

𝜙(𝑧) ∶= ∫(𝑇 𝑓𝑧)𝑔𝑧

Since 𝑓 and 𝑔 are simple and given by the expressions above, we can explicitly
write 𝑓𝑧 and 𝑔𝑧 as

𝑓𝑧 = ∑
𝑖

|𝑎𝑖|𝛾(𝑧) 𝑎𝑖
|𝑎𝑖|

𝜒𝐸𝑖
𝑔𝑧 = ∑

𝑗
|𝑏𝑗|𝛿(𝑧) 𝑏𝑗

|𝑏𝑗|
𝜒𝐹𝑗

(here, we use that the 𝐸𝑖 (respectively 𝐹𝑗) are disjoint, so for every point in the
domain there is at most one of the 𝐸𝑖 covering it).
So, expanding everything by linearity of 𝑇 and integrals, we obtain

𝜙(𝑧) = ∑
𝑖,𝑗

|𝑎𝑖|𝛾(𝑧) 𝑎𝑖
|𝑎𝑖|

|𝑏𝑗|𝛿(𝑧) 𝑏𝑗
|𝑏𝑗|

∫ 𝑇 (𝜒𝐸𝑖
)𝜒𝐹𝑗

This only depends on 𝑧 holomorphically in terms of the exponents of the |𝑎𝑖| and
|𝑏𝑗|, so it is a holomorphic function on the strip 𝑆 in the three lines lemma and
it is continuous on 𝑆.
It it also bounded on ̄𝑆. In fact, we wrote 𝜙 as a finite sum, so we only need
to show each summand is bounded. Since the real part of 𝑧 is between 0 and 1,
the terms |𝑎𝑖|𝛾(𝑧) and |𝑏𝑗|𝛿(𝑧) have bounded norms. Finally, recall that Hölder’s
inequality states that ||𝑓𝑔||1 ≤ ||𝑓||𝑝||𝑔||1 for conjugate exponents 𝑝, 𝑞. Hence,

∣∫ 𝑇 (𝜒𝐸𝑖
)𝜒𝐹𝑗

∣ ≤ ||𝑇 (𝜒𝐸𝑖
)𝜒𝐹𝑗

||𝐿1 ≤ ||𝑇 (𝜒𝐸𝑖
)||𝐿𝑝0 ⋅ ||𝜒𝐹𝑗

||𝑝′
0

≤ 𝑀0𝜇(𝐸𝑖)𝜇(𝐹𝑗)

which is bounded. Moreover, if Re(𝑧) = 0, since ||𝑓𝑧||𝐿𝑝0 = ||𝑔𝑧||𝐿𝑞′
0 = 1, we have

|𝜙(𝑧)| ≤ ∫ |(𝑇 𝑓𝑧)𝑔𝑧| ≤ ||𝑇 𝑓𝑧||𝐿𝑞0 ⋅ ||𝑔𝑧||𝐿𝑞′
0 ≤ 𝑀0 ⋅ ||𝑔𝑧||𝐿𝑞′

0 ≤ 𝑀0

Similarly, if Re(𝑧) = 1, we obtain

|𝜙(𝑧)| ≤ ∫ |(𝑇 𝑓𝑧)𝑔𝑧| ≤ ||𝑇 𝑓𝑧||𝐿𝑞1 ⋅ ||𝑔𝑧||𝐿𝑞′
1 ≤ 𝑀1 ⋅ ||𝑔𝑧||𝐿𝑞′

1 ≤ 𝑀1
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Thus, applying the three lines lemma to 𝜙(𝑧) yields that

|𝜙(𝑡 + 𝑦𝑖)| ≤ 𝑀1−𝑡
0 𝑀 𝑡

1

In particular, this holds for 𝑦 = 0, but now

𝜙(𝑡) = ∫(𝑇 𝑓𝑡)𝑔𝑡 = ∫(𝑇 𝑓)𝑔

So we have
∣∫(𝑇 𝑓)𝑔∣ ≤ 𝑀1−𝑡

0 𝑀 𝑡
1

which is exactly what we wanted to show.
– Subcase b: Now, let 𝑓 be any function in 𝐿𝑝. By density of simple functions,

approximate 𝑓 by a sequence 𝑓𝑛 of simple functions with ||𝑓𝑛 − 𝑓||𝐿𝑝 → 0.
By the previous case, we have ||𝑇 𝑓𝑛||𝐿𝑞 ≤ 𝑀||𝑓𝑛||𝐿𝑝 . In particular, the sequence
{𝑇 𝑓𝑛} is Cauchy in 𝐿𝑞, since

||𝑇 𝑓𝑚 − 𝑇 𝑓𝑛||𝐿𝑞 = ||𝑇 (𝑓𝑚 − 𝑓𝑛)||𝐿𝑞 ≤ 𝑀||𝑓𝑚 − 𝑓𝑛||𝐿𝑝

and the original sequence is Cauchy. By completeness, the {𝑇 𝑓𝑛} converge in
𝐿𝑞, in particular the 𝐿𝑞 norm of the limit is the limit of the 𝐿𝑞 norms, which is
less than 𝑀||𝑓||𝐿𝑝 . Hence, it suffices to show that the sequence {𝑇 𝑓𝑛} converges
almost everywhere to 𝑇 𝑓 .
Write 𝑓 = 𝑓𝑈 + 𝑓𝐿 with

𝑓𝑈 ∶= {𝑓(𝑥) if |𝑓(𝑥)| ≥ 1
0 otherwise

𝑓𝐿 ∶= {𝑓(𝑥) if |𝑓(𝑥)| < 1
0 otherwise

and similarly 𝑓𝑛 = 𝑓𝑈
𝑛 + 𝑓𝐿

𝑛 .
Modulo reordering them, assume 𝑝0 ≤ 𝑝1, so we have 𝑝0 ≤ 𝑝 ≤ 𝑝1. Since 𝑓 ∈ 𝐿𝑝,
𝑓𝑈 must be in 𝐿𝑝0 and 𝑓𝐿 in 𝐿𝑝1 . Similarly, since 𝑓𝑛 → 𝑓 in 𝐿𝑝, we have 𝑓𝑈

𝑛 → 𝑓𝑈

in 𝐿𝑝0 and 𝑓𝐿
𝑛 → 𝑓𝐿 in 𝐿𝑝1 .

By the assumptions of boundedness of 𝐿

𝑇 𝑓𝑈
𝑛 → 𝑇 𝑓𝑈 in 𝐿𝑞0 𝑇 𝑓𝐿

𝑛 → 𝑇 𝑓𝐿 in 𝐿𝑞1

Modulo extracting subsequences, we can assume that the convergence is almost
everywhere, so that almost everywhere

𝑇 𝑓𝑛(𝑥) = 𝑇 𝑓𝑈
𝑛 (𝑥) + 𝑇 𝑓𝐿

𝑛 (𝑥) → 𝑇 𝑓𝑈(𝑥) + 𝑇 𝑓(𝑥) = 𝑇 𝑓(𝑥)

which is what we wanted to show.

• Case 2: 𝑝 = ∞ or 𝑞 = 1.
If 𝑝 = ∞, we must also have 𝑝0 = 𝑝1 = ∞, thus we have

||𝑇 𝑓||𝐿𝑞0 ≤ 𝑀0||𝑓||𝐿∞ ||𝑇 𝑓||𝐿𝑞1 ≤ 𝑀1||𝑓||𝐿∞

Applying Lemma 3.5 with 𝑇 𝑓, 𝑞, 𝑞0, 𝑞1, we obtain

||𝑇 𝑓||𝐿𝑞 ≤ ||𝑇 𝑓||1−𝑡
𝐿𝑞0 ||𝑇 𝑓||𝑡𝐿𝑞1 ≤ 𝑀1−𝑡

0 𝑀 𝑡
1||𝑓||𝐿∞
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which is what we wanted.

If 𝑝 < ∞ and 𝑞 = 1, then (since they must be at least 1 by definition of 𝐿𝑝 spaces) we
have that 𝑞0 and 𝑞1 must also both be 1 (for example, since 1

𝑞 is a convex combination
of the other two reciprocals, the largest one must be 1, and from that rearranging terms
shows the other one is 1). In this case, take 𝑔𝑧 = 𝑔 for all 𝑧 and repeat the proof above
(note:isn’t this what already happens if we do not consider this case separately?).

3.2 Applications of Rietz-Thorin’s Interpolation Theo-
rem

3.2.1 Hausdorff-Young inequalities
Lemma 3.7. Let 𝑋 = [0, 2𝜋] with normalized Lebesgue measure 𝑑𝜃

2𝜋 and let 𝑌 = ℤ with
counting measure.
Consider the operator 𝑇 ∶ 𝑓 ↦ {𝑎𝑛}𝑛∈ℤ where

𝑎𝑛 = 1
2𝜋 ∫

2𝜋

0
𝑓(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃

For 1 ≤ 𝑝 ≤ 2 and 1
𝑝 + 1

𝑞 = 1, we have

||𝑇 𝑓||𝐿𝑞 ≤ ||𝑓||𝐿𝑝

Proof. Observe that we may simply regard 𝑇 as an operator 𝐿1([0, 2𝜋]) → 𝐿∞(ℤ) since
𝐿2([0, 2𝜋]) ⊆ 𝐿1([0, 2𝜋]) (compact domain, bound with maximum), and 𝐿2(ℤ) ⊆ 𝐿∞(ℤ).
Note that the claim corresponds (unless 𝑞 is infinity) to the inequality

(∑
𝑛∈ℤ

|𝑎𝑛|𝑞)
1/𝑞

≤ ( 1
2𝜋 ∫

2𝜋

0
|𝑓(𝜃)|𝑝𝑑𝜃)

1/𝑝

For 𝑝0 = 2 (thus 𝑞0 = 2), this is Parseval’s identity (see tsum_sq_fourierCoeff).
For 𝑝1 = 1 (thus 𝑞1 = ∞), we can check it directly. Since

𝑎𝑛 = 1
2𝜋 ∫

2𝜋

0
𝑓(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃

we have
|𝑎𝑛| ≤ 1

2𝜋 ∫
2𝜋

0
|𝑓(𝜃)𝑒−𝑖𝑛𝜃|𝑑𝜃 ≤ 1

2𝜋 ∫
2𝜋

0
|𝑓(𝜃)|𝑑𝜃 = ||𝑓||𝐿1

So
||𝑇 𝑓||∞ = sup

𝑛
|𝑎𝑛| ≤ ||𝑓||𝐿1

Applying Rietz-Thorin’s theorem, we obtain that the claim holds whenever we can find a
𝑡 ∈ [0, 1] such that

1
𝑝 = 1 − 𝑡

𝑝0
+ 𝑡

𝑝1

1
𝑞 = 1 − 𝑡

𝑞0
+ 𝑡

𝑞1
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Substituting 𝑝0 = 2, 𝑝1 = 1, 𝑞0 = 2, 𝑞1 = ∞,

1
𝑝 = 1 − 𝑡

2 + 𝑡 1
𝑞 = 1 − 𝑡

2
Now 1

𝑝 = 1 + 𝑡
2 ⇒ 𝑝 = 2

1 + 𝑡
which for 𝑡 ∈ [0, 1] ranges from 1 to 2.
Moreover, we have

1
𝑝 + 1

𝑞 = 1 + 𝑡
2 + 1 − 𝑡

2 = 1

i.e., 𝑝 and 𝑞 are conjugate exponents.
This completes the proof.

Now, we want to obtain a “dual” inequality to the previous one. For this, we consider an
operator 𝑇 ′ ∶ 𝐿2(ℤ) → 𝐿2([0, 2𝜋]) in the opposite direction compared to the previous lemma

𝑇 ′({𝑎𝑛}𝑛∈ℤ) ∶=
∞

∑
𝑛=−∞

𝑎𝑛𝑒𝑖𝑛𝜃

The operator is defined on any 𝐿𝑝(ℤ) for 𝑝 ≤ 2, since 𝐿𝑝(ℤ) ⊆ 𝐿2(ℤ). Note that the target
expression is indeed in 𝐿2([0, 2𝜋]) again.

Lemma 3.8. For 1 ≤ 𝑝 ≤ 2 and 𝑞 conjugate exponent to 𝑝, we have

||𝑇 ′{𝑎𝑛}||𝐿𝑞 ≤ ||{𝑎𝑛}||𝐿𝑝

Proof. This is similar to the previous corollary. Parseval’s identity gives the case 𝑝0 = 𝑞0 = 2.
For the case 𝑝1 = 1, 𝑞1 = ∞, again

∣∑
𝑛∈ℤ

𝑎𝑛𝑒𝑖𝑛𝜃∣ ≤ ∑
𝑛∈ℤ

∣𝑎𝑛𝑒𝑖𝑛𝜃∣ = ∑
𝑛∈ℤ

|𝑎𝑛| = ||{𝑎𝑛}||𝐿1

i.e.

||𝑇 ′{𝑎𝑛}||∞ = sup
𝜃∈[0,2𝜋]

∣∑
𝑛∈ℤ

𝑎𝑛𝑒𝑖𝑛𝜃∣ ≤ ||{𝑎𝑛}||𝐿1

As before, applying Rietz-Thorin’s interpolation theorem concludes the proof.

As a remark, if 𝑓 = 𝑇 ′{𝑎𝑛}, then the {𝑎𝑛} are the Fourier coefficients of 𝑓 , yielding
(when 𝑝 ≠ 1) the inequality

( 1
2𝜋 ∫

2𝜋

0
|𝑓(𝜃)|𝑞𝑑𝜃)

1/𝑞

≤ (∑
𝑛∈ℤ

|𝑎𝑛|𝑝)
1/𝑝
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3.2.2 Extending the Fourier transform
The Rietz-Thorin interpolation theorem also allows us to extend the Fourier transform
defined in the previous chapter to a bigger domain.
Let 𝑉 be a finite dimensional real inner product space and 𝐸 be a normed complex space.
As in Definition 2.1 define the Fourier transform on simple functions 𝑓 via the expression

ℱ(𝑓)(𝑤) = ∫ 𝑒−2𝜋𝑖⟨𝑣,𝑤⟩𝑓(𝑣)

We have shown ℱ extends to a bounded linear operator 𝐿1 → 𝐿∞, and to a bounded linear
operator 𝐿2 → 𝐿2 (see Theorem 2.20).
By Rietz-Thorin interpolation theorem, it can be uniquely extended to bounded linear op-
erators 𝐿𝑝 → 𝐿𝑞 whenever 1 ≤ 𝑝 ≤ 2 and 𝑞 is conjugate to 𝑝.
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Chapter 4

Distributions

Laurent Schwartz introduced the notion of distributions two talk about generalized solutions
to differential equations. For his work he got the fields medal.

4.1 Space of Distributions
Definition 4.1. 𝒟(Ω) = 𝐶∞

𝑐 (Ω) is the set of test functions together with a topology deter-
mined by its converging sequences : 𝜙𝑛 → 𝜙 in 𝒟(Ω) if

• there exists a compact subset 𝐾 ⊂ Ω such that Supp(𝜙𝑛) ⊂ 𝐾.

• For all multiindices 𝛼 we have 𝜕𝛼𝜙𝑛 → 𝜕𝛼𝜙 in uniformly.

Convention: if 𝑥 ∈ ℝ𝑑 ∖ Ω, then 𝜙(𝑥) ∶= 0.
𝒟′(Ω) is the topological dual space, i.e. the space of continuous linear functionals 𝐷(Ω) → ℂ
with the weak-*-convergence, i.e. pointwise convergence.

Remark 4.2. A notion of converging sequence on a set 𝑋 is

• The constant function on 𝑥 converges to 𝑥
• A sequence converges to 𝑥 iff any subsequence has a subsequence converging to 𝑥.

Note, that any subsequence of a converging sequence converges to the same limit. It induces
a closure operator on 𝑋 (for 𝐴 ∪ 𝐵 ⊂ ̄𝐴 ∪ �̄� you use, that if a sequence in 𝐴 ∪ 𝐵 converges
to 𝑥, then it has a subsequence (converging to 𝑥) lying in 𝐴 or in 𝐵).

Example 4.3. Every locally integrable function 𝑓 ∈ 𝐿1
𝑙𝑜𝑐(Ω) gives us a distribution Λ𝑓 ∈

𝐷′(Ω) defined by
Λ𝑓(𝜙) = ∫

Ω
𝑓(𝑥)𝜙(𝑥) d𝑥

which is well-defined because 𝜙 has compact support.

Example 4.4. Let 𝜇 be a Radon measure on Ω (or more generally a signed Borel measure
which is finite on compact subsets of Ω). Then it defines a distribution:

𝑇𝜇(𝜙) = ∫
Ω

𝜙 d𝜇
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Proof. As Borel sets are 𝜇-measurable, every continuous function is 𝜇-measurable. Let
𝐾 ∶= Supp 𝜙 ⊂ Ω. Because 𝜇(𝐾) < ∞ and max 𝜙(𝐾) < ∞ it follows that 𝜙 is 𝜇-integrable.
Linearity follows from linearity of the integral. If 𝜙𝑗 → 𝜙∗ unifomrly, then Supp 𝜙𝑗 ⊂ 𝐾 for
all 𝑗 and 𝑇𝜇𝜙𝑗 → Λ𝜇𝜙∗.

We have the following important special case:

Example 4.5 (Dirac-𝛿). We have 𝛿 ∈ 𝐷′(Ω) given by

𝛿(𝜙) ∶= 𝜙(0)

4.1.1 Convolution
Notation 1. For 𝜙 ∈ 𝐷 define 𝜙𝑅 ∈ 𝐷 as 𝜙𝑅(𝑥) = 𝜙(−𝑥) and for 𝑥 ∈ ℝ𝑑 we have the shift
𝜏𝑥(𝜙) ∈ 𝐷 given by 𝜏𝑥(𝜙)(𝑦) = 𝜙(𝑦 − 𝑥) .

Example 4.6. For 𝑓 ∈ 𝐿1
𝑙𝑜𝑐(Ω), 𝑔 ∈ 𝐷(Ω) we have

(𝑓 ∗ 𝑔)(𝑥) = Λ𝑓(𝜏𝑥(𝜓𝑅))

Proposition 4.7. Let 𝐹 ∈ 𝒟′(Ω), 𝜓 ∈ 𝐷. The following two distributions coincide:

1. The distribution determined by the smooth function 𝑥 ↦ 𝐹(𝜏𝑥(𝜓𝑅)).
2. The distribution 𝜙 ↦ 𝐹(𝜓𝑅 ∗ 𝜙).

We write this distribution as 𝐹 ∗ 𝜓.
Proof. 𝜁 ∶= 𝜓𝑅 The function 𝑥 ↦ 𝐹(𝜏𝑥(𝜓𝑅)) is smooth :

• It is continuous: If 𝑥𝑛 → 𝑥, then 𝜏𝑥(𝜁) − 𝜏𝑥𝑛
(𝜁) → 0 uniformly and the same holds

for partial derivatives. Now 𝐹 is continuous hence 𝐹(𝜏•(𝜓𝑅)) is continuous and 𝐹
preserves the difference quotients, hence it will be also smooth.

• The two distributions coincide:

𝐹(𝜓𝑅 ∗ 𝜙) = 𝐹 (∫(𝜏𝑥𝜓𝑅(•)𝜙(𝑥) d𝑥))

!= ∫ 𝐹(𝜏𝑥𝜓𝑅(•)𝜙(𝑥)) d𝑥

= ∫ 𝐹(𝜏𝑥𝜓𝑅)𝜙(𝑥) d𝑥

= Λ(𝐹(𝜏•𝜓𝑅))(𝜙)

Where we are allowed to pull out the integral by 4.8

Lemma 4.8. Let 𝜙 ∈ 𝐶∞
𝑐 (Ω × Ω). Then for any 𝐹 ∈ 𝐷′(Ω) we have

𝐹 (∫
Ω

𝜙(𝑥,_) d𝑥) = ∫
Ω

𝐹(𝜙(𝑥,_)) d𝑥
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Proof. Consider 𝑆𝜀 ∈ 𝐷 defined by

𝑆𝜙
𝜀 (𝑦) = 𝜀𝑑 ∑

𝑛∈ℤ𝑑
𝜙(𝑛𝜀, 𝑦)

which is a finite sum as 𝜙 has compact support. Then for all 𝜙 ∈ 𝐶∞
𝑐 (Ω×Ω) one has a limit

in 𝒟
∫

Ω
𝜙(𝑥, _) d𝑥 = lim

𝜀→0
𝑆𝜙

𝜀

Hence by continuity of 𝐹

𝐹(∫
Ω

𝜙(𝑥, _) d𝑥) = 𝐹(lim
𝜀→0

𝑆𝜙
𝜀 )

= lim
𝜀→0

𝐹(𝑆𝜙
𝜀 )

= lim
𝜀→0

𝜀𝑑 ∑
𝑛∈ℤ𝑑

𝐹(𝜙(𝑛𝜀, _))

= lim
𝜀→0

𝑆𝐹∘𝜙
𝜀

= ∫
Ω

𝐹(𝜙(𝑥, _)) d𝑥

Using the first definition we learn the following two things

Example 4.9. From the description 4.6: Writing Λ𝑓 ∗ 𝑔 is unambiguous.

Example 4.10. We have 𝛿0 ∗ 𝑓 = Λ𝑓 for all 𝑓 ∈ 𝐷.

Lemma 4.11. Convolution 𝐹 ∗ 𝜓 is continuous in both variables.

Proof. Continuity in the distribution variable is clear by pointwise convergence.
For the continuity in the test function variable one uses that convolution with a fixed test
function is a continuous function 𝒟 → 𝒟 and distributions are continuous.

Proposition 4.12. There exists a sequence 𝜓𝑛 ∈ 𝐶∞
𝑐 (Ω) such that Λ𝜓𝑛 → 𝛿0 in 𝐷′(Ω).

Proof. Fix some 𝜓 ∈ 𝐷 with ∫ 𝜓(𝑥) d𝑥 = 1. Define 𝜓𝑛(𝑥) ∶= 𝑛𝑑𝜓(𝑛𝑥). Then

(Λ𝜓𝑛 − 𝛿0)(𝜙) = ∫ 𝑛𝑑𝜓(𝑛𝑥)𝜙(𝑥) d𝑥 − 𝜙(0) = ∫ 𝜓(𝑥) ⋅ (𝜙(𝑥/𝑛) − 𝜙(0)) d𝑥 → 0

where we used that 𝜙(𝑥/𝑛) − 𝜙(0) → 0 uniformly.

The following is how we view 𝐿1
𝑙𝑜𝑐(Ω) ⊂ 𝐷′(Ω).

Corollary 4.13. Let 𝑓, 𝑔 ∈ 𝐿1
𝑙𝑜𝑐(Ω) such that Λ𝑓 = Λ𝑔. Then 𝑓 = 𝑔 almost everywhere.

Proof. We have 0 = Λ(𝑓 − 𝑔)(𝜏•𝜓𝑅
𝑛 ) = 𝜓𝑛 ∗ (𝑓 − 𝑔) → 𝛿0 ∗ (𝑓 − 𝑔) = 𝑓 − 𝑔 in 𝐿1

𝑙𝑜𝑐, hence
𝑓 = 𝑔 almost everywhere.

Example 4.14. 𝛿 is not a function! I.e. its not of the form Λ𝑓 for some 𝑓 ∈ 𝐿1
𝑙𝑜𝑐
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Proof. We have Δ|Ω∖{0} = Λ0 so if it would be a function, then it would be zero almost
everywhere, hence 0. But this is a contradiction.

Corollary 4.15. Then 𝐶∞(ℝ𝑑) is dense in 𝒟′(ℝ𝑑).
Proof. We know by 4.12 that there exists Λ𝜓𝑛 → 𝛿0 in 𝒟′. Let 𝐹 be a distribution on ℝ𝑑.
Now setting 𝐹𝑛 ∶= 𝐹 ∗ 𝜓𝑅

𝑛 , yields pointwise

𝐹𝑛(𝜙) = 𝐹(𝜓𝑛 ∗ 𝜙) → 𝐹(𝛿0 ∗ 𝜙) = 𝐹(𝜙)

by 4.11 hence 𝐹𝑛 → 𝐹 in 𝒟′.

4.1.2 Derivatives
For 𝜙, 𝜓 ∈ 𝐷 we have

∫
Ω

𝜕𝛼𝜙𝜓 d𝑥 = (−1)|𝛼| ∫
Ω

𝜙𝜕𝛼𝜓 d𝑥

This motivates the definition

Definition 4.16. For a multiindex 𝛼 and a distribution 𝐹 define the distribution

𝜕𝛼𝐹(𝜙) = (−1)|𝛼|(𝐹𝜕𝛼𝜙)

Remark 4.17. let 𝑓 ∈ 𝐿1
𝑙𝑜𝑐(Ω). If there exists some 𝑓 ′ ∈ 𝐿1

𝑙𝑜𝑐(Ω), such that Λ𝑓 ′ = 𝜕𝛼Λ𝑓
as distributions, then we call 𝑓 ′ the weak derivative of 𝑓 with respect to 𝛼.
Proposition 4.18. For 𝐹 ∈ 𝐷′, 𝜙 ∈ 𝐷 , We have

𝜕𝛼(𝐹 ∗ 𝜙) = (𝜕𝛼𝐹) ∗ 𝜙 = 𝐹 ∗ 𝜕𝛼𝜙

Proof. First note, that holds in the case where 𝐹 is a test function, so that we have ordinary
convolution. Then check pointwise. After erasing the sign (−1)|𝛼|

𝐹(𝜙𝑅 ∗ 𝜕𝛼𝜓) = 𝐹(𝜕𝛼(𝜙𝑅 ∗ 𝜓)) = 𝐹((𝜕𝛼𝜙) ∗ 𝜓)

4.1.3 Support
The Support of a distribution 𝐹 is the complement of the largest open subset 𝑈 , such that
𝐹(𝜙) = 0∀𝜙 ∈ 𝐷, Supp(𝜙) ⊂ 𝑈 . This definition is unambiguous: If 𝐹 vanishes on each 𝑈𝑖
for some index set 𝐼 and 𝜙 ∈ 𝐷 such that the compact set Supp 𝜙 ⊂ 𝑈 = ⋃ 𝑈𝑖, we may
assume that 𝐼 is finite and choose a partition of unity Supp 𝜂𝑖 ⊂ 𝑈𝑖 and ∑ 𝜂𝑖 = 1. Then
𝐹(𝜙) = ∑ 𝐹(𝜙𝜂𝑖) = 0.

4.1.4 Tempered Distributions
We no enlarge our test space to the schwartz space 𝒮 = 𝒮(ℝ𝑑) consisting of smooth functions
that are rapidly decreasing at ∞ with all derivatives.
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Definition 4.19. Consider the increasing sequence of norms on 𝐶∞(Ω) defined by
‖𝜙‖𝑁 = sup{|𝑥𝛽(𝜕𝛼

𝑥 𝜙(𝑥))| ∣ 𝑥 ∈ ℝ𝑑, |𝛼|, ‖𝛽‖ ≤ 𝑁}
𝒮 = {𝜙 ∈ 𝐶∞(ℝ𝑑) ∣ ‖𝜙‖𝑁 < ∞∀𝑁}

with the obvious notion of convergence.
Lemma 4.20. We have a continuous inclusions 𝒟 ⊂ 𝒮, hence 𝒮′ ⊂ 𝒟′(ℝ𝑑).
Moreover, this inclusion is dense. Hence being tempered is a property of distributions.
Lemma 4.21. Let 𝑓 ∈ 𝐿1

𝑙𝑜𝑐(ℝ𝑑) such that there exists 𝑁 ≥ 0 with

∫
|𝑥|<𝑅

|𝑓(𝑥)| d𝑥 = 𝑂(𝑅𝑁), as 𝑅 → ∞

The distribution Λ𝑓 is tempered.
Example 4.22. This condition holds for functions in 𝐿𝑝(ℝ𝑑) for 𝑝 ∈ [1, ∞]
Lemma 4.23. If 𝐹 ∈ 𝒟′ has compact support then it is tempered: Choose 𝜂 ∈ 𝒟 such
that 𝜂|𝑈 = 1 on some neighborhood 𝑈 ⊃ Supp(𝐹). Then 𝐹(𝜂𝜙) = 𝐹(𝜙) for all 𝜙 ∈ 𝒟 and
𝜙 ↦ 𝐹(𝜂𝜙) defines a continuous functional on 𝒮. It does not depend on the choice of 𝜂,
because given another such 𝜂′ and any 𝜙 ∈ 𝒮 we have Supp((𝜂 − 𝜂′) ⋅ 𝜙) ∩ Supp(𝐹) = ∅.

Let 𝐹 denote a tempered distribution.
Lemma 4.24. • All 𝜕𝛼𝐹 are tempered.

• Let 𝜓 ∈ 𝐶∞ be slowly increasing, i.e. for each 𝛼 exists 𝑁𝛼 such that 𝜕𝛼
𝑥 𝜓(𝑥) =

𝑂(|𝑥|𝑁𝛼). Then 𝜓𝐹 , defined by (𝜓𝐹)(𝜙)(𝐹(𝜓𝜙) is tempered.
Example 4.25. If 𝜓 ∈ 𝒮, then 𝐹(𝜏•(𝜓𝑅)) is slowly increasing. The other formulation is
still valid because 𝒮 is stable under ∗.

What is the point of the Schwartz space?
Definition 4.26. The fourier transformation is a continuous bijection

𝒮 → 𝒮

𝜙 ↦ ̂𝜙 = (𝜉 ↦ ∫
ℝ𝑑

𝜙(𝑥)𝑒−2𝜋𝑖𝑥𝜉 d𝑥)

Lemma 4.27. We have

Λ ̂𝜓(𝜙) = ∫
ℝ𝑑

̂𝜓(𝑥)𝜙(𝑥) d𝑥 = ∫
ℝ𝑑

𝜓(𝑥) ̂𝜙(𝑥) d𝑥 = Λ𝜓( ̂𝜙)

So its easy to define a compatible generalization to the tempered distributions:
Definition 4.28. Define

̂𝐹 (𝜙) = 𝐹( ̂𝜙)
and similarly for the inverse transform 𝑓 ↦ ̌𝑓.

We automatically have the inversion theorem for distributions, because it holds for test
functions.
Example 4.29. If 1 ∈ 𝑆 denotes the constant function at 1, then

̂𝛿 = Λ1

because
̂𝛿(𝜙) = ̂𝜙(0) = ∫ 1𝜙(𝑥) d𝑥 = Λ1(𝜙)
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4.2 Fundamental solutions
In this chapter we may omit the Λ. Fix a partial differential operator 𝐿

𝐿 = ∑
|𝛼|≤𝑚

𝑎𝛼𝜕𝛼 on ℝ𝑑

with 𝑎𝛼 ∈ ℂ.

Definition 4.30. A fundamental solution of 𝐿 is a distribution 𝐹 such that 𝐿(𝐹) = 𝛿
The reason why this is interesting:

Lemma 4.31. The operator
𝑓 ↦ 𝑇 (𝑓) ∶= 𝐹 ∗ 𝑓

defines an inverse to 𝐿
Proof. because

𝜕𝛼(𝐹 ∗ 𝑓) = (𝜕𝛼𝐹) ∗ 𝑓 = 𝐹 ∗ (𝜕𝛼𝑓)
Summing over 𝛼 gives

𝐿(𝐹 ∗ 𝑓) = 𝛿 ∗ 𝑓 = 𝐹 ∗ 𝐿𝑓
Now recall 𝛿 ∗ 𝑓 = 𝑓 .

Definition 4.32. The characteristic polynomial of 𝐿 is

𝑃(𝜉) = ∑
|𝛼|≤𝑚

𝑎𝛼(2𝜋𝑖𝜉)𝛼

It is defined it such a way, that 𝐿𝑓 = 𝑃 ⋅ ̂𝑓 . So our hope is

𝐹 ∶= ̌1/(𝑃(𝜉)) = ∫ 1
𝑃(𝜉)𝑒2𝜋𝑖𝑥𝜉 d𝜉

The problem is, that the zeros of 𝑃 result in difficulties to define 𝐹 , even as a distribution.

4.2.1 Laplacian
If 𝐿 = Δ = ∑𝑑

𝑖=1
𝜕2

𝜕2𝑥𝑖
So 1/𝑃(𝜉) = 1/(−4𝜋2|𝜉|2) which lies in 𝐿1

𝑙𝑜𝑐 for 𝑑 ≥ 3. To calculate
our distribution the following is helpful

Theorem 4.33. For 𝜆 > −𝑑, Let 𝐻𝜆 be the tempered distribution associated to |𝑥|𝜆 ∈ 𝐿1
𝑙𝑜𝑐.

If −𝑑 < 𝜆 < 0 then
𝐻𝜆 = 𝑐𝜆𝐻−𝑑−𝜆

with
𝑐𝜆 = Γ((𝑑 + 𝜆)/2)

Γ(𝜆/2) 𝜋−𝑑/2−𝜆

Set 𝜆 ∶= −𝑑 + 2. Hence we can find an appropriate constant 𝐶𝑑 such that 𝐹(𝑥) =
𝐶𝑑|𝑥|−𝑑+2 is a fundamental solution, because ̂𝐹 (𝜉) = 1/(−4𝜋2|𝜉|2). So writing out Δ̂𝐹 = 1.
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Proposition 4.34. If 𝑑 = 2, the function 𝐹 ∶= 1/(2𝜋) log |𝑥| ∈ 𝐿1
𝑙𝑜𝑐 is a fundamental

solution of Δ
Proof. Sketch. One can actually compute ̂𝐹 = −1/(4𝜋2) [ 1

|𝑥|2 ] − 𝑐′𝛿 for some constant 𝑐′,
where [ 1

|𝑥|2 ] is a distribution, that replaces the (non locally integrable) function 1/|𝑥|2 in an
appropriate way:

[ 1
|𝑥|2 ] = ∫

|𝑥|≤1

𝜙(𝑥) − 𝜙(0)
|𝑥|2 d𝑥 + ∫

|𝑥|>1

𝜙(𝑥)
|𝑥|2 d𝑥

Notice, that on the complement of zero, this distribution coincides with 1/|𝑥|2.

Notation 2. If 𝜙 ∈ 𝐶∞(Ω) slowly increasing (i.e. all derivatives are bounded by polynomi-
als), define 𝜙𝐹 ∈ 𝒮′ as 𝜙𝐹(𝜓) = 𝐹(𝜙𝜓).

Δ̂𝐹 = −4𝜋2|𝑥|2 ̂𝐹

= |𝑥|2 [ 1
|𝑥|2 ] − 4𝜋2𝑐′ |𝑥|2𝛿⏟

=0
= 1

4.2.2 Heat operator
𝐿 = 𝜕

𝜕𝑡 − Δ𝑥 taken over (𝑥, 𝑡) ∈ ℝ𝑑+1 = ℝ𝑑 × ℝ i.e. we want to solve the homogeneous initial
value problem

{𝐿(𝑢) = 0 , 𝑡 > 0
𝑢(𝑥, 0) = 𝑓(𝑥) , 𝑡 = 0

for some initial value 𝑓 ∈ 𝒮.
We have

( 𝜕
𝜕𝑡ℋ̂𝑡)(𝜉) = 𝜕

𝜕𝑡ℋ𝑡(𝜉) = Δ̂𝑥ℋ𝑡(𝜉) = −4𝜋2|𝜉|2ℋ̂𝑡(𝜉)

and this is obviously solved by ℋ𝑡 = 𝑒−4𝜋2|𝜉|2𝑡. We may call this the heat kernel

ℋ̂𝑡(𝜉) = 𝑒−4𝜋2|𝜉|2𝑡

Note that for 𝑡 = 0, we have ℋ̂0 = 1, hence ℋ0 = 𝛿, so 𝑢(𝑥, 𝑡) = (ℋ ∗ 𝑓)(𝑥) solves the
equation 𝐿(𝑢) = 0 and 𝑢(𝑥, 𝑡) → 𝑓(𝑥) in 𝒮 as 𝑡 → 0.

Remark 4.35. ℋ𝑡 → 𝛿 in 𝒮′ as 𝑡 → 0 and ∫ℝ𝑑 ℋ𝑡(𝑥) d𝑥 = 1 for all 𝑡
Now define

𝐹(𝑥, 𝑡) ∶= {ℋ𝑡(𝑥) , 𝑖𝑓 𝑡 > 0,
0 , 𝑡 ≤ 0

𝐹 is locally integrable on ℝ𝑑+1 and it actually holds

∫
|𝑡|≤𝑅

∫
ℝ𝑑

𝐹(𝑥, 𝑡) d𝑥 d𝑡 ≤ 𝑅

so 𝐹 defines a tempered distribution by 4.21.
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Theorem 4.36. 𝐹 is a fundamental solution of 𝐿 = 𝜕
𝜕𝑡 − Δ𝑥.

Proof. Denote 𝐿′ = − 𝜕
𝜕𝑡 − Δ𝑥, then we have to see the last equation

𝐿𝐹(𝜙) = 𝐹(𝐿′(𝜙)) = lim
𝜀→0

∫
𝑡≥𝜀

∫
ℝ𝑑

𝐹(𝑥, 𝑡)(− 𝜕
𝜕𝑡 − Δ𝑥)𝜙(𝑥, 𝑡) d𝑥 d𝑡 != 𝛿(𝜙)

Integration by parts

∫
𝑡≥𝜀

∫
ℝ𝑑

𝐹(𝑥, 𝑡)(− 𝜕
𝜕𝑡 − Δ𝑥)𝜙(𝑥, 𝑡) d𝑥 d𝑡

= − ∫
ℝ𝑑

(∫
𝑡≥𝜀

ℋ𝑡
𝜕
𝜕𝑡 + (Δ𝑥ℋ𝑡)𝜙 d𝑡) d𝑥

= − ∫
ℝ𝑑

(∫
𝑡≥𝜀

ℋ𝑡
𝜕
𝜕𝑡 + ( 𝜕

𝜕𝑡ℋ𝑡)𝜙 d𝑡) d𝑥

= ∫
ℝ𝑑

ℋ𝜀(𝑥)𝜙(𝑥, 𝜀) d𝑥 ∣ |𝜙(𝑥, 𝜀) − 𝜙(𝑥, 0)| ≤ 𝑂(𝜀) uniformly in 𝑥

= ∫
ℝ𝑑

ℋ𝜀(𝑥)(𝜙(𝑥, 0) + 𝑂(𝜀)) d𝑥 4.35

→ 𝜙(0, 0)

where in the last line we let 𝜀 → 0
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